Tải bản đầy đủ (.pdf) (19 trang)

34 Bài tập phương trình và hệ phương trình Toán nâng cao 9

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.14 MB, 19 trang )

Vững vàng nền tảng, Khai sáng tương lai

34 BÀI TẬP PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH
TOÁN NÂNG CAO LỚP 9

Bài toán 1: Giải phương trình

x  2  10  x  x2  12 x  40

a  b

Bổ đề : Với a  0; b  0 a  b 



a  b  a  b
2

2



 a  b  2 a 2  b2



x  2  10  x  2  x  2  10  x   4 mà

Giải: Điều kiện : 2  x  10 , Ta có




2



x 2  12 x  40  x 2  12 x  36  4   x  6   4  4 . Dấu bằng xảy ra khi và chỉ khi
2

 x  2  10  x
 x  6 . Vậy phương trình có nghiệm x = 6

x  6  0

Hoặc: Áp dung bất đẳng thức Cô si cho hai số không âm ta có

 x  2  .4

x  2  10  x 

2

10  x  .4



2



x  2  4 10  x  4


 4.
4
4

x  2  4
 x6.
10  x  4

Dấu bằng xảy ra khi và chỉ khi 

Bài toán 2: Giải phương trình:

x2  x  1  x  x 2  1  x 2  x  2

Vì x2  x  1  0 và x  x2  1  0 nên Áp dụng bất đẳng thức Cô si mỗi số hạng của vế trái ta
được:





x 2  x  1 .1 

x  x

2




 1 .1 

x2  x  1  1 x2  x

2
2
x  x2  1  1 x  x2  2

2
2

Cộng (1) và (2) vế theo vế ta có:

(1)
(2)

x2  x 1  x  x2  1 

x2  x x  x2  2

 x  1 nên theo đề
2
2

ta có : x2  x  2  x  1   x  1  0 . Đẳng thức xảy ra khi x = 1 . Thử lại ta thấy x = 1 thoả . Vậy
2

phương trình có nghiệm là x = 1.

Bài toán 3: Giải phương trình:


W: www.hoc247.net

2 x  3  5  2 x  3x 2  12 x  14 (1)

F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai

3

x

2 x  3  0

2
Điều kiện tồn tại phương trình: 

5

2
x

0
5

x 


2

3
5
 x  (*)
2
2



Vế phải của (1): 3x2  12 x  14  3  x 2  4 x  4   2  3  x  2   2  2 . Đẳng thức xảy ra khi và chỉ
2

khi x = 2.
Áp dụng bất đẳng thức Bunhiacôpxki thoả mãn (*) thì vế trái của phương trình (1):
2x  3  5  2x 

1

2



 12  2 x  3  5  2 x   4  2 . Đẳng thức xảy ra khi và chỉ khi

2x  3  5  2 x  x  2 . Đẳng thức xảy ra ở phương trình (1) là 2 nên x = 2 là nghiệm của

phương trình.
Hoặc Áp dụng bất đẳng thức Cô si cho hai số không âm ta có:


 2 x  3 .1  5  2 x  .1 

2x  3 1 5  2x 1

 2 . Đẳng thức xảy ra khi và chỉ khi
2
2

2 x  3  1
 x  2 . Đẳng thức xảy ra ở phương trình (1) là 2 nên x = 2 là nghiệm của

5  2 x  1

phương trình.
Bài toán 4: Giải phương trình: x2  2 x  3  2 x 2  x  1  3x  3x 2 . (1)
2 x 2  x  0

2

1  3x  3x  0

Giải: Điều kiện 

(2).

Vế trái của phương trình (1): x2  2 x  3   x  1  2  2 với mọi x  . đẳng thức xảy ra khi x
2

= 1. Theo bất đẳng thức Bunhiacôpxki với mọi x thoả mãn (2) thì vế phải của phương trình

(1) thoả:
2 x 2  x  1  3x  3x 2 

1

2





 12 2 x 2  x  1  3x  3x 2  2  4 x  2 x 2  4   x  1  2 . đẳng
2

thức xảy ra khi 2 x2  x  1  3x  3x2 . Để đẳng thức xảy ra ở phương trình (1) thì cả hai vế của
phương trình (1) đều bằng 2. Nên x = 1. Thử lại thấy x = 1 là nghiệm của phương trình.
Bài toán 5: Giải phương trình: 5 1  x3  2  x 2  2 

(1)

Giải:
Điều kiện 1  x3  0   x  1  x2  x  1  0 Do x2  x  1  0 với mọi x nên x  1  0  x  1
Đặt a  x  1 ; b  x 2  x  1 với a  0 ; b  0 . Nên phương trình (1) trở thành :

W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807



Vững vàng nền tảng, Khai sáng tương lai



5ab  2 a  b
2

2



2

a
a 1
a
a
 2    5    2  0. Giải phương trình này được  2 hoặc 
b
b 2
b
b

Với

a
 2 thì phương trình (1) vô nghiệm
b


Với

 x  1
a 1
. Phương trình có hai nghiệm thoả điều
 thì 2 x  1  x 2  x  1   2
b 2
 x  5x  3  0

kiện x1 

5  37
2

; x2 

5  37
.
2
42
60

 6 (1)
5 x
7x

Bài toán 6: Giải phương trình:

Phương trình (1) có nghĩa khi x < 5 nên 1   3 




42  
60 
   3 
0
5 x  
7  x 


42 
42  
3
 3 
 3
5

x
5

x





42
3

5 x 



42
60
9
5 x 
7x  0
0 



42
60 
3
 3

5 x  
7x 






9  5  x   42

42 
5  x   3 

5 x 





60 
60 
 3 

7  x 
7x 

60 
3

7x 


9  7  x   60

60 
7  x  3 

7x 


9

0






1
1

  0  3 1  3x   0
 3 1  3x  






  5  x   3  42   7  x   3  60  
5 x 
7  x  




1


5  x   3 


42 

5 x 




1


7  x  3 


60 

7x 



1
3

> 0 nên x  . Thử lại đúng nên nghiệm của phương

1
3

trình là x  .

Bài toán 7: Giải phương trình:

x  x  2   x  x  5   x  x  3

(1)


Điều kiện để phương trình có nghĩa là : 3  x  0 ;0  x  5 . Bình phương hai vế của phương
trình (1) ta được: x  x  2  x  x  5  2 x 2  x  2  x  5  x  x  3
W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai



 2 x 2  x  2  x  5  10 x  x 2  4 x 2  x  2  x  5  10 x  x 2







2

 4 x2  x  2  x  5  100 x2  20 x3  x 4  4 x 2 x 2  7 x  10  100 x 2  20 x3  x  3x 4  8x3  60 x 2  0
 10

 x 2 3x 2  8x  60  0 . Giải phương trình này được x   ;0;6 . Thử lai chỉ có hai nghiệm
 3







x = 0; x = 6 thoả mãn đề cho.

Bài toán 8: Giải phương trình:







(1)

x  5  x  2 1  x 2  7 x  10  3

Điều kiện x > -2 và x2  7 x  10   x  2 x  5 . Nhân hai vế của phương trình (1) với







x  2  x  5 ta được:  x  2    x  5 1 




 3 1

 x  2 x  5   3 



 x  2 x  5   3



x2  x5  x2  x5 

 



 x  5 1 x  2  1 x  2  0 







x2  x5



 x  2 x  5  1  0




x  5 1 1 x  2  0

 x  5 1  0
 x  5  1  x  4
Do x > -2 nên x = -4 (loại). Vậy nghiệm của phương



 x  2  1  x  1
1  x  2  0

trình x = -1.
***Cách giải khác:
Đặt a  x  2  a2  x  2 ; b  x  5  b2  x  5 nên b2  a2  x  5  x  2  3
b2  a 2  3

phương trình (1) trở thành: 

(b  a)(1  ab)  3

.Do đó

(*)

Từ hệ (*) suy ra b2  a2   b  a 1  ab   b  a  a  b  ab  1  0
a  b
b  a  0


 a  b  1 khi đó ta cũng có x = -1.

 a  b  ab  1  0

 a  1 b  1  0

Bài toán 9: Giải phương trình:

25  x2  10  x2  3

(1)

25  x 2  0
 x 2  25


 2
 x 2  10   10  x  10 (*).
Giải: Điều kiện 
2
10  x  0
 x  10



Đặt 0  a  25  x2 ; 10  x2  b  0  a2  b2  25  x2  10  x2  15 . Nên phương trình (1) trở
W: www.hoc247.net

F: www.facebook.com/hoc247.net


T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai

a  b  3

a  b  3
a  4




2
2
a  b  15 a  b  5 b  1

thành 

Nếu b = 1 thì 10  x2  1  x2  9  x  3 so với điều kiên (*) x  3 thoả
Nếu a = 4 thì 25  x2  16  x2  9  x  3 so với điều kiên (*) x  3 thoả.
Vậy phương trình có nghiệm là x  3 .

Bài toán 10: Giải phương trình:

3

x  1  3 x  1  3 5x


(*)

Lập phương hai vế của phương trình (*) ta được:
5x  x  1  x  1  3 3  x  1 x  1  3 x  1  3 x  1  5x  2 x  3 3 x 2  1. 3 5x





 3 x2  1. 3 5x  x  x3  5x x 2  1  4 x3  5x  0  x  0 hoặc x  

5
. Thử lại ta thấy
2

phương trinh có đúng ba nghiệm trên.

Bài toán 11: Giải phương trình 3 1  x  3 1  x  2

(1)

Điều kiện: x  0 . Đặt 3 1  x  a ; 3 1  x  b  a3  1  x ;  b3  1  x nên phương trình
(1) trở thành


a  b  2
a  b  2
a  b  2
a  2  b




 3 3

 2

2
2
2
2
2
a  b  2
a  ab  b  1 
 a  b  a  ab  b  2
 2  b   b  2  b   b  1  0







a  2  b
a  2  b
a  2  b



 a  b 1



2
2
2
2
2
 b  1  0
4  4b  b  2b  b  b  1  0
b  2b  1  0


Nếu a = 1 thì 1  x  1  x  0  x  0
Nếu b = 1 thì 1  x  1  x  0  x  0 .
Vậy x = 0 là một nghiệm của phương trình.

Bài toán 12: Giải phương trình

3

2  x  x 1  1

Giải: TXĐ x 1  0  x  1 . Đặt 3 2  x  a ;

W: www.hoc247.net

(1)

x  1  b  0 . Nên phương trình đã cho trở thành:

F: www.facebook.com/hoc247.net


T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai


a  1  b
a  1  b
 a  b  1 a  b  1

a  1  b



 3 2



 3 3
3
2
2
3
2
2
 a  b  1 a  b  1 
1  b   b  1 1  3b  3b  b  b  1 
b b  4b  3  0






Nên b 0;1;3 Do đó  a; b   1;0  ;  0;1 ;  2;3
Nếu a  0 thì 3 2  x  0  2  x  0  x  2 ; b  1 thì

x 1  1  x 1  1  x  2

Nếu a  1 thì 3 2  x  1  2  x  1  x  1 ; b  0 thì

x 1  0  x 1  0  x  1

Nếu a  2 thì 3 2  x  2  2  x  8  x  10 ; b  3 thì

x  1  3  x  1  9  x  10

Vậy phương trình có ba nghiệm là x 1; 2;10
1  x 2x  x2

Bài toán 13: Giải phương trình
(*)
x
1  x2

Giải: Điều kiện để phương trình có nghĩa là x  0 và

1 x
2x 1
1

 1
. Thử thấy x  là một nghiệm của phương trình (*)
2
x
1 x
2

* 

1
thì 1  x  x  0 và 2 x 1  0 .Suy ra
2

1 x
2x 1
 1  1
x
1  x2

1
 x  1 thì 0  1  x  x và 2 x 1  0 .Suy ra
2

1 x
2x 1
 1  1
x
1  x2

Với 0  x 

Với

1 x
 0 hay 0  x  1
x

Vậy x =

1
là nghiệm của phương trình.
2

Bài toán 14: Giải phương trình : 3 3x2  x  2001  3 3x2  7 x  2002  3 6 x  2003  3 2002 .
Giải: Đ ặt : 3 3x2  x  2001  a  a3  3x 2  x  2001
 3 3x2  7 x  2002  b  b3  3x2  7 x  2002

 3 6 x  2003  c  c3  6 x  2003

Suy ra a3  b3  c3  2002 . Do đó phương trình đã cho sẽ là  a  b  c   a3  b3  c3 nên
3

a  b  c

3



 (a3  b3  c3 )  0 Khai triển và thu gọn được: 3  a  b  b  c  c  a   0 .

Nếu a  b  0  3 3x2  x  2001  3 3x2  7 x  2002  3x2  x  2001  3x 2  7 x  2002

 6x  1  x 

W: www.hoc247.net

1
6

F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai



Nếu b  c  0  3 3x2  7 x  2002   3 6 x  2003  3x2  7 x  2002  6x  2003

1  13 1  13 


;
 3x2  x  1  0 . Phương trình này có nghiệm x  

6 
 6






Nếu a  c  0  3 3x2  x  2001  3 6 x  2003  3x2  x  2001  6x  2003
 3x2  7 x  4004  0 . Phương trình này vô nghiệm
 1 1  13 1  13 


;
.
6
6 
6



Vậy phương trình có ba nghiệm x   ;

Bài toán 15: Tính giá trị của biểu thức:
a 1
a  a 1  a
4

2

trong đó a là nghiệm của phương trình 4 x2  2 x  2  0

Giải : Phương trình 4 x2  2 x  2  0 có ac = - 4 2  0 nên có hai nghiệm phân biệt với a là
nghiệm dương của phương trình nên ta có: 4a2  2a  2  0 (1) . Vì a > 0 nên từ (1) có :
a2 

2 1  a  1  a

2 a 2
1  2a  a 2


 a4 
.
4
8
2.2 2
2 2

Gọi S 



a 1
a  a 1  a
4

2

 a  1




a4  a  1  a2




2

 a  1


a4  a  1  a4

a4  a 1  a2

a  a 1 a
4

4

 a4  a  1  a2

1  2a  a 2
1 a
1  2a  a 2  8a  8 1  a
a 2  6a  9 1  a a  3 1  a
4
 a 1 







 2

8
8
8
2 2
2 2
2 2 2 2 2 2 2 2

Bài toán 16: Giải phương trình: x2  x  1000 1  8000 x  1000
Giải: Đặt 1  8000 x  1  2 y  1  8000 x  2 y 1  1  8000 x  4 y 2  4 y  1  4 y 2  4 y  8000 x
 y 2  y  2000 x . Do đó phương trình đã cho trở thành hệ phương trình:

 x 2  x  2000 y

(1).Từ hệ phương trình (1) ta suy ra
 2
y

y

2000
x


x2  x  y 2  y  2000  y  x    x  y  x  y    x  y   2000  x  y   0 (2)
  x  y  x  y  1  2000  0   x  y  x  y  1999  0

Từ hệ phương trình (1)
suy ra: x2  y 2   x  y   2000 x  y  2001 x  y  x2  y2  0  x  y  0 .
W: www.hoc247.net


F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai

Nên x  y  1999  0 .Do đó từ (2) suy ra x  y  0 hay x = y. Thay vào hệ (1) ta được
x2  x  2000 x  x  x  2001  0  x  0 hoặc x  2001 . Nhưng x = 0 không là nghiệm của

phương trình nên phương trình có nghiệm là x = 2001.

Bài toán 17: Giải phương trình

x 2  3x  2  x  3  x  2  x 2  2 x  3 .

Điều kiện của phương trình: x  2
Ta có

x2  3x  2  x  3  x  2  x 2  2 x  3  x  1. x  2  x  3  x  2  x  1. x  3

 x 1






 


x 2  x 3 





x 2  x3  0 



x2  x3





x 1 1  0

x  2  x  3 hoặc x  1  1  0  x  2  x  3 hoặc x 1  1  0 x  1 hoặc x  2 .  x  2

là một nghiệm của phương trình.

Bài toán 18: Giải phương trình

1
1
1
 2
 2
2

5x
x  9 x  36 x  4 x  16

ĐKXĐ: x  0
Từ phương trình trên ta có

1
4
9
. Với x  0 nên chia hai vế của
 2
 2
2
2
5 x 4 x  36 x  12
9 x  36 x  122

1
phương trình cho x ở mẫu ta được : 
5
2

Khi đó ta có
 12 

2

2

 12  36

. Đặt     t .

2
2
x
 x
36  12 
36  12 
4  
9  
x  x
x  x

4

9

1
4
9
2


. Quy đồng khử mẫu ta được: t 2  12t  36  0  t  6   0  t  6
5 4t 9t

36

Do đó     6 Quy đồng khử mẫu ta được x2  6 x  24  0
x

 x
Giải phương trình x2  6 x  24  0 ta được nghiệm: x1,2  3  33
Vậy phương trình có hai nghiệm là x1,2  3  33

W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai


y
20 x 2  11 y  2009 (1)

z

Bài toán 19: Giải hệ phương trình: 20 2  11z  2009 (2)
 y
 x
20 2  11x  2009 (3)
 z




1





Giải: Từ (1) suy ra y  20. 2  11  2009  y  0 . Tương tự từ (2) và (3) suy ra x  0 ; z  0 . Vì
x
hệ số không đổi khi ta hoán vị vòng quanh đối với x; y; z có thể giả thiết x = max(x, y, z) .
Nghĩa là x  y ; x  z . Trừ tường vế của phương trình (3) cho phương trình (1) ta được
y
 x
20  2  2   11 x  y   0  20 x3  yz 2  11x 2 z 2  x  y   0 (4) . Vì x  y  0 ; x  z  0 nên
x 
z
x  y
x  y  0 và x3  yz 2  0 . Do đó phương trình (4)   3
 x y z.
2
 x  yz





Thay vào phương trình (1) ta được:
2009  4035201
20
.
 11x  2009  11x 2  2009 x  20  0 . Do đó x = y = z =
22
x


697
 4
2
(1)
x  y 
Bài toán 20: Cho hệ phương trình 
81
 x 2  y 2  xy  3x  4 y  4  0 (2)


a) Nếu có (x; y) thoả (2) . Chứng minh rằng 1  y 
b) Giải hệ phương trình trên
Giải:

7
3

a) Từ phương trình (2) có: x2  y 2  xy  3x  4 y  4  0  x 2   y  3 x   y  2   0 . Phương
trình bậc hai ẩn x có nghiệm:
2

  0   y  3  4  y  2   0   y  3  2 y  4  y  3  2 y  4   0  3 y  7 1  y   0  1  y 
2

2

b) Tương tự phương trình bậc hai ẩn y có nghiệm:
x2  y 2  xy  3x  4 y  4  0  y 2   x  4  y  x 2  3x  4  0

  0   x  2   4( x 2  3x  4)  0  x2  8x  16  4 x 2  12 x  16  0  x  4  3x   0  0  x 

2

4

Do 0  x 

2

256 49 697
4
7
4 7


và 1  y  nên x 4  y 2       
.
81
9
81
3
3
3 3

W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807

4

3

7
3


Vững vàng nền tảng, Khai sáng tương lai

Đẳng thức xảy ra x 4  y 2 

697
4
7
4
7
 x  và y  . Khi x  và y  thì thay vào phương
81
3
3
3
3

trình (2) vô nghiệm. Nên hệ đã cho vô nghiệm.








 x 2  y 2 x 2  y 2  144

Bài toán 21 : Giải hệ phương trình: 
(*)
2
2
2
2

x

y

x

y

y


Giải: Từ hệ phương trình suy ra y > 0



2
2

 x y

(*)  


 x

2



 y 2  144 (1)

2
2

 y  2 x  24

(2)

Thế phương trình (2) vào phương trình (1) ta có:

x

2
















 2 x2  24 x2  2 x 2  24  144  3x2  24 24  x2  144  72 x2  3x4  576  24 x2 144  0

 3x 4  96 x 2  720  0  x 4  32 x 2  256  0  x 2  16







2

 16  x 2  20 ; y 2  16 và x2  12 ; y  0 .





Thử lại được 4 nghiệm:  x; y   2 5; 4 ; 2 5; 4 ; 2 3;0 ; 2 3;0 .

2
2
2


 x  xy  y  19  x  y 
Bài toán 22: Giải hệ phương trình:  2
2

 x  xy  y  7  x  y 

(*)

2
2
2
2
2


 x  2 xy  y  3xy  19  x  y 
 x  y   3xy  19  x  y 

Giải : Hệ (*)   2
2
2
x

2
xy

y

xy


7
x

y



 x  y   xy  7  x  y 


2

6  x  y   xy  0

. Đặt
2
x

y

7
x

y

xy

0








x  y  a
.

 xy  b

2

6a  b  0
 7a 2  7a  0  7a  a  1  0  a  0 hoặc a  1 .
2

a  7 a  b  0

Khi đó hệ trở thành: 

x  y  0
x  0

 xy  0
y  0

Nếu a  0  b  0 suy ra 

x  y  1 
x   y  1


. Nên x; (-y) là nghiệm của phương trình bậc
x

y


6


 xy  6



Nếu a  1  b  6 suy ra 

hai k 2  k  6  0  k1  3 ; k2  2
W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai

Nếu x = k1  3 thì y  k2  2 ; Nếu x = k2  2 thì y  k1  3 ; Vậy hệ đã cho có nghiệm là:

 x; y    0;0  ; 3;2 ;  3; 2  .


3
2

 x  2 y  4 y  3  0 (1)
. Tính Q  x2  y 2 .
2
2 2
(2)

x  x y  2 y  0

Bài toán 23: Cho hệ phương trình: 

Giải: Từ (1) suy ra x3  3  4 y  2 y 2  1  2 1  2 y  y 2   1  2  y  1  1  x  1

(3)

2

Từ x2  x2 y 2  2 y  0 có x 2 

2y
 1  1  x  1
y2 1

(4)

Từ (3) và (4) x  1 . Do đó y  1. Vậy Q  x2  y 2   1  12  2 .
2


x  3y  3

Bài toán 24: Giải hệ phương trình: 

(1)

 x  y  2 x  2 y  9  0 (2)
2

2

Giải: Từ phương trình (2) suy ra  x2  2 x  1   y 2  2 y  1  11  0   x  1   y  1  11  0 .
2

2

Từ phương trình (1) suy ra x  3  y  1 . Nên

3 y  3 1   y 1
2

2

 11  0  3 y  2    y  1  11  0  9 y 2  12 y  4  y 2  2 y  1  11  0
2

2

 10 y 2  10 y  6  0  5 y 2  5 y  3  0 . Giải phương trình bậc hai ẩn y được hai nghiệm :


y

5  85
10

Nếu y 

15  3 85
15  3 85
5  85
5  85
thì x  3  y  1 
; Nếu y 
thì x  3  y  1 
10
10
10
10


 15  3 85 5  85   15  3 85 5  85
;
;
 ; 
10
10
10
10

 



Vậy hệ phương trình có nghiệm là:  x; y   

3
2

2 x  3 x y  5
Bài toán 25: Giải hệ phương trình:  3
2

 y  6 xy  7

(*)

Hệ phương trình (*) tương đương
W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807



  .




Vững vàng nền tảng, Khai sáng tương lai


3
3
3
2
2
2
3



2 x  y  3
8 x  12 x y  20
 2 x   3.4 x y  3.2 xy  y  27
 2 x  y   27



 3


 3
2
2
3
2
3
2

y 9y  7  0

 y  6 xy  7

 y  6 xy  7

 y  6 xy  7

Giải phương trình : y3  9 y 2  7  0   y  1  2 y 2  7 y  7   0 có ba nghiệm y1  1 ;
y2 

7  105
4

; y3 

7  105
4

Nếu y  1  x  1 ; Nếu y 

7  105
5  105
x
4
8



; Nếu y 

7  105

5  105
x
4
8

; Vậy

 5  105 7  105   5  105 7  105  

;
;
 ; 
 
8
4
8
4

 



hệ phương trình có ba nghiệm  x; y   1;1 ; 



2 x 2  xy  y 2  5 x  y  2  0 (1)

.
2

2
x

y

x

y

4

0
(2)



Bài toán 26: Giải hệ phương trình 

Giải: Từ phương trình (1) suy ra y 2   x  1 y  2 x2  5x  2  0 . Giải phương trình bậc hai ẩn y
có hai nghiệm y1  2 x  1 ; y2   x  2 . Nên hệ phương trình trên tương đương:
 y  2x 1  0
x  y  2  0
hoặc  2 2
.
 2
2
x  y  x  y  4  0
x  y  x  y  4  0

4


 x   5
 y  2x 1  0
Giải hệ phương trình :  2 2
.

13
x

y

x

y

4

0

y  

5
x  y  2  0

Giải hệ phương trình 

x  y  x  y  4  0
2

2


x  1
.
y 1

có nghiệm 


 4
 5

Vậy hệ phương trình có nghiệm là:  x; y   1;1 ;   ; 


13  
 .
5 


2 x y  y x  3 4 y  3

Bài toán 27: Giải hệ phương trình 


2 y x  x y  3 4 x  3

(Đề thi chuyên Lê Khiết năm học

2008- 2009)
3

4

Điều kiện của hệ: x  ; y 

W: www.hoc247.net

3
4

F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai


2 x y  y x  3 4 y  3

x y  y x  3. 4 y  3  4 x  3


2 y x  x y  3 4 y  3


2 x y  y x  3 4 y  3

Khi đó ta có: 

2 x y  y x  3 4 y  3



3.
 x yy x x yy x


x yy x













4 y  3  4x  3





4 y  3  4x  3

4x  3  4 y  3








2 x y  y x  3 4 y  3
2 x y  y x  3 4 y  3
 2

  x y  y2 x
3  4 y  3  4 x  3   xy  x  y 
12  x  y 


0


4x  3  4 y  3
4x  3  4 y  3
x y  y x
x y  y x
2 x y  y x  3 4 y  3




xy
12


  0 (*)
 x  y  
4 x  3  4 y  3 
 x y  y x


3
4

Do điều kiện x  ; y 

3
4




xy
12

 > 0 hay x = y
4 x  3  4 y  3 
 x y  y x

nên phương trình(*) x  y  0 Do 

Thay x = y vào phương trình ta có: 3x x  3 4 x  3  x3  4 x  3  x3  4 x  3  0
x  1
 x 1  0
  x  1 x  x  3  0   2


 x  1  13
x  x  3  0
1,2
2






2

x  y  1
1  13

So với điều kiện x 
(loại). V ậy hệ phương trình đã cho có nghiệm 
1  13
2
x  y 
2

3
4

Cách giải khác: Điều kiện của hệ x  ; y 

2 x y  y x  3 4 y  3
Ta có: 


2 y x  x y  3 4 x  3





3
4







 xy 2 x  y  3 4 y  3


 xy 2 y  x  3 4 x  3


Giả sử x  y suy ra 3 4 x  3  3 4 y  3 nên





 


 



xy 2 y  x  xy 2 x  y  2 y  x  2 x  y  y  x  y  x (vô lý)





Giả sử x  y suy ra 3 4 y  3  3 4 x  3 nên





 

 



xy 2 x  y  xy 2 y  x  2 x  y  2 y  x  x  y  x  y (vô lý)
W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807



Vững vàng nền tảng, Khai sáng tương lai

Nên suy ra x  y . Thay x = y vào hệ ta có phương trình:
3x x  3 4 x  3  x 3  4 x  3  x 3  4 x  3  0
x  1
 x 1  0
  x  1 x  x  3  0   2

 x  1  13
x  x  3  0
 1,2
2





2

1  13
So với điều kiện x 
(loaị). Vậy hệ phương trình đã cho có nghiệm
2

x  y  1


1  13 .
x  y 
2



 x  y  4 z  1 (1)

Bài toán 28: Giải hệ phương trình:  y  z  4 x  1 (2)

 z  x  4 y  1 (3)
1
4

Giải: Điều kiện x; y; z  . Nhân mỗi phương trình với 2 ta có:
2 x  2 y  2 4 z  1

2 y  2 z  2 4 x  1  4 x  4 y  4 z  2 4 x  1  2 4 y  1  2 4 z 1  0

2 z  2 x  2 4 y  1



 

 



 4x 1  2 4x 1  1  4 y 1  2 4 y 1  1  4z 1  2 4z 1  1  0






 
2

4x 1 1 

 
2

4 y 1 1 



2

4z 1 1  0  x  y  z 

1
.
2

Bài toán 29 Giải hệ phương trình sau:
12 x 2  48 x  64  y 3 (1)

2
3
12 y  48 y  64  z (2)
12 z 2  48 z  64  x3 (3)



Giải:
Giả sử bộ ba số  x; y; z  là nghiệm của hệ phương trình trên thì  y; z; x  và  z; x; y  cũng là
nghiệm của phương trình này. Giả sử x là số lớn nhất x  y ; x  z (4)
Từ (1) ta có 12 x2  48x  64  y3  y3  12  x2  4 x  4   16  12  x  2   16  16  y  2 . Tương tự
2

W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai

từ phương trình (2) và (3) ta cũng có x  2 ; z  2 . (5)
Trừ từng vế của (1) và (3) ta được: x3  y3  12  z 2  x2   48  z  x   12  z  x  x  z  4 . (6)
Theo (4) và (5) suy ra x3  y3  0 ; z  x  0 ; x  z  4  0 . Nên từ (6) suy ra x  y  z (7)
Thay (7) vào (1) ta được: x3  12 x2  48x  64  0   x  4   0  x  4 .
3

Vậy hệ có nghiệm duy nhất  x; y; z    4; 4; 4 

Bài toán 30: Tìm x, y, z biết

x yz  x  y  z .

Điều kiện: x; y; z  0 ; x  y  z  0 . Đặt x  a 2 ; y  b2 ; z  c2 . Do a.b.c  0 nên ta có
a 2  b2  c2  a  b  c  a2  b2  c2   a  b  c  a2  b2  c2  a2  b2  c2  2ab  2ac  2bc
2


 2b2  2ab  2ac  2bc  0  2b  a  b   2c  a  b  0  2  a  b b  c  0
a  b  0
a  b


b  c  0
b  c

Do đó x = y và z tuỳ ý ; y = z và x tuỳ ý

Hoặc cách giải khác:

x yz  x  y  z  x yz  y  x  z

 x  y  z  y  2 y  x  y  x   x  z  2 xz
 y  x  y  z   xz  y  x  y  z   xz  y  x  y   yz  xz  0
 y  x  y   z  x  y   0   x  y  y  z   0 Do đó x = y và z tuỳ ý hoặc y = z và x tuỳ ý.

1
x

Bài toán31: Cho x > 0 , y > 0 và 
Từ

1
 1 . Chứng minh rằng:
y

1 1

  1 . (1) Suy ra x > 1 ; y > 1 và các căn thức
x y

x  y  xy  xy  x  y  1  1   x  1 y  1  1 

 x y  x y2

 x  1 y  1  2  

x  y  x 1  y 1 .

x  1 ; y  1 tồn tại . Từ (1) suy ra

 x 1 y 1  1  2  x  1 y  1  2



2

x  1  y  1  x  y  x  1  y  1 (đpcm).

Bài toán 32: Cho tam giác có số đo các đường cao là các số nguyên, bán kính đường tròn nội
tiếp tam giác bằng 1. Chứng minh tam giác đó là tam giác đều.

W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807



Vững vàng nền tảng, Khai sáng tương lai

Giải:
Gọi x, y, z lần lượt là độ dài các đường cao ứng với các cạnh a, b, c của tam giác, đường cao
của tam giác luôn lớn hơn đường kính đường tròn nội tiếp tam giác đó, nghĩa là
x  2; y  2; z  2 . Vì x, y, z là các số nguyên dương nên
x  3; y  3; z  3 

1 1 1 1 1 1
      1 . Mặt khác ta lại có:
x y z 3 3 3

1 1 1 a b c a bc 1
  
  
  1  x  y  z  3 nên tam giác ABC đều.
x y z ax by cz
2S ABC
r

Bài toán 33: Cho phương trình x4  2mx2  4  0 (*) . Tìm giá trị của tham số m để phương
trình có 4 nghiệm phân biệt x1; x2 ; x3 ; x4 thoả mãn x14  x24  x34  x44  32 .
Giải:
Đặt x2  t  0 khi đó phương trình (*) trở thành t 2  2mt  4  0 (1) . Phương trình (*) có
nghiệm phân biệt nên phương trình (1) có hai nghiệm dương phân biệt t1 ; t2 ngh ĩa l à:
m 2
 '  m 2  4  0

m  2  m  2


 m  2
t1  t2  2m  0  m  0  
m

0

t .t  4

1 2
t1.t2  4

Khi m <-2 thì phương trình (*) có 4 nghiệm x1;2   t1 ; x3;4   t2 và
x14  x24  x34  x44  2  t1  t2   4t1t2  8m2  16 . Từ giả thiết suy ra 8m2  13  32  m   6 vì
2

m  2

Bài toán 34: Chứng minh rằng nếu phương trình ax 4  bx3  cx2  2bx  4a  0 (a  0) (*) có
hai nghiệm x1; x2 thoả mãn x1.x2  1 thì 5a2  2b2  ac .
Giải:
Nếu phương trình (*) có hai nghiệm x1; x2 thì đa thức bậc bốn ở vế trái của phương trình
phân tích được :










ax 4  bx3  cx2  2bx  4a   x  x1  x  x2  ax 2  mx  n 

 x2  px  1 ax 2  mx  n



(vì x1.x2  1 và p  x1  x2 )

 ax4   m  ap  x3   a  mp  n  x2   m  pn  x  n . Đồng nhất thức hai vế của phương trình trên

W: www.hoc247.net

F: www.facebook.com/hoc247.net

T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai

(1)
 n  4a
m  pn  2b (2)

ta được : 
(3)
m  ap  b
a  mp  n  c (4)


Giải hệ phương trình trên ta được 5a2  2b2  ac .
Cách giải 2: Vì x1  0 và x2 



1
đều là nghiệm của phương trình (*) nên ta có:
x1













ax14  bx13  cx12  2bx1  4a  0  a x14  1  bx1 x12  1  0  x12  1 ax12  bx1  a  0





  x1  1 x1  1 ax12  bx1  a .

**Có ba trường hợp xảy ra

Trường hợp 1: Nếu x1  1  x1  x2  1 . Đa thức vế trái chia hết cho

 x  1

2

 x 2  2 x  1 nên đa thức dư đồng nhất phải bằng 0. Bằng phép chia đa thức cho đa

thức ta được:
4a  b  2c  0
b  2a

 5a 2  2b2  ac

a  2b  c  0
c  3a

Trường hợp 2: Nếu x1  1  x2  x1  1 . Tương tự trường hợp (1) ta cũng có 5a2  2b2  ac
Trường hợp 3: Nếu x1  1 thì x1; x2 là nghiệm của phương trình ax2  bx  a  0 . Chia đa thức
(*) cho ax2  bx  a ta được đa thức dư đồng nhất bằng 0 có  a  bx   5a 2  2b2  ac   0 
5a2  2b2  ac .

Cách giải 3: Vì x  0 không là nghiệm của phương trình (*) nên chia hai vế cho x 2 ta được:
4 
2
2
4

a  x 2  2   b  x    c  0 (1) . Đặt y  x   x 2  2  y 2  4 nên phương trình trở thành
x  

x
x
x

2
2
ay 2  by  4a  c  0 (2) . Đặt y1  x1 
; y2  x2 
 3 . Áp dụng định lý Viet cho phương
x1
x2

trình (2) y1  y2  

b
4a  c
; y1. y2 
. Thay vào (3) và biến đổi ta được 5a2  2b2  ac .
a
a

Phương trình (2) có hai nghiệm y1; y2 . Nếu y1  y2  x1  x2 mới chỉ là một nghiệm của
phương trình (2) vậy ta phải xét thêm các trường hợp 1) 2) như cách giải 2:

BÀI TẬP BỔ SUNG VỀ PHƯƠNG TRÌNH VÀ HỆ PHƯƠNG TRÌNH

W: www.hoc247.net

F: www.facebook.com/hoc247.net


T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai

1) Giải các phương trình sau:







a) x  3 x  2 x  9 x  18  168 x

KQ: x = 1; x = 36

b) 5x2  14 x  9  x2  x  20  5 x  1


 5  61 

x  8;

2 




2) Giải các hệ phương trình sau:

 x  1  y  4
 x  y  7

KQ:  x; y    3; 4 

a) 


 x  1 y  1  8

 x  x  1  y  y  1  xy  17

b) 

2
2

 x  y  xy  1
3
3

x  y  x  3y

KQ:  x; y   1;3 ;  3;1
KQ:  x; y   1;0  ;  1;0 

c) 

3
2


 x  xy  2000 y  0
3
2

 y  x y  500 x  0

d) 

3) Giải các phương trình sau:
1) 10  2 x  2 x  3  1

2) 48  x3  35  x3  13

3) 5 32  x2  5 1  x2  4

4) 3 x  1  3  4 82  x

5) x  4 20  x  4

6) x  17  x2  x 17  x2  9

7) x3  1  2 3 2 x  1

8) 8  x  5  x  5

W: www.hoc247.net

F: www.facebook.com/hoc247.net


T: 098 1821 807


Vững vàng nền tảng, Khai sáng tương lai

Vững vàng nền tảng, Khai sáng tương lai
Website Hoc247.vn cung cấp một môi trường học trực tuyến sinh động, nhiều tiện ích thông
minh, nội dung bài giảng được biên soạn công phu và giảng dạy bởi những giáo viên nhiều năm
kinh nghiệm, giỏi về kiến thức chuyên môn lẫn kỹ năng sư phạm đến từ các trường Đại học và
các trường chuyên danh tiếng.

I.

Luyện Thi Online
Học mọi lúc, mọi nơi, mọi thiết bi – Tiết kiệm 90%
-

Luyên thi ĐH, THPT QG với đội ngũ GV Giỏi, Kinh nghiệm từ các Trường ĐH và THPT danh tiếng.

-

H2 khóa nền tảng kiến thức luyên thi 6 môn: Toán, Ngữ Văn, Tiếng Anh, Vật Lý, Hóa Học và Sinh Học.

-

H99 khóa kỹ năng làm bài và luyện đề thi thử: Toán,Tiếng Anh, Tư Nhiên, Ngữ Văn+ Xã Hội.

II.

Lớp Học Ảo VCLASS

Học Online như Học ở lớp Offline
-

Mang lớp học đến tận nhà, phụ huynh không phải đưa đón con và có thể học cùng con.

-

Lớp học qua mạng, tương tác trực tiếp với giáo viên, huấn luyện viên.

-

Học phí tiết kiệm, lịch học linh hoạt, thoải mái lựa chọn.

-

Mỗi lớp chỉ từ 5 đến 10 HS giúp tương tác dễ dàng, được hỗ trợ kịp thời và đảm bảo chất lượng học tập.

Các chương trình VCLASS:
-

Bồi dưỡng HSG Toán: Bồi dưỡng 5 phân môn Đại Số, Số Học, Giải Tích, Hình Học và Tổ Hợp dành cho
học sinh các khối lớp 10, 11, 12. Đội ngũ Giảng Viên giàu kinh nghiệm: TS. Lê Bá Khánh Trình, TS. Trần
Nam Dũng, TS. Pham Sỹ Nam, TS. Lưu Bá Thắng, Thầy Lê Phúc Lữ, Thầy Võ Quốc Bá Cẩn cùng đôi HLV đạt
thành tích cao HSG Quốc Gia.

-

Luyện thi vào lớp 10 chuyên Toán: Ôn thi HSG lớp 9 và luyện thi vào lớp 10 chuyên Toán các
trường PTNK, Chuyên HCM (LHP-TĐN-NTH-GĐ), Chuyên Phan Bội Châu Nghệ An và các trường Chuyên
khác cùng TS.Trần Nam Dũng, TS. Pham Sỹ Nam, TS. Trịnh Thanh Đèo và Thầy Nguyễn Đức Tấn.


-

Hoc Toán Nâng Cao/Toán Chuyên/Toán Tiếng Anh: Cung cấp chương trình VClass Toán Nâng Cao,
Toán Chuyên và Toán Tiếng Anh danh cho các em HS THCS lớp 6, 7, 8, 9.

III.

Uber Toán Học
Học Toán Gia Sư 1 Kèm 1 Online
-

Gia sư Toán giỏi đến từ ĐHSP, KHTN, BK, Ngoại Thương, Du hoc Sinh, Giáo viên Toán và Giảng viên ĐH.
Day kèm Toán mọi câp độ từ Tiểu học đến ĐH hay các chương trình Toán Tiếng Anh, Tú tài quốc tế IB,…

-

Học sinh có thể lựa chọn bất kỳ GV nào mình yêu thích, có thành tích, chuyên môn giỏi và phù hợp nhất.

-

Nguồn học liệu có kiểm duyệt giúp HS và PH có thể đánh giá năng lực khách quan qua các bài kiểm tra
độc lập.

-

Tiết kiệm chi phí và thời gian hoc linh động hơn giải pháp mời gia sư đến nhà.

W: www.hoc247.net


F: www.facebook.com/hoc247.net

T: 098 1821 807



×