Tải bản đầy đủ (.pdf) (4 trang)

de thi khao sat nang luc giao vien thcs mon toan phong gd dt tu nghia quang ngai nam hoc 2016 2017

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (143.28 KB, 4 trang )

VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

HỘI THI GIÁO VIÊN DẠY GIỎI THCS

TƯ NGHĨA

NĂM HỌC 2016 - 2017
ĐỀ THI KIỂM TRA NĂNG LỰC

Thời gian làm bài 150 phút, không kể thời gian giao nhận đề
(Bao gồm thời gian phần nhận thức chung và kiến thức bộ môn)
PHẦN KIẾN THỨC BỘ MÔN TOÁN
Câu 1: (2.0 điểm)
a) Phát biểu các bước giải phương trình chứa ẩn ở mẫu?
b) Áp dụng giải phương trình sau:

x
x
2x

 2
2( x  3) 2 x  2 x  2 x  3

Câu 2: (2.0 điểm)
4x2  5
a) Tìm số nguyên x để phân thức T 
có giá trị nguyên?
2 x 1


b) Tính giá trị của biểu thức: S  3 2  5  3 2  5
Câu 3: (2.0 điểm) Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC
lấy điểm E sao cho BD = AE. Kẻ DK // AC ( K  BC).
a) Chứng minh tam giác BDK là tam giác cân.
b) Gọi M là trung điểm của DE. Chứng minh  AME =  KMD rồi suy ra 3 điểm A, M, K
thẳng hàng.
Câu 4: (1.0 điểm) Tìm GTNN, GTLN của biểu thức: H 

6  8x
x2  1

----- Hết ------Cán bộ coi thi không giải thích gì thêm.


VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO TƯ NGHĨA
HƯỚNG DẪN CHẤM MÔN TOÁN
HỘI THI GVDG NĂM HỌC 2016 – 2017
Câu

Hướng dẫn chấm

Điểm

Câu 1: (2.0 điểm)
a) Phát biểu các bước giải phương trình chứa ẩn ở mẫu?
b) Áp dụng giải phương trình sau:

1a

(1.0 đ)

x
x
2x

 2
2( x  3) 2 x  2 x  2 x  3

Bước 1: Tìm điều kiện xác định của phương trình.

0.25

Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

0.25

Bước 3: Giải phương trình vừa nhận được.

0.25

Bước 4 (Kết luận): Trong các giá trị của ẩn tìm được ở bước 3, các giá
trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã

0.25

cho.
x
x
2x


 2
2( x  3) 2 x  2 x  2 x  3

(1)

+ ĐKXĐ: x  3; x  -1
1b
(1.0 đ)

+ Ta có (1) 

0.25

x
x
2x


2( x  3) 2( x  1) ( x  1).( x  3)

0.25

Suy ra: x(x + 1) + x(x - 3) = 4x
 x2 + x + x2 - 3x - 4x = 0
 2x( x - 3) = 0  x = 0 hoặc x = 3

(t/m)

(k t/m)


+ KL: Vậy phương trình có nghiệm duy nhất x = 0
Câu 2: (2.0 điểm)
a) Tìm số nguyên x để phân thức T 

0.25

4x2  5
có giá trị nguyên?
2 x 1

b) Tính giá trị của biểu thức: S  3 2  5  3 2  5

0.25


VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

2a
(1.0 đ)

+ Ta có: T  2 x  1 

6
2 x 1

0.25

+ Để T có giá trị nguyên thì 6 2 x  1  2 x  1 1; 3
(Vì x  Z nên 2 x  1 là số nguyên lẻ)


2b
(1.0 đ)

0.25

+ Ta có bảng giá trị

0.25

+ Vậy x  1;0;1; 2

0.25

+ Ta có: S 3  2  5  2  5  3. 3 (2  5).(2  5).S

0.25

Suy ra S 3  3S  4  0

0.25

 ( S  1).( S 2  S  4)  0

0.25
2

1  15

Tính được: S  1 ( Vì S  S  4   S     0S )

2
4

2

0.25

Câu 3: (2.0 điểm) Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy
điểm E sao cho BD = AE. Kẻ DK // AC ( K  BC ).
a) Chứng minh tam giác BDK là tam giác cân.
b) Gọi M là trung điểm của DE. Chứng minh  AME =  KMD rồi suy ra 3 điểm A, M, K
thẳng hàng.
Vẽ đúng hình
A

E

0.25

M

D

B

C
K

 C
.

Chỉ ra: ABC cân tại A. Nên B

0.25

 C
 (hai góc đvị).
(0.75 đ) DK // AC (GT) nên BKD

0.25

3a


VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

Suy ra

B
 nên t/giác BDK cân tại D.
BKD

0.25

Xét  AME và  KMD có DK = AE ( cùng bằng BD).
  AEM
 (2 góc sltrong); DM = ME (GT).
KDM

3b


Suy ra  AME =  KMD (c - g – c ).

(1.0 đ)

  AME
 (2 góc t/ứng).
Chỉ ra: KMD

0.5

0.5

  AMD
  AME
  AMD
  1800
AMK  KMD
Khi đó: 

Suy ra A, M, K thẳng hàng.
Câu 4: (1.0 điểm) Tìm GTNN, GTLN của biểu thức: H 
Ta có: H 

6  8x
x2  1

6  8x
 Hx 2  8 x  H  6  0 (1)
2
x 1


+) H =0 . Phương trình (1) có dạng 8x – 6 = 0  x=

0.25
2
3

+) H  0 thì (1) phải có nghiệm   ' = 16 - H (H - 6)  0
 H 2  6 H  16  0  ( H  8)( H  2)  0  2  H  8

Suy ra: Max H = 8  x =

1
.
2

0.25
0.25

0.25

Min H = -2  x = 2 .
Lưu ý: Trên đây chỉ là giải sơ lược. Thí sinh có nhiều cách giải khác nhau, nếu đúng giám
khảo cho điểm tương ứng của phần đó.



×