Tải bản đầy đủ (.pdf) (73 trang)

Cách chế tạo UAV drone máy bay không người lái how to make a drone

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.33 MB, 73 trang )

Cách thức chế tạo một Máy bay không người lái (Drone/UAV)
Bài 1: Thuật ngữ
How to Make a Drone / UAV – Lesson 1: Terminology
Posted on October 29, 2014 by Coleman Benson & filed under How to Make a UAV / Drone.
How to Make a Drone / UAV – Lesson 1: Terminology
How to Make a Drone / UAV – Lesson 2: The Platform
How to Make a Drone / UAV – Lesson 3: Propulsion
How to Make a Drone / UAV – Lesson 4: Choose a flight controller
How to Make a Drone / UAV – Lesson 5: Assembly
How to Make a Drone / UAV – Lesson 6: Get it all working together
How to Make a Drone / UAV – Lesson 7: FPV & Long-range
Vì bạn đang tìm kiếm để có được các máy bay không người lái UAV. Loạt hướng dẫn này được thiết kế để giúp
bạn hiểu được lĩnh vực đang nổi lên của UAV và hướng dẫn bạn qua quy trình tự xây dựng UAV sử dụng các
phụ kiện có sẵn. Thuật ngữ và các định nghĩa sử dụng ở đây nhằm cung cấp cho bạn, người đọc một sự hiểu
biết của mỗi thuật ngữ không phải là định nghĩa từ điển. Mặc dù một vài từ có thể có nhiều nghĩa, định nghĩa
được sử dụng trong văn bản của UAV/Drone
So you’re looking to get into drones and UAVs? This tutorial series is designed to help you understand the
emerging field of UAVs and guide you through the process of building your own UAV using off-the shelf
parts. The terminology and definitions used here are intended to give you, the reader an understanding of each
term rather than a dictionary definition. Although many words may have multiple meanings, the definition is
used in the context of UAVs / Drones.

Thuật ngữ / Terminology
Các kiểu UAV / Types

ARF

"Hầu như đã sẵn sàng để bay": một UAV đi kèm lắp ráp với gần như tất cả các
phần cần thiết để bay. Các thành phần như bộ điều khiển và bộ tiếp nhận có thể
không được bao gồm.
“Almost Ready to Fly“: a UAV which comes assembled with almost all parts


necessary to fly. Components like the controller and receiver may not be included.
“ Ghép nối và bay”: một UAV được lắp ráp đầy đủ và bao gồm một bộ nhận. Bạn
chỉ cần chọn một bộ truyền phát tương thích và “ghép” nó với bộ nhận/thu

BNF

DIY

“Bind and Fly“: the UAV comes fully assembled and includes a receiver. You only
need to choose a compatible transmitter and “bind” it to the receiver.
“Tự làm”, được sử dụng với nghĩa “làm theo ý khách hàng”. Điều này thường liên
quan đến việc sử dụng các bộ phận từ nhiều nhà cung cấp khác nhau và tạo ra hoặc
sửa đổi các bộ phận.


Drone

“Do It Yourself“, which is now commonly used to mean “custom”. This normally
involves using parts from a variety of different suppliers and creating or modifying
parts.
Từ này đồng nghĩa với UAV. Thuật ngữ “drone” dường như được sử dụng thông
dụng hơn trong quân đội, còn “UAV” được sử dụng thông dụng cho sở thích sử
dụng
This is synonymous with UAV. The term “drone” seems to be more common for
military use whereas “UAV” is more common for hobby use
Một UAV có sáu mô tơ / cánh quạt

Hexacopter
A UAV which has six motors / propellers.
Nghĩa là một chiếc máy bay có nhiều rô to

Multirotor
“Multirotor” simply means an aircraft with multiple rotors
Một UAV có 8 mô tơ / cánh quạt
Octocopter
A UAV which has eight motors / propellers.
Một UAV có 4 mô tơ / cánh quạt và 4 cánh tay hỗ trợ. Các cấu hình là thông thường
có dạng như dấu “+” (phía trước của UAV đối diện một cánh tay) hoặc có khung
dấu “X” (phía trước của máy bay đối diện giữa hai cánh tay)
Quadcopter
A UAV which has four motors / propellers and four support arms. Configurations
are normally “+” (the front of the UAV faces one of the arms) or “X” (the front of
the aircraft faces between two arms).
"Sẵn sàng để bay": một UAV mà đi kèm việc lắp ráp hoàn chỉnh với tất cả các bộ
phận cần thiết. Đơn giản chỉ cần sạc pin và bay!
RTF
“Ready To Fly“: a UAV which comes fully assembled with all necessary parts.
Simply charge the battery and fly!
“Kích cỡ” thông thường được đưa ra dạng mm (vd 450mm) và đại diện cho các
điểm lớn nhất đối với khoảng cách điểm giữa hai động cơ trên một UAV. Kích
thước cũng có thể xác định "loại" của UAV (micro, mini vv)
Size (mm)
“Size” is normally provided in millimeters (ex 450mm) and represents the greatest
point to point distance between two motors on a UAV. Size can also determine the
“class” of UAV (micro, mini etc)
Một UAV kiểu “gián điệp” (thông thường bốn hoặc sáu) là một kiểu nơi các cánh
tay hỗ trợ không đối xứng ở cả hai trục khi nhìn từ phía trên.
Spyder

Tricopter


A “Spyder” type UAV (normally quad or hex) is one where the supporting arms are
not symmetric in bot haxes when looked at from the top.
Một kiểu UAV mà có 3 mô tơ / cánh quạt, và thường sử dụng 3 cánh tay hỗ trợ


A UAV which has three motors / propellers, and usually three support arms
“Phương tiện trên không không người lái” (của một vài kiểu)
UAV
“Unmanned Aerial Vehicle” (of any kind)
Một UAV có bốn cánh tay, phía sau hai cánh tay là ở tại góc dạng chữ “V”
V-Tail
A UAV which has four arms, of which the rear two are at an angle to form a ‘V’
X4 hay X8 là UAV cấu hình với 4 cánh tay hỗ trợ; Cấu hình X4 có một mô tơ tại
cuối mỗi cánh, trong khi X8 có hai mô tơ mỗi cánh tay (một mặt trên, mặt còn lại ở
phía dưới)
X4 / X8
X4 and X8 are UAV configurations with four support arms; X4 configurations have
one motor at the end of each arm, whereas X8 have two motors per arm (one facing
up, the other facing down)
Y3 và Y6 là cấu hình UAV với 3 cánh tay hỗ trợ; Y3 cấu hình có một mô tơ tại cuối
mỗi cánh tay, trong khi Y6 có hai mô tơ mỗi cánh tay (một mặt trên, mặt còn lại ở
phía dưới)
Y3 / Y6
Y3 and Y6 are UAV configurations with three support arms; Y3 configurations
have one motor at the end of each arm, whereas Y6 have two motors per arm (one
facing up, the other facing down)

Bốn cánh tay / Quadcopter

Đuôi chữ V/V-Tail


Khung 8 cánh tay / Octocopter Frame

Cơ học / Mechanics
“Tâm trọng lực” đây là điểm trên máy bay tại đó khối lượng cân bằng phân phối
trên tất cả các mặt
CG
“Center of Gravity“; this is the point on the aircraft where there is equal weight
distributed on all sides.
Một "ống kẹp" là một thiết bị thường được sử dụng trên một ống tròn để kết nối nó
với một thiết bị khác (chẳng hạn như một động cơ gắn kết hoặc một thân UAV).
Clamp
A “tube clamp” is a device normally used on a round tube in order to connect it to
another device (such as a motor mount or a UAV’s body).
Connectors Để cắm và rút dây điện, kết nối được sử dụng ở hai đầu của dây. Kết nối chung cho


pin là Deans & XT60, trong khi kết nối với bộ điều khiển bay và các cảm biến là
khoảng cách đều nhau 0,1 "
In order to plug and unplug wires, connectors are used at the ends of wires.
Common connectors for batteries are Deans & XT60, while connectors for the
flight controller and sensors are 0.1″ spaced
Các phụ kiện cao su đúc được sử dụng để giảm thiểu rung động truyền tới UAV
Dampeners

These are molded rubber parts used to minimize vibration transmitted throughout a
UAV
Khung giống như “bộ xương” của máy bay và giữ tất cả các phần phụ kiện trên
cùng với nó. Các khung đơn giản có các mô tơ kết nối tới cánh tay nhôm hoặc các
cánh ép đùn nhẹ khác sau đó kết nối đến một tâm của máy bay.


Frame
The frame is like the “skeleton” of the aircraft and holds all of the parts together.
Simple frames have motors connected to aluminum or other lightweight extrusions
(“arm”) which then connect to a central body.
Đây là một vật liệu thông thường được sử dụng thay thế sợi các bon để tạo ra một
khung UAV vì nó rất cứng và nhẹ, nhưng nó ít tốn kém hơn
G10

Landing
Gear

This is a material commonly used instead of carbon fiber to make a UAV’s frame
since it is very rigid and lightweight, but significantly less expensive
Bộ bánh đáp nhiều rô to thông thường không có bánh như bạn có thể tìm thấy trên
một máy bay – đây là để bảo vệ nó từ chuyển động khi trên mặt đất và giảm khối
lượng tổng thể
Multirotor landing gear normally does not have wheels as you might find on an
airplane – this is to prevent it from moving when on the ground and reduce overall
weight.
“Đi ốt phát sáng”. Các đi ốt này được sử dụng để tạo quan sát UAV, chủ yếu vào
ban đêm hoặc khi điều kiện ánh sáng yếu.

LED

Prop
Guards

Retract


“Light Emitting Diode“. These are used to make the UAV visible, primarily at night
or low lighting conditions.
“Bảo vệ cánh quạt” Là vật liệu bao quanh một cánh quạt để ngăn chặn các cánh
quạt từ liên lạc với các đối tượng khác. Chúng được thực hiện như là một tính năng
an toàn và là một cách để giảm thiểu thiệt hại cho UAV
“Propeller guards” are material which curround a propeller to prevent the propeller
from contacting other objects. They are implemented as a safety feature and a way
to minimize damage to the UAV
"Có thể thu vào" thường dùng để chỉ càng hạ cánh trong đó có hai vị trí: một để hạ
cánh và cất cánh, và mặt khác, trong đó có tác dụng chiếm ít không gian hoặc để
cải thiện tầm nhìn, trong suốt chuyến bay.


“Retractable” normally refers to landing gear which has two positions: one for
landing and takeoff, and another, which takes up less room or improves visibility,
during flight.
Lớp vỏ - Đây là một từ chỉ chuyên môn mỹ thuật / chức năng che sử dụng để nâng
cao sức bền với các yếu tố và đôi khi cải thiện khí động học. Một số UAV sản xuất
chỉ có một lớp vỏ nhựa cũng đóng vai trò như những "khung".
Shell
This is an aesthetic / functional cover used to improve resistance to the elements
and sometimes improve aerodynamics. Some production UAVs only have a plastic
shell which also acts as the “frame”.

Bộ giảm rung động

Càng đáp đất đơn giản

Lớp vỏ UAV


Anti-Vibration Dampener

Simple Landing Gear

UAV Shell

Đẩy, động cơ đẩy / Propulsion
“Mạch xả pin” một bộ điều chỉnh điện áp được xây dựng vào ESC có thể
cung cấp điện áp quy định 5V DC cho bất kỳ thiết bị điện tử nào mà cần nó.
BEC
“Battery Eliminator Circuit“: a voltage regulator built into the ESC which
can provide regulated 5V DC power to any electronics which need it.
Cánh quạt là bề mặt khí động học sẽ tạo lực nâng. Một cánh quạt thường có
2-4 lá có thể được lắp cố định hoặc gấp.
Blades
Propeller blades are the aerodynamic surface which generates lift. A
propeller normally has two to four blades which can be fixed or folding.
CW chỉ ra chiều xoay theo kim đồng hồ và CCW chỉ chiều xoay ngược
chiều kim đồng hồ. Trên một máy bay đa rotor, bạn sẽ thường sử dụng cặp
cánh quạt quay ngược luân phiên.
CW / CCW

ESC

CW indicates Clockwise rotation and CCW indicates CounterClockwise rotation. On a multi-rotor aircraft, you would normally use pairs
of counter-rotating propellers.
“Bộ điều khiển tốc độ điện tử” là thiết bị kết nối tới pin, mô tơ và bộ điều


khiển bay và điều khiển tốc độ tại đó mô tơ quay.

“Electronic Speed Controller” is the device which connects to the battery,
motor and flight controller and controls the speed at which the motor rotates
“Polime Li thi um” là loại pin thông dụng nhất được sử dugnj trong các máy
bay không người lái Drone và UAV bởi vì khối lượng nhẹ (so với dung
lượng lưu trữ) và tốc độ nạp dòng cao
Có các loại pin Lithium- trên thị trường như (LiFe, LiMn, LiOn,…)
LiPo

“Lithium Polymer” is the most common battery used in drones and UAVs
because of its light weight (versus storage capacity) and high current
discharge rates.
There are other types of Lithium-based batteries available on the market as
well (LiFe, LiMn, LiOn etc)
Động cơ được sử dụng để xoay cánh quạt; trong UAV loại nhỏ, một động cơ
“chổi quét” thường được sử dụng nhiều nhất, trong khi đó đối UAV lớn hơn,
một động cơ "không chổi than" là phổ biến hơn nhiều

Motor
The motor is what is used to rotate the propellers; in small UAVs,
a brushed motor is most often used, whereas for larger UAVs, a “brushless”
motor is much more common
Một “ Bo mạch in” là phần sợi thủy tinh phẳng với nhiều thành phần hàn
vào nó. Nhiều sản phẩm điện tử có một PCB.
PCB
A “Printed Circuit Board” is the flat fiberglass part with many components
soldered to it. Many electronic products have a PCB.
Để cấp điện cho nhiều thiết bị khác nhau được sử dụng trong một UAV, pin
phải được phân chia, là nơi mà các phân phối điện (bảng hoặc cáp) đến.
Nó có các điểm đấu âm và dương duy nhất của pin và cung cấp nhiều điểm
đấu đầu cuối khác nhau / kết nối mà các thiết bị khác (hoạt động ở cùng một

điện áp) có thể nhận nguồn điện.
PowerDistribution
Phân phối nguồn In order to power so many different devices used in a UAV, the battery must
be split, which is where the Power Distribution (board or cable) comes into
play.
It takes the single positive and negative terminals of the battery and provides
many different terminals / connection points to which other devices
(operating at the same voltage) can receive power.
Các cánh quạt là những cái cung cấp lực đẩy và là tương tự như những cánh
được sử dụng trên máy bay hơn là trên máy bay trực thăng
Propeller
The propellers are what provides the thrust and are more similar to those
used in airplanes rather than on helicopters.
Một thiết bị dùng để kết nối các cánh quạt với động cơ.
Prop Adapter


A device used to connect the propeller to the motor.
Một loại hub trong đó gắn trên động cơ của bạn và thay thế các bộ chuyển
đổi cánh quạt. Trong sự kiện của một vụ tai nạn, một phần của các trình bảo
vệ cánh quạt bị mất trong một nỗ lực để cứu cánh quạt.
Prop Saver
A type of hub which mounts on top of your motor and replaces the prop
adapter. In he event of a crash, a part of the prop saver is lost in an attempt to
save the propeller.
Một servo là một loại thiết bị truyền động nó cung cấp các tín hiệu đúng, có
thể di chuyển đến một vị trí góc cụ thể
Servo
A servo is a type of actuator which, provided the right signal, can move to a
specific angular position

"Lực đẩy" là lực lượng mà một động cơ và cánh quạt cụ thể có thể cung cấp
(ở một điện thế nhất định). Thường được đo bằng kg (Kg) hoặc Pao (Lbs)
Thrust
The “thrust” is the force which a specific motor and propeller can provide (at
a certain voltage). Usually measured in kilograms (Kg) or pounds (Lbs)

Cánh quạt chiều kim đồng hồ
Bo mạch phân phối nguồn
Pin LiPo / LiPo Battery

/ Ngược chiều KĐH
Power Distribution Board
CW / CCW Propellers

Điều khiển / Control

Base / ground /
Control Station

Thay vì (hoặc bổ sung cho) một kiểm soát giữ bộ phát, một trạm (thường là
trong một trường hợp hoặc gắn vào một chân máy) được sử dụng để trong
nhà / tích hợp các thành phần cần thiết sử dụng để kiểm soát một UAV.
Điều này có thể bao gồm các bộ phát, ăng-ten (e), thu video, màn hình, pin,
máy tính và các thiết bị khác.
Instead of (or in addition to) a hand held transmitter, a station (normally in a
case or mounted to a tripod) is used to house / integrate the necessary
components used to control a UAV.
This can include the transmitter, antenna(e), video receiver, monitor, battery,



computer and other devices.
Thuật ngữ "ghép cặp" đề cập đến cấu hình một bộ truyền phát cầm tay để nó
có thể giao tiếp với một bộ máy thu; nếu một máy phát đi kèm với một bộ
tiếp nhận, nó nên được thực hiện tại nhà máy.
Binding
The term “binding” refers to configuring a handheld transmitter so it can
communicate with a receiver; if a transmitter came with a receiver, it should
have been done at the factory.
Số lượng các kênh trên bộ truyền phát liên quan đến số của tín hiệu riêng biệt
nó có thể gửi
Channel

Flight Controller

The number of channels on a transmitter relates to the number of separate
signals it can send
Các "bộ điều khiển bay" là những thứ được coi như là "bộ não" của một UAV
và xử lý tất cả các dữ liệu xử lý, tính toán và tín hiệu.
Cốt lõi của một bộ điều khiển chuyến bay thường là một lập trình "vi điều
khiển". Bộ điều khiển chuyến bay có thể có nhiều cảm biến trên bo, trong đó
có một gia tốc, con quay hồi chuyển, khí áp kế, la bàn, GPS, vv
Nếu bộ điều khiển chuyến bay có khả năng điều khiển máy bay riêng của
mình (ví dụ như để di chuyển đến tọa độ GPS cụ thể), nó có thể được coi là
một "máy bay tự động".
The “Flight Controller” is what would be considered the “brain” of a UAV
and handles all of the data processing, calculations and signals.
The core of a flight controller is often a programmable “microcontroller”. The
flight controller may have multiple sensors onboard, including an
accelerometer, gyroscope, barometer, compass, GPS etc.
If the flight controller has the ability to control the aircraft on its own (for

example to navigate to specific GPS coordinates), it may be considered to be
an “autopilot”.
Điều này thường dùng để chỉ "Bộ dây an toàn", mà các dây dẫn kết nối bộ thu
để điều khiển máy bay (và các thiết bị khác).

Harness
This usually refers to the “Wiring Harness” which are the wires that connect
the receiver to the flight controller (and sometimes other devices).
"Tần số cao"; "Tần số rất cao" và "Tần số Siêu cao" sóng vô tuyến. Đơn vị là
Hz (Hertz)
HF/ UHF / VHF
“High Frequency“; “Very High Frequency” and “Ultra High Frequency”
radio waves. Units are in Hz (Hertz)
Đây là bộ xử lý thông tin không dây nhận được
Receiver
Sketch / Code

This is what processes the information received wirelessly
Đây là chương trình được tải lên bộ điều khiển bay UAV (tương tự như một


"quá trình xử lý, suy nghĩ")

Transmitter /
Radio

This is the program which is uploaded to your UAV’s flight controller
(similar to a “thought process”)
Những "bộ truyền" là những gì tạo ra tín hiệu điều khiển không dây tới máy
thu

The “transmitter” is what generates the control signal(s) wirelessly to the
receiver

Bộ truyền phát /

Bộ điều khiển bay /

Transmitter

Flight Controller

Trạm cơ sở / Base Station

Các cảm biến / Định hướng / Sensors / Orientation
Một cảm biến gia tốc đo gia tốc tuyến tính trong một đến ba trục. Bộ phận
này thông thường trong ký tự ‘g’ hoặc trọng lực. Một cảm biến gia tốc có thể
cung cấp cho máy bay không người lái định hướng với liên quan đến mặt đất
Accelerometer
An accelerometer measures linear acceleration in one to three axes. Units are
normally in ‘g’ or gravity. An accelerometer can provide your drone’s
orientation with respect to ground
Ăng-ten là những cái thực sự nhận hoặc gửi một tín hiệu đến và đi từ một
UAV (các tín hiệu của chính nó đã được tạo ra bởi một bộ phát).
Chúng bao gồm một loạt các loại khác nhau và bao gồm hướng (mạnh nhất
trong một hướng) và đa hướng
Antenna

Barometer /
Pressure
/ Altimeter


Antennas are what actually receive or send a signal to and from a UAV (the
signal itself having been generated by a transmitter unit).
They come in a variety of different types and include directional (strongest in
one direction) and omnidirectional
Một khí áp kế được sử dụng để đưa ra phản hồi như độ cao của UAV. Nó đo
áp lực, và kể từ khi thay đổi áp suất theo độ cao, máy bay của bạn có thể
"biết" độ cao của nó.
A Barometer is used to give feedback as to the altitude of the UAV. It


measures pressure, and since pressure changes with altitude, your aircraft can
“know” its height.
Một la bàn từ trường có thể cung cấp cho hướng la bàn của bạn (Bắc / Nam /
Đông / Tây)
Compass
A magnetic compass can provide your compass heading (north / south / east /
west)
Một bản ghi bay ghi các giá trị cảm biến từ UAV của bạn. Tính năng này đôi
khi có thể được tích hợp vào bộ điều khiển máy bay.
Flight Recorder
A flight recorder records sensor values from your UAV. This feature can
sometimes be integrated into the flight controller.
"Hệ thống định vị toàn cầu": các vệ tinh quay quanh hành tinh gửi ra tín hiệu
được chọn của các ăng-ten GPS và được gửi đến được xử lý bởi thiết bị nhận
GPS để cung cấp tọa độ địa lý
GPS
“Global Positioning System“: satellites orbiting the planet send out signals
which are picked up by the GPS antenna and are sent to be processed by the
GPS receiver to provide geographic coordinates

Một con quay hồi chuyển đo gia tốc góc trong một hoặc ba trục. Các đơn vị
thường là độ trên giây bình phương
Gyroscope
A gyroscope measures angular acceleration in one ot three axes. Units are
normally degrees per second squared.
"Bộ phận đo Quán tính" kết hợp một gia tốc kế và con quay hồi chuyển
IMU
“Inertial Measurement Unit” combines an accerleometer and a gyroscope
Trong robot chi phí thấp, một từ kế đôi khi được dùng để cung cấp hướng la
bàn
Magenetometer
In low cost robotics, a magnetometer is sometimes used to provide compass
direction
Pitch là góc mũi đến đuôi liên quan đến mặt đất, hay nói cách khác, sự quay
của một máy bay về trục từ cánh đến cánh
Pitch
Pitch is the angle of the nose to tail with respect to the ground, or in other
words, the rotation of an aircraft about the axis from wing to wing
Một linh kiện mà đo tốc độ không khí
Pitot Tube

Roll
Yaw

A device which measures air speed
Xoay, Cuộn là chuyển động quay của máy bay dọc theo trục từ mũi đến đuôi
của nó
Roll is the rotation of the aircraft along the axis from its nose to its tail
Bay trệch là chuyển động quay của một máy bay về một trục vuông góc (90



độ) với mặt phẳng hình thành giữa các mũi / đuôi và đầu cánh
Yaw is the rotation of an aircraft about an axis perpendicular (90 degrees to)
to the plane formed between the nose / tail and wing tips

Xoay / Xoay quanh cánh/ Trệch Cảm biến tốc độ không khí /
Mô đun GPS / GPS Module
Roll / Pitch / Yaw

Airspeed Sensor

Video
“Hiển thị người đầu tiên” UAV được gắn với một camera và người vận hành có một
chuyển tải hình ảnh trực tiếp hiển thị trên cả hai màn hình hoặc kính thực tế ảo
FPV
“First Person View“: The UAV is mounted with a camera and the operator has a live
video feed displayed on either a monitor or virtual reality glasses
A devices which carries a camera and is normally actuated using either a servo motor or
Gimbal
a brushless DC motor. A gimbal is what can stabilize a camera in flight.
GoPro The GoPro series of action cameras is widely used for taking and/or transmitting video
“Liquid Crystal Display” is a type of screen / monitor used to display the image received
LCD
by the receiver
“On Screen Display” provides text on the monitor / screen which is being sent from the
OSD
aircraft (can include altitude, GPS location etc.)
“Virtual Reality” glasses or goggles provide the operator with a more “immersive”
VR
experience


2-Axis Gimbal

LCD Monitor for FPV

VR Glasses

Do you Really Want a Custom UAV?


The choice of UAV depends on how much you want to learn about the field. Building a custom UAV can be
quite involved as well as dangerous. If you would prefer to simply “get in the air” quickly, we’d suggest the
following, in increasing order of complexity:

Toy
Multi-rotor toys are becoming increasingly popular. Most are small, and can fit in the palm of your hand,
though some like the A.R. Drone Parrot are larger. Toy multi-rotor UAVs are not necessarily easy to fly, but
are more resistant to crashes. Toys tend to be smaller and integrate the frame into the aesthetic shell.

RTF
A “Ready To Fly” kit includes all the parts needed for a complete UAV. Parts include the UAV itself (most
often pre-assembled and pre-wired), the hand held transmitter, a battery and charger. The craft is calibrated and
should be able to fly with relative ease. These are not however indestructible, and a crash may damage the
system to the point where it is simply worth buying a new aircraft rather than attempting to repair it.

ARF
An “almost ready to fly” kit is one where the frame, motors and most of the “core” parts are included and fully
assembled (or a few parts need to be assembled, largely to help with shipping). Normally an ARF kit requires
the addition of a transmitter / receiver and perhaps batteries and charger. Other ARF kits do not include the
flight controller itself. You may need to do some calibration because of the additional parts required. We do

not suggest a BNF kit as not all transmitters and receivers are compatible with one another.

UAV Kit
A kit normally includes most of the important products needed to build a UAV, but may not include the
transmitter / receiver, battery and charger or flight controller. Different kits have different package contents, so
it is important to see exactly what is included and what additional items will be needed. The contents of a kit
should be compatible with one another.

Custom
A custom setup is where you combine a variety of different products from a variety of different manufacturers
and get them to work together. This approach requires that you understand which components are needed to
make a UAV and will be the focus of this series of articles.

Do you see terms which are missing and would be useful? Feel free to add them in the comments below.

How to Make a Drone / UAV – Lesson 2: The Frame
Posted on January 19, 2015 by Coleman Benson & filed under How to Make a UAV / Drone.
How to Make a Drone / UAV – Lesson 1: Terminology
How to Make a Drone / UAV – Lesson 2: The Frame


How to Make a Drone / UAV – Lesson 3: Propulsion
How to Make a Drone / UAV – Lesson 4: Choose a flight controller
How to Make a Drone / UAV – Lesson 5: Assembly
How to Make a Drone / UAV – Lesson 6: Get it all working together
How to Make a Drone / UAV – Lesson 7: FPV & Long-range
Now that you have decided to create your own custom or semi-custom multirotor UAV, the first step is to
choose the frame. You can either create your own, or base the project off a UAV frame kit. There are many
different types of frames and configurations used to create multi-rotor UAVs. This guide covers the common /
basic frame types, materials used to construct the frame, as well as design considerations. We welcome any

feedback you have in the comments section below.

UAV Frame Types
Tricopter

Tricopter

Quadcopter



Description: A UAV which has three arms, each connected to one motor.
The front of the UAV tends to be between two of the arms (Y3). The angle
between the arms can vary, but tends to be 120 degrees. In order to
move, the rear motor normally needs to be able to rotate (using a normal
RC servo motor) in order to counteract the gyroscopic effect of an uneven
number of rotors, as well as to change the yaw angle. A Y4 is slightly
different in that it uses two motors mounted on the rear arm, which takes
care of any gyroscopic effects – no servo is therefore needed.



Advantages: Different “look” for a UAV. Flies more like an airplane in
forward motion. Price is theoretically lowest among those described here
since it uses the fewest number of brushless motor (and ESC).



Disadvantages: Since the copter is not symmetric, the design uses a
normal RC servo to rotate the rear motor and as such, the design is less

straightforward than many other multi-rotors. The rear arm is more
complex since a servo needs to be mounted along the axis. Most, though
not all flight controllers support this configuration.




Description: A “quadcopter” drone which has four arms, each connected
to one motor. The front of the UAV tends to be between two arms (x
configuration), but can also be along an arm (+ configuration).



Advantages: Most popular multi-rotor design, simplest construction and
quite versatile. In the standard configuration, the arms / motors are
symmetric about two axes. All flight controllers on the market can work
with this multirotor design.



Disadvantages: There is no redundancy, so if there is a failure anywhere in
the system, especially a motor or propeller, the craft is likely going to
crash.



Description: A “hexacopter” has six arms, each connected to one motor.
The front of the UAV tends to be between two arms, but can also be along
one arm.




Advantages: It is easy to add two additional arms and motors to a
quadcopter design; this increases the total thrust available, meaning the
copter can lift more payload. Also, should a motor fail, there is still a
chance the copter can land rather than crash. Hexacopters often use the
same motor and support arm, making the system “modular”. Almost all
flight controllers support this configuration.



Disadvantages: This design uses additional parts, so compared to a
quadcopter which uses a minimum number of parts, the equivalent
hexacopter using the same motors and propellers would be more
expensive and larger. These additional motors and parts add weight to the
copter, so in order to get the same flight time as a quadcopter,
the battery needs to be larger (higher capacity) as well.

Quadcopter

Hexacopter

Hexacopter

Y6




Description: A Y6 design is a type of hexacopter but rather than six arms,

it has three support arms, with a motor connected to either side of the
arm (for a total of six motors). Note that the propellers mounted to the
underside still project the thrust downward.



Advantages: A Y6 design actually eliminates a support arm (as compared
to a quadcopter), for a total of three. This means the copter can lift more
payload as compared to a quadcopter, with fewer components than a
normal hexacopter. A Y6 does not have the same issue as a Y3 as it
eliminates the gyro effect using counter-rotating propellers. Also, should a
motor fail, there is still a chance the copter can land rather than crash.



Disadvantages: This uses additional parts, so compared to a quadcopter
which uses the same components, the equivalent hexacopter would be
more expensive. Additional motors and parts add weigh to the copter, so
in order to get the same flight time as a quadcopter, the batteryneeds to
be larger (higher capacity) as well. The thrust obtained in a Y6 as opposed
to normal hexacopter is slightly lower (based on experience), likely
because the thrust from the top propeller is affected by the lower
propeller. Not all flight controllers support this configuration.



Description: An octocopter has eight arms, each connected to one motor.
The front of the UAV tends to be between two arms.




Advantages: More motors = more thrust, as well as increased redundancy.



Disadvantages: More motors = higher price and larger battery pack. When
you reach this level. most users are looking at very heavy payloads such as
DSLR cameras and heavy gimbal systems. Given the price of these
systems, added redundancy is really important.

Y6 Hexacopter

Octocopter

Octocopter

X8


X8 Octocopter



Description: An X8 design is still an octocopter, but has four support arms,
each with a motor connected to either side of each arm, for a total of 8
motors.



Advantages: More motors = more thrust, as well as increased redundancy.

Rather than using fewer yet more powerful motors, octocopters provide
added redundancy in the event of a motor failure.



Disadvantages: More motors = higher price and larger battery pack. When
you reach this level. most users are looking at very heavy payloads such as
DSLR cameras and heavy gimbal systems.

UAV Size
UAVs come in a variety of different sizes, from “nano” which are smaller than the palm of your hand, to mega,
which can only be transported in the bed of a truck. Although both very large and very small UAVs may get
quite a bit of attention, they are not necessarily the most practical for hobbyists. For most users who are getting
started in the field, a good size range which offers the most versatility and value is between 350mm to 700mm.
This measurement represents the diameter of the largest circle which intersects all of the motors. Not only do
parts for UAVs in this size range come in a variety of different prices, there is by far the greatest selection of
products available.

Drone Sizes
Smaller UAVs are not necessarily less expensive than medium sized ones. This is largely due to the fact that
the technology and time needed to produce small brushless motors or small brushless motor controllers is the
same for small parts or for large ones. The prices for the additional electronics such as the flight controller,
remote control, camera etc. tend not to change at all. The frame is normally one of the least expensive parts of
a UAV, so although the frame for a small UAV may be half the price of a larger one, the overall price, with all
parts needed, may still be very close.

UAV Materials / Construction
Below are the more common materials found in multi-rotor drones. This list does not include all possible
materials which can be used and should be looked at as a guideline / opinion as to the use of each material to
make the frame of a drone. Ideally the frame should be rigid with as minimal vibration transmission as

possible.


Wood
If you want your frame to be as inexpensive as possible, wood is a great option, and
will greatly reduce build time and additional parts required. Wood is fairly rigid
and has been a proven material time and time again. Although the aesthetics may
suffer, replacing a broken arm after a crash is relatively easy and “dirt cheap”.
Painting the arm helps hide the fact that it’s wood. Ensure you use wood which is
straight (no twisting or warping).

Foam
Foam is rarely used as the sole material for the frame and there tends to be some
form of inner skeleton or reinforcement structure. Foam can also be used
strategically; as propeller guards, landing gear or even as dampening. There are
also many different types of foam, and some variations are considerably stronger
than others. Experimentation would be needed.

Plastic
Most users can only access and work with plastic sheets (rather than 3D plastic
shapes or objects). Plastic tends to flex and as such is not ideal. Used strategically
(such as a cover or landing gear), plastic can be a great option. If you are
considering 3D printing the frame, consider the time needed to print the part
(versus buying a plastic frame kit), and how rigid the part will be in the air. 3D
printing parts (or the entire frame) has so far been more successful on smaller
quadcopters. Using plastic extrusions may also be an option for small and medium
sized drones.

Aluminum
Aluminum comes in a variety of shapes and sizes; you can use sheet aluminum for

body plates, or extruded aluminum for the support arms. Aluminum may not be as
lightweight as carbon fiber or G10, but the price and durability can be quite
attractive. Rather than cracking, aluminum tends to flex. Working with aluminum
really only requires a saw and a drill; take the time to find the right cross section
(lightweight and strong), and try to cut out any non-essential material.

G10
G10 (variation of fiberglass) is used as a less expensive option than carbon fiber,
though the look and basic properties are almost identical. G10 is mostly available
in sheet format and is used largely for top and bottom plates, while tubing in carbon
fiber (as compared to G10) is usually not much more expensive and is often used
for the arms. Unlike Carbon Fiber, G10 does not block RF signals.


PCB
Printed Circuit Boards are essentially the same as fiberglass, but unlike Fiberglass,
PCBs are always flat. Frames <600mm sometimes use PCB material for top and
bottom plates, since the electrical connections integrated into the PCB can reduce
parts (for example the power distribution board is often integrated into the bottom
plate). Small quadcopter frames can be made entirely out of a single PCB and
integrate all of the electronics.

Carbon Fiber
Carbon fiber is still the #1 sought-after building material due to its light weight and
high strength. The process to manufacturer carbon fiber is still quite manual,
meaning normally only straightforward shapes such as flat sheets and tubes are
mass produced, while more complex 3D shapes are normally “one off”. Carbon
fiber impedes RF signals, so be sure to take this into consideration when mounting
electronics (especially antennas).


Additional Considerations
Gimbal

Gimbal

A gimbal is often used to stabilize a camera (for FPV or video). Connecting
a camera directly to a UAVs frame means it is always pointing in the same
direction as the frame itself, which does not provide the best video
experience. Most gimbals are mounted beneath the frame, in line with the
UAV’s center of weight. Gimbals are either connected directly to the bottom
of a UAV, or to a rail system. The gimbal system therefore means the UAV
needs longer landing gear so it does not touch the ground. Mounting the
gimbal or camera to the front of the UAV can also be done, and the weight can
be offset by placing the main battery further aft in the aircraft.

Payload

Adding a “transportation” payload to a drone is still a bit of a luxury, as any
added weight reduces flight time and reduces the other items you may wish to
add as part of the key features. If you really plan to have a payload, ensure
that the mounting is as lightweight as possible (while still being secure) and
that the load itself does not shift in flight.
Payload
Landing Gear


Landing gear for a UAV helps in many ways, and although some drones land
directly on their bottom plate (normally to save weight), using landing gear
cane be beneficial in many ways:





Landing Gear



Providing clearance between the bottom of the UAV and a non-flat
surface such as grass (or small rocks)
Providing clearance between the battery pack / gimbal and the ground
In the event of a hard landing, it’s ideally the landing gear which will break
(and be replaced) rather than the frame
The right landing gear can also provide flotation (lightweight pool noodles
etc.)

Mounting

Although a UAV is far simpler to design and build than a normal helicopter,
there are still enough parts to think about, and how to mount them should be
considered early in the design process. Some general points to consider
regarding mounting, based largely on experience, include:







Mounting Considerations




If you plan to create a custom frame, one of the more difficult mounting
areas is between the motors and the frame, as the four mounting holes
need to be placed / drilled precisely. Most motors for 400-600mm frames
have the same mounting hole pattern, making it possible to use a frame
from one manufacturer, and the motors from another.
The placement of all additional components should ideally be symmetric
about one axis, which helps facilitate locating and adjusting the aircraft’s
center of mass.
The flight controller should ideally be located at the center of the circle
connecting all motors (and as such at the center of mass).
The flight controller is normally fixed to the frame using standoffs, rubber
dampeners or double-sided tape. Many companies seem to use similar
mounting hole locations for the flight controller (ex 35mm or 45mm
square), but there is no “industry standard”.
The battery is heavy enough such that if your center of mass if off by a bit,
you can move the battery slightly to adjust it. Ensure the battery’s
mounting has a bit of “play”, but still ensures it holds the battery firmly.
Velcro straps are often used to secure the battery, and consider adding
adhesive-backed velcro to the battery and frame as well.

Guidelines
Step 1: See what materials and machining processes you have at your disposal.







If you do not have much as far as machining capabilities, are not comfortable with tools, or simply
want a more professional frame, then consider purchasing a frame kit
A decent frame can be made with basic tools and materials, but determining areas where it may be
structurally weak, resonate (cause vibration) or may be misaligned take a keen eye and experience
If you plan to create a custom frame, take into consideration all of the mounting which needs to be
done; motors, electronics etc. and plan accordingly.

Step 2: List all of the additional (non-essential) parts you plan to add



Additional items might include: one, two or three axis camera gimbal, parachute, onboard mini
computer, payload, long-range electronics (tend to be larger / heavier), floatation etc.
This list of additional / non-essential parts will give you an idea of the size of drone you will need,
and add to the total weight calculation (to be done later)

Step 3: Get a rough idea of the size of frame you want



A larger frame does not necessarily make the drone more capable, and a smaller frame does not
mean the drone will be any less expensive
A drone between 400 and 600mm is suggested for beginners

Step 4: Design, build and test the frame




If you opted to purchase a frame kit, you should not have much to worry about in regards to

durability / rigidity / assembly
If you chose instead to design and build your own frame, it’s important to test its durability, check
the weight and see if it can withstand vibration (minimal flex)
Consider using a CAD software (many are free such as Google Sketchup) to design the frame and
ensure dimensions are correct

Now that you have your frame, you can proceed with the next lesson.

How to Make a Drone / UAV – Lesson 3: Propulsion
Posted on March 26, 2015 by Coleman Benson & filed under How to Make a UAV / Drone, Tutorials.
How to Make a Drone / UAV – Lesson 1: Terminology
How to Make a Drone / UAV – Lesson 2: The Frame
How to Make a Drone / UAV – Lesson 3: Propulsion
How to Make a Drone / UAV – Lesson 4: Flight controller
How to Make a Drone / UAV – Lesson 5: Assembly
How to Make a Drone / UAV – Lesson 6: Get it all working together
How to Make a Drone / UAV – Lesson 7: FPV & Long-range
Now that you have either chosen or built a frame, the next step is to choose the right propulsion system. A
complete propulsion system includes motors, propellers, ESCs and a battery. Almost all small multi-rotor


drones / UAVs are electric, with almost none being gas-powered. For this reason, we will focus on
implementing an electric propulsion using brushless DC motors.

1. Motor
The motors you use will have a huge impact on the payload (or maximum load) which your UAV can support,
as well as the flight time. We strongly suggest using the same (propulsion) motor everywhere. Note that even
if a pair of motors are the same brand and model, and from the same production run, their speeds may vary
slightly, which is something the flight controllerwill take care of.


Inrunner Motor

Brushless DC Motor

DC “Pancake” Motor

Brushed vs Brushless
Brushed motors spin the coil inside a case with fixed magnets mounted around the outside of the casing.
Brushless motors do the opposite; the coils are fixed either to the outer casing or inside the casing while the
magnets are spun. In most situations, you will be considering only brushless DC motors. Brushless DC motors
are used extensively in the hobby RC industry for products ranging from helicopters and airplanes to the drive
system in RC cars and boats. “Pancake” brushless motors have a larger diameter and are essentially flatter and
often allow for higher torque and lower KV (details below). Smaller UAVs (usually the size of the palm of
your hand) tend to use small brushed motors because of the lower price and simpler two-wire controller.
Although brushless motors come in a variety of different sizes and specs, selecting a smaller brushless motor
rarely means it will be less expensive.

Inrunner vs Outrunner
There are a few types of brushless DC motors:





Inrunner – these have the fixed coils mounted to the outer casing and the magnets are
mounted to the armature shaft which spins inside the casing (tend to be used on RC cars
because of the high Kv)
Outrunner – these have the magnets mounted on the outer casing which is spun around the
fixed coils in the center of the motor casing (the bottom mounting of the motor is fixed).
Hybrid outrunner – technically outrunners but have a static outer shell around them to make

them look like they’re inrunners

Inrunner brushless DC motors tend to be used in RC cars, airplanes and helicopters because of their high KV.
They may also be geared down to increase the torque. Outrunners tend to have more torque.


“KV”
The KV rating / value of a motor relates to how fast it will rotate for a given voltage. For most multirotor
aircraft, a low KV is desired (between 500 to 1000 for example) since this helps with stability. For acrobatic
flight however, you might consider a KV between 1000 and 1500 and also consider using smaller diameter
propellers. If the KV rating for a particular motor is 650rpm/V, then at 11.1V, the motor will be rotating at
11.1V x 650 = 7215rpm. If you operate the motor at a lower voltage (say, 7.4V), the rpm will be 7.4V x
650rpm/V = 4810rpm. It is important to note that using a lower voltage tends to mean that the current draw
will be higher (power = current x voltage).

Thrust
Some brushless motor manufacturers give an indication of a motor’s thrust corresponding to several propeller
options (often presented in a table). The unit of thrust is often Kg, Lbs or N. For example, if you are building
a quadcopter and find that a specific motor can provide up to 0.5Kg of thrust with an 11 inch propeller, that
means that four of these motors (with that given prop) can lift 0.5Kg*4=2Kg at maximum thrust. Therefore if
your quadcopter weighs just less than 2Kg, it will only take off at maximum thrust. You need to either choose
a motor + propeller combination which can provide more thrust, or reduce the weight of the aircraft. If the
propulsion system (all motors and props) can provide 2Kg of thrust (max) then your entire copter should be at
most about half this weight (1Kg, including the weight of the motors themselves). The same calculation can be
done for any given configuration. Let’s assume a hexacopter‘s weight (including frame, motors, electronics,
battery, accessories etc) to be 2.5Kg. Each motor should therefore be capable of providing (2.5Kg/6 motors) x
2:1 = 0.83kg of thrust (or more). You can now calculate the specs of your motor(s) but suggest reading through
the sections below before making a decision.

Additional Considerations








Connectors: Brushed DC motors have two connectors: one for positive, the other for
negative. Reversing the wires reverses the rotation of the motor.
Connectors: Brushless DC motors have three connectors. Refer to the ESC section below to
know how to wire them and reverse direction of rotation.
Windings: The windings impact the KV of a motor. When you want a lower KV but
maintain the torque, you may need to consider a larger pancake-style brushless DC motor.
Mounting: Most manufacturers have a general mounting pattern for brushless DC motors
which has allowed companies which produce frames to not have to design adapters. The
pattern is normally metric, with two holes spaced 16mm apart, and another two holes spaced
19mm apart (at 90 degrees to the first).
Thread: The mounting thread used to secure a brushless motor to a frame can vary. Common
metric screw sizes include M1, M2 and M3 and imperial might be 2-56 and 4-40.

2. Propeller
Propellers for multi-rotor aircraft are adapted from propellers used in RC airplanes. Why not use helicopter
blades? Although it has been done, imagine the size of a hexacopter which used helicopter blades. Note that a
helicopter-type system also requires that you vary the pitch of the blades which significantly adds to the
mechanical complexity. You may also ask why not use a turbojet, turbofan, prop-jet etc? These are incredibly


good at providing a lot of thrust, but also require a lot of power. If the objective of the drone was to move
really fast rather than hover in confined areas, one of these may be a good option.


Propeller

Blades & Diameter
Most multi-rotor aircraft have either two and three rotor blades, with the most common being two. Do not
assume that adding more blades will automatically mean more thrust; each blade must travel through the wake
of the one which precedes it, so the more blades, the more prevalent the wake will be. A smaller
diameter propeller has less inertia and is therefore easier to speed up and slow down, which helps in acrobatic
flight.

Propeller Diameter

Pitch / Angle of Attack / Efficiency / Thrust
The thrust produced by a propeller depends on the density of the air, on the propeller’s RPM, on its diameter,
on the shape and area of the blades and on its pitch. A propeller’s efficiency relates to the angle of attack
which is defined as the blade pitch minus the helix angle (the angle between the resultant relative velocity and
the blade rotation direction). The efficiency itself is a ratio of the output power to the input power. Most welldesigned propellers have an efficiency of 80%+. The angle of attack is affected by the relative velocity, so a
propeller will have different efficiency at different motor speeds. The efficiency is also greatly affected by the
leading edge of the propeller blade, and it is very important that it be as smooth as possible. Although a
variable pitch design would be best, the added complexity required as compared to a multirotor’s inherent
simplicity means a variable pitch propeller is almost never used. Additional information regarding the theory
behind blade design and thrust generated can be found online at sites such as the MDP project. There are also
several online tools which helpcalculate a propeller’s thrust. Certain sites list a variety of motors such
as eCalc for the thrust calculations


Propeller Pitch (one revolution)

Propeller Angle of Attack

Rotation

Propellers are either designed to rotate clockwise (CW) or counter-clockwise (CCW). It is important to know
which part of the propeller is intended to face upwards (the top surface is curved outward). If the design of
your multirotor inverts some of the motors (as is the case for a Vtail, Y6, X8), be sure to change the orientation
of the propellers so the thrust is still downwards. The top of the propeller should always face the sky. The


documentation associated with the flight controller (discussed in the next lesson) normally shows you which
way each propeller is intended to turn for each multi-rotor it supports.

Counter Rotating Propellers

Material
The material(s) used to make the propellers can have a moderate impact on the flight characteristics, but safety
should be the primary consideration, especially if you are new and inexperienced.
Plastic
Injection-Molded Plastic (ABS / Nylon etc.) is the most popular choice when it comes to multi-rotor aircraft.
This is largely because of their low cost, decent flight characteristics and respectable durability. Normally in a
crash, at least one propeller ends up broken, and while you are calibrating the drone and learning to fly, you
will end up with a lot of broken propellers. A plastic propeller which has been reinforced with carbon fiber is
arguably the best overall choice because of its high rigidity and low cost.
Fiber-Reinforced Polymer
A fiber-reinforced polymer propeller (carbon fiber, nylon reinforced carbon etc.) is “cutting edge” technology
in more ways than one. Carbon fiber parts are still not very easy to produce and as such you pay quite a
premium for them over a plastic propeller with the same specifications. In the event of a crash, a carbon fiber
propeller is harder to break and flex and as such will cause more damage to whatever it contacts. This having
been said, if you want to consider a fiber-reinforced propeller, they are normally well made and rarely require
balancing, are stiffer (so fewer losses in efficiency due to flexing etc) and are lighter weight than other
materials. We suggest considering these high performance propellers only after you are comfortable flying.
Natural
Natural materials such as wood are not used often to make propellers for mulitirotors as they require

machining to produce and therefore cost more than plastic. The main advantage heere is that wood is quite
strong and will not bend. Wood propellers are still used for RC airplanes.

Propeller Materials


×