Tải bản đầy đủ (.pdf) (6 trang)

Đề kiểm tra 45 phút môn Toán (Đại số) lớp 10 trường THPT Đoàn Thượng, Hải Dương năm học 2016 2017

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (140.06 KB, 6 trang )

VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

SỞ GD & ĐT HẢI DƯƠNG

KIỂM TRA MỘT TIẾT - NĂM HỌC 2016 - 2017

TRƯỜNG THPT ĐOÀN THƯỢNG

Môn: TOÁN ĐẠI SỐ – LỚP: 10 CƠ BẢN

ĐỀ CHÍNH THỨC

Thời gian làm bài: 45 phút
ĐỀ CHẴN

Câu 1: (3,0 điểm) Tìm tập xác định của các hàm số sau:
1/ y 

3x  2
;
 x2  9

2/ y  3  x  x  5.

Câu 2: ( 3,5 điểm)
1/ Xét tính chẵn, lẻ của hàm số sau: f  x   2 x 3  4 x.
2/ Xác định Parabol (P): y  ax 2  bx  c , biết (P) nhận trục tung làm trục đối xứng, đồng
thời (P) đi qua hai điểm M 1; 3  và N  2;0  .
Câu 3: (2,0 điểm)
Xét sự biến thiên và vẽ đồ thị (P) của hàm số: y   x  1 x  3   3.
Câu 4: (1,5 điểm)


3
2

3
Tìm giá trị lớn nhất của hàm số y  f ( x )  x  12 x  11 trên [  ; 2 ]

HẾT


VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

SỞ GD & ĐT HẢI DƯƠNG

KIỂM TRA MỘT TIẾT -NĂM HỌC 2016 - 2017

TRƯỜNG THPT ĐOÀN THƯỢNG

Môn: TOÁN ĐẠI SỐ – LỚP: 10 CƠ BẢN
Thời gian làm bài: 45 phút (Chương II)

ĐỀ CHÍNH THỨC

ĐỀ LẺ

Câu 1: (3,0 điểm) Tìm tập xác định của các hàm số sau:
1/ y 

2x  5
;
 x2  4


2/ y  x  3  6  x .

Câu 2: ( 3,5 điểm)
1/ Xét tính chẵn, lẻ của hàm số sau: f  x   5x 4  3x 2 .
2/ Xác định Parabol y  ax 2  bx  c , biết (P) nhận trục tung làm trục đối xứng, đồng thời
(P) đi qua hai điểm A 1;3 và B  2;0  .
Câu 3: (2,0 điểm)
Xét sự biến thiên và vẽ đồ thị của hàm số: y   x  1 x  3   3.
Câu 4: (1,5 điểm)
3
2

3
Tìm giá trị lớn nhất của hàm số y  f ( x )   x  12 x  11 trên [  2; ]

HẾT


VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

SỞ GD & ĐT HẢI DƯƠNG

KIỂM TRA MỘT TIẾT - NĂM HỌC 2016 - 2017

TRƯỜNG THPT ĐOÀN THƯỢNG

Môn: TOÁN ĐẠI SỐ – LỚP: 10 CƠ BẢN

ĐỀ CHÍNH THỨC


Thời gian làm bài: 45 phút (Chương II)
ĐÁP ÁN VÀ THANG ĐIỂM
(Đề 1)
(Đáp án này gồm 02 trang)

CÂU

Ý

Nội dung

Điểm

Tìm tập xác định của các hàm số sau:
1/ y 
1

3x  2
;
 x2  9

2/ y  3  x  x  5.

1.1 Tập xác định: D  

1,5đ
0,5đ

 3  x  0

 x  5  0

Hàm số xác định  
1.2

 x  5

0,5đ

Vậy tập xác định của hàm số là: D   5;  

0,5đ

1/. Xét tính chẵn, lẻ của hàm số sau: f  x   2 x 3  4 x.
TXĐ: D  .
2.1

0,5đ

x  D,  x  D và f   x   2   x   4   x   2 x 3  4 x   f x 

0,5đ

Vậy hàm số đã cho là hàm số lẻ

0,5đ

3

(P) nhận trục tung làm trục đối xứng nên:


2

b
0b0
2a

(P) qua đi qua điểm M 1; 3  nên: 3  a 1  c  a  c  3

2 

0,25đ

(P) qua đi qua điểm N  2;0  nên: 0  a.  2   c  4a  c  0

3 

0,5đ

2

2

 a  c  3  a  1

 4a  c  0
b  4

Từ (2), (3) ta có: 


Vậy (P): y  x 2  4.
1/. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số:
3

3.1

0,5đ

1

y   x  1 x  3   3.
 y  x 2  4x

0,5đ
0,25đ


VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

BBT:

0,5đ

x
y

2








-4
Đỉnh I(2; -4)

0,25đ

Trục đối xứng là đường thẳng: x = 2

0,25đ

Giao điểm của đồ thị và trục tung: (0; 0)

0,25đ

Giao điểm của đồ thị và trục hoành: (0; 0) và (4; 0)

0,25đ

3.2 Đồ thị:
* x1 , x2
Xét

0,5đ

  2; 2  ,

x1  x2


f ( x1 )  f ( x2 )
 x12  x1 x2  x2 2  12
x1  x2

0,25

0,25

Với x1 , x2   2; 2  ta có x12  x1 x2  x2 2  12
4

*Nhận xét:

f ( x1 )  f ( x2 )
x1  x2

0

x1 , x2   2; 2  => hàm số nghịch biến trên

0,25

 2; 2 
3
2

-> Hàm số giảm trên đoạn trên [  ; 2 ]
Từ đó suy ra GTLN y = f(


0,25

3
)= 3, 625
2

---Hết---

0,25
0,25


VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

SỞ GD & ĐT HẢI DƯƠNG

KIỂM TRA MỘT TIẾT - NĂM HỌC 2016 - 2017

TRƯỜNG THPT ĐOÀN THƯỢNG

Môn: TOÁN ĐẠI SỐ – LỚP: 10 CƠ BẢN

ĐỀ CHÍNH THỨC

Thời gian làm bài: 45 phút (Chương II)
ĐÁP ÁN VÀ THANG ĐIỂM
(Đề 2)
(Đáp án này gồm 02 trang)

CÂU


Ý

Nội dung

Điểm

Tìm tập xác định của các hàm số sau:
1/ y 
1

2x  5
;
 x2  4

2/ y  x  3  6  x .

1.1 Tập xác định: D  

1,5đ
0,5đ

 x  3  0
 6  x  0

Hàm số xác định  
1.2

 x  3.


0,5đ

Vậy tập xác định của hàm số là: D  3;   .

0,5đ

1/. Xét tính chẵn, lẻ của hàm số sau: f  x   5x 4  3x 2 .
TXĐ: D  .

0,25đ

2.1 x  D,  x  D và f   x   5   x   3  x   5x 4  3x 2  f x 
4

2

Vậy hàm số đã cho là hàm số chẵn
2.2
2

0,25đ

(P) nhận trục tung làm trục đối xứng nên:

b
0b0
2a

(P) qua đi qua điểm A 1;3 nên: 3  a 1  c  a  c  3
2


1

0,5đ

2 

0,25đ

(P) qua đi qua điểm B  2;0  nên: 0  a.  2   c  4a  c  0
2

a  c  3
 a  1

 4a  c  0
b  4

Từ (2), (3) ta có: 

Vậy (P): y   x 2  4.
1/. Lập bảng biến thiên và vẽ đồ thị (P) của hàm số:
3

3.1

y   x  1 x  3   3.
 y  x 2  2x

0,5đ


3 

0,5đ
0,5đ
0,25đ


VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí

BBT:
x
y

0,5đ
1









-1

3.2

Đỉnh I(1; - 4)


0,25đ

Trục đối xứng là đường thẳng: x = 1

0,25đ

Giao điểm của đồ thị và trục tung: (0; 0)

0,25đ

Giao điểm của đồ thị và trục hoành: (0; 0) và (2; 0)

0,25đ

Đồ thị

0,5đ

* x1 , x2

  2; 2  ,

0,25

x1  x2

f ( x1 )  f ( x2 )
   x12  x1 x2  x2 2   12
Xét

x1  x2

0,25

Với x1 , x2   2; 2  ta có x12  x1 x2  x2 2  12
4

*Nhận xét:

f ( x1 )  f ( x2 )
x1  x2

0

x1 , x2   2; 2  => hàm số

tăng trên

0,25
0,25

 2; 2 
3
2

-> Hàm số tăng trên đoạn trên [  2; ]
3
2

Từ đó suy ra GTLN y = f( )= 3, 625

---Hết---

0,25
0,25



×