Tải bản đầy đủ (.doc) (69 trang)

Electrostatic fields in matter

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (418.73 KB, 69 trang )

107

Chapter 4
Electrostatic Fields in Matter
Problem 4.1
−30
E = V / x = 500 /10−3 = 5 ×105 . Table 4.1: α / 4πε 0 = 0.66 ×10 , so
α = 4π (8.85 × 10−12 )(0.66 ×10 −30 ) = 7.34 ×10 −41.
p = α E = ed ⇒ d = α E / e = (7.34 × 10−41 )(5 ×105 ) /(1.6 ×10 −19 ) = 2.29 × 10−16 m.

d / R = (2.29 ×10−16 ) /(0.5 ×10 −10 ) = 4.6 ×10−6. To ionize, say d = R. Then R=

α E / e = αV / ex ⇒ V = R ex / α = (0.5x 10−10 )(1.6x10 −19 )( 10−3 )/(7.34x10 −41 ) = 108V .

Problem 4.2
1

First find the field, at radius r, using Gauss’ law: ∫ E.da = ε Qenc , or
0

1 1
E=
Qenc .
4πε 0 r 2
4π q r −2 r / a 2
4q  a −2 r / a  2
a2 
Qenc = ∫ ρ dr =
e
r dr = 3  − e
 r + ar + ÷


0
π a 3 ∫0
a  2
2 


2q  −2 r / a 2
a2 
r
r2 
−2 r / a

e
(
r
+
ar
+
)
1

e
(1
+
2
+
2
) .
=
= q

a 2 
2 
a
a 2 

r

r
0

[Note: Qenc (r → ∞) = q. ] So the field of the electron could is
Ee =

1 q 
r
r2 
−2 r / a
1

e
(1
+
2
+
2
) . The proton will be shifted from r = 0 to the
4πε 0 r 2 
a
a 2 


point d where E e = E (the external field):
1 q 
d
d 2 
−2 d / a 
E=
1 − e
1 + 2 + 2 2 ÷ .
4πε 0 d 2 
a
a 



108

Expanding in powers of (d/a):
2

e

3

2

3

d
d
d2 

 2d  1  2 d  1  2 d 
d  4d 
−2 d / a 
= 1− 
+

+
...
=
1

2
+
2

+
...1

e
1
+
2
+
2

÷
÷ 
÷

÷

 ÷
 ÷
a
a
a2 
 a  2  a  3!  a 
 a  3 a 

2
3


d
d
d2 
d  4d 
1 − 1 − 2 + 2  ÷ −  ÷ + ... ÷1 + 2 + 2 2 ÷

÷
a
a
a 
 a  3 a 


d
d2
d
d2
d3

d2
d3 4 d3
γ −γ − 2 − 2 2 + 2 + 4 2 + 4 3 − 2 2 − 4 3 +
+ ...
a
a
a
a
a
a
a
3 a3
3
4d 
 ÷ + higher order terms.
3 a 

−2 d / a

=
=
=

E=

1 q  4 d3 
1 4
1
=
(qd ) =

p. α = 3πε 0 a 3 .
2 
3 ÷
3
4πε 0 d  3 a  4πε 0 3a
3πε 0 a 3

[Not so different from the uniform sphere model of Ex.(see Eq. 4.2). Note that
1

3

3

this result predicts 4πε α = 4 a = 4 (0.5 ×10 ) = 0.09 ×10 m , compared with an
0
experimental value (table 4.1) of 0.66 x 10 −30 m 3 . Ironically the “classical”
formula (Eq. 4.2) is slightly closer to the empirical value.]
3

−10 3

30

3

Problem 4.3
ρ ( r ) = Ar . Electric field (by Gauss’s Law):
2
Ñ

∫ E.da = E (4π ) =

1
1
Qenc =
ε0
ε0



r

0

r r2 r
1 4π A r 4 Ar 2
Ar 4π r d r , or E=
=
. This “internal”
4π r 2 ε 0 4 4ε 0

field balances the external field E when nucleus is “off-center” an amount d :
ad 2 4ε 0 = E ⇒ d = 4ε 0 E A .So the induced dipole moment is p = ed = 2e ε 0 A E
.Evidently p is proportional to E1 2 .
For Eq. 4.1 to hold in the weak – field limit , E must be proportional to r , for
small r , which mean that must go to a constant (not zero) at the origin : ρ (0) ≠ 0
(nor infinite)


109


Problem 4.4
1

αq

q

Field of q : 4π ∈ r 2 rˆ . Induced dipole moment of atom : p = α E = 4πε r 2 rˆ .
0
0
Field of this dipole , at location of q ( θ = π , in Eq.3.103 ) : E =

1 1  2α q 

÷
4πε 0 r 3  4πε 0 r 2 

( to the right ) .
Force on q due to this field : ( attractive ) .
Problem 4.5
p

1
Field of p1 at p2 ( θ = π 2 in Eq. 3.103 ) : E1 = 4πε r 3 θˆ ( points down ).
0

pp

o

1 2
Torque on p2 : N 2 = p2 × E1 = p2 E1 sin 90 = p2 E1 = 4πε r 3 ( points into the page).
0

2p p

1 2
Torque on p1 : N1 = p1 × E2 = 4πε r 3 (points into the page )
0

Problem 4.6
Use image dipole as shown in Fig .(a). Redraw , placing pi at the origin , Fig.
(b).
Ei =

p
4πε 0 ( 2 z )

3

( 2 cos θ rˆ + sin θθˆ ) ;

p = p cos θ rˆ + p sin θθˆ .

( out of the page ).
But sin θ cos θ = ( 1 2 ) sin 2θ , so N =

p 2 sin 2θ
(out of thae page )
4πε 0 ( 16 z 3 )


For 0 < θ < π 2, N tends to rotate p counterclockwise ; for π 2 < θ < π , N rotates p
clockwise . Thus
the stable orientation is perpendicular to the surface –either ↑ or ↓ .


110

Problem 4.7
Say the field is uniform and points in the y direction . First slide p in from
infinity along the x axis-this takes no work , since F is ⊥ dl. (If E is not
uniform , slide p in along a trajectory ⊥ the field.) Now rotate (counterclockwise
) into final position . The torque exerted by E is N = p × E = pE sin θ zˆ. The torque
we exert is N = pE sin θ clockwise , and dθ is counterclockwise , so the net work
done by us is negative :
U=

θ



π 2

pE sin θ dθ = pE ( − cos θ

)

θ
π 2


π

= − pE  cos θ − cos ÷ = − pE cos θ = − p.E.
2


qed

Problem 4.8
U = − p1.E2 , but E2 =

1 1
1 1
3( p2 .rˆ)rˆ − p2 ] . So U =
 p1 p2 − 3 ( p1rˆ ) ( p2 .rˆ )  .
3 [
4πε 0 r
4πε 0 r 3 

Problem 4.9

( a ) F = ( p.∇ ) E ( Eq.4.5) ; E =

qed

1 q
q
xxˆ + yyˆ + zzˆ
rˆ =
2

4πε 0 r
4πε 0 ( x 2 + y 2 + z 2 ) 3 2




∂ q
x
Fz =  px
+ py
+ pz
÷
∂x
∂y
∂z  4πε0 ( x 2 + y 2 + z 2 ) 3 2

=

 

1
3
2x
 
 + py
p

x

4πε0  ( x 2 + y 2 + z 2 ) 3 2 2 ( x 2 + y 2 + z 2 ) 5 2 


 

=

q
 pz 3 x


p
x
+
p
y
+
p
z
=
(
)
x
y
z
3
5

4πε0 
r
r
 4πε0


q

q



2y
− 3 x
 + pz
 2 ( x2 + y 2 + z 2 ) 5 2 



 p 3r ( p.r ) 
 3−
 .
5
r
r

x







111


F=

1 q
 p − 3 ( p.rˆ ) rˆ  .
4πε 0 r 3 

( b)

E=

{

}

1 1
1 1
3  p. ( −rˆ )  ( − rˆ ) − p =
3 ( p.rˆ ) rˆ − p  . (This is from
3
4πε 0 r
4πε 0 r 3 

Eq. 3.104; the minus signs are beause r points toward p , in this
problem .)
F = qE =

1 q
3 ( p.rˆ ) − p  .
4πε 0 r 3 


[Note that the forces are equal and opposite , as you would expect from
Newton’s third law .]
Problem 4.10
(a) σ b = P.nˆ = kR; ρb = −∇.P = −

1 ∂ 2
1
r kr ) = − 2 3kr 2 = −3k .
(
3
r ∂r
r

1

(b) For r < R , E= 3ε ρ rrˆ (Prob. 2.12 ) , so E = − ( k ε 0 ) r.
0

For r > R, same as if all charge at center ; but
4

Qtot = ( kR ) ( 4π R 2 ) + ( −3k )  π R 3 ÷ = 0 , so E = 0.
3


Problem 4.11
ρb = 0;σ = P.nˆ = ± P (plus sign at one end-the one P points toward ; minus

sign at the other-the one P points away from ).



112

(i)

L >> a. Then the ends look like point charges , and the whole
thing is like a physical dipole , of length L and charge Pπ a 2 .
See Fig. (a).

(ii)

L<< a. Then it’s like a circular parallel-plate capacitor.Field is
nearly uniform inside ; nonuniform “fringing field” at the
edges . See fig . (b).

(iii)

L ≈ a. See fig .(c).

Problem 4.12
V=

1
4πε 0

P.rˆ

∫r


2

 1
rˆ 
dr = P. 
dr  . But the term in curly brackets is precisely the
2

 4πε 0 r


field of a uniformly charged sphere , divided by p. The integral was done
esplicitly in Prob .2.7 and 2.8 :
 1 ( 4 3) π R 3 p
rˆ,

r2
1

1  4πε 0
dr = 
4πε 0 ∫ r 2
p  1 ( 4 3) π R 3 p
rˆ,
 4πε
R3
0


( r > R) 


 R3
R 3 P cos θ
ˆ
P
.
r
=
,

( r > R ) ,
2
2
3
ε
r
3
ε
r

0
0

 So V ( r , θ ) = 
Pr cos θ
 1
( r < R ) , 
,
 3ε P.r = 3ε
0

 0



( r < R ) 

Problem 4.13
Think of it as two cylinders of opposite uniform charge density ± ρ . Inside the
field


113

At a distance s from the axis of a uniformly charge cylinder is given by Gauss’s
1

2
law : E 2π sl = ε ρπ s l ⇒ E = ( ρ 2ε 0 ) s. For two such cylinders , one plus and one
0

minus. The net field (inside) is E = E+ + E− = ( ρ 2ε 0 ) ( s+ − s− ) . But s+ − s− = −d , so
E = ρ d ( 2ε 0 ) , where d is the

Vector from the negative axis to positive axis . In this case the total dipole
2
2
moment of a chunk of length l is P ( π a l ) = ( ρπ a l ) d . So ρ d = P, and
E = − P ( 2ε 0 ) , for s < a .

Outside , Gauss s law give E 2π sl =



1
ρ a 2 sˆ
ρπ a 2l ⇒ E =
, For one cylinder . For
ε0
2ε 0 s

ρ a 2  sˆ+ sˆ− 
the combination , E = E+ + E− =
 − ÷, where
2ε 0  s+ s− 
d
s± = s m ;
2
−1

−1


s± 
d  2 d 2
1
d  s.d 
1
d  s.d 
=  s m ÷ s +
ms.d ÷ ≅ 2  s m ÷1 m 2 ÷ ≅ 2  s m ÷ 1 ± 2 ÷
2

s± 
2 
4
s 
2 
s 
s 
2 
s 

=

( s.d ) d 
1
s±s 2 m ÷
2 
s 
s
2

( keeping only 1st order terms in d )


 sˆ+ sˆ−  1 
( s.d ) d  
s   1  s ( s.d )
( s .d )
− d ÷.
 − ÷ = 2  s + s 2 − ÷−  s − s s 2 + ÷ = 2  2
2

s
2 
2   s 
s
 s+ s−  s 

E ( s) =

a2 1
 2 ( P.sˆ ) sˆ − P  , for s > a
2ε 0 s 2 

Problem 4.14


114

Total charge on the dielectric is Qtot = Ñ
∫ s σ b da + ∫ν ρ b dτ = Ñ
∫ s P.da − ∫ν ∇.Pdτ . But the
divergence theorem says

Ñ
∫ P.da = ∫ ∇.Pdτ ,
s

ν

so Qenc = 0. qed


Problem 4.15
1 ∂  2k
k
 r ÷= − 2 ;
2
r ∂r  r 
r
+ P.rˆ = k b
r = b, 
σ b = P.nˆ = 

− P.rˆ = − k a
r = a.

(a) ρb = −∇.P = −

1 Q

enc
Gauss’s law ⇒ E = 4πε r 2 rˆ. For r < a , Qenc = 0 , so E = 0 . For r > b , Qenc =0
0
(Prob. 4.14) , so E = 0
r  −k 
−k 
2
2
÷( 4π a ) + ∫a  2 ÷4π r dr = −4π ka − 4π k ( r − a ) = −4π kr ; so
a
r
 





For a < r< b , Qenc = 
E = − ( k ε 0 r ) rˆ.

(b)

Ñ
∫ D.da = Q

f enc

= 0 ⇒ D = 0 everywhere . D = ε 0 E + P = 0 ⇒ E = ( −1 ε 0 ) P, so

E = 0 (for r < a and r > b );

E = ( k ε 0 r ) rˆ (for a < r < b)

Problem 4.16
(a) Same as E0 minus the field at the center of sphere with uniform
1

polarization P. The latter (Eq. 4.14) is − P 3ε 0 . So E = E0 + 3ε P
0

1
1
2

D = ε 0 E = ε 0 E0 + P = D0 − p + p, So D = D0 − P.
3
3
3


115

(b) Same as E0 minus the field of ± charges at the two ends of the “needle” –
but these are small , and far away , so E=E0

D = ε0 E = ε0 E0 = D0 − P, so D = D0 − P.
(c) Same as E0 minus the field of a parallel-plate capacitor with upper plate at
σ = P . The later is E = E0 +

1
P − ( 1 ε 0 ) P, s D = ε 0 E = ε 0 E0 + P, so D = D0. o
ε0

Problem 4.18
(a) Apply ∫ D.da = Q f to the Gaussian surface shown . DA = σ A ⇒ D = σ . (Note :
D =0 inside the metal plate .) This is true in both slabs ; D points down .
(b) D = ε E ⇒ E = σ ε1 in slab 1 , E = σ ε 0 in slab 2 . But ε = ε 0ε r , so
enc

3
ε1 = 2ε 0 ; ε 2 = ε 0 . E1 = σ 2ε 0 , E2 = 2σ 3ε 0 .
2
−1
(c) p = ε 0 χ e E , so P = ε 0 χ e d ( ε 0 ε r ) = ( χ e ε r ) ; χ e = ε r − 1 ⇒ P = ( 1 − ε r ) σ .

P1 = σ 2, P2 = σ 3.

(d) V = E1a + E2 a = ( σ a 6ε 0 ) ( 3 + 4 ) = 7σ a 6ε 0 .
(e) ρb = 0; σ b = + P1 at bottom of slab ( 1) = σ 2,

( 2) = σ

( 2 ) = −σ

σ b = + P2 at bottom of slab

3,

σ b = − P1 at top of slab ( 1) = −σ 2,

σ b = + P2 at top of slab

3,

(f) In slab 1 : total surface charge above : σ − ( σ 2 ) = σ 2
total surface charge below : ( σ 2 ) − ( σ 3) + ( σ 3) − σ = −σ 2,
In slab 2 : total surface charge above : σ − ( σ 2 ) + ( σ 2 ) − ( σ 3) = 2σ 3,
total surface charge below : ( σ 3) − σ = −2σ 3,


116

problem 4.19
With no dielectric , C0 = Aε 0 d (Eq. 2.54).
In configuration (a) , with +σ on upper plate , −σ on lower , D = σ between the

plates .
E = σ ε 0 (in air ) and E = σ ε (in dielectric). So V =
Ca =

Q ε0 A  2
=

V
d  1+1 εr

σ d σ d
Qd  ε 0 
+
=
1+
.
ε 0 2 ε 2 2ε 0 A  ε ÷


 Ca
2ε 0
=
.
÷=
 C0 1 + ε r

In configuration (b) , with potential difference V : E = V d , so σ = ε 0 E = ε 0V d
( in air ).
P = ε 0 χ eV d (in dielectric) , so σ b = − ε 0 χ eV d (at top surface of dielectric ).
σ tot = ε 0V d = σ f + σ b = σ f − ε 0 χ eV d , so σ f = ε 0V ( 1 + χ e ) d = ε 0ε rV d (on top plate

above dielectric).
⇒ Cb =

Q 1 A
A A  V
V  Aε 0  1 + ε r
= σ + σ f ÷=
 ε0 + ε 0 ε r ÷=

V V 2
2  2V  d
d 
d  2

 Cb 1 + ε r
=
.
÷.
2
 C0

[Which is greater ?
1 + ε r ) − 4ε r 1 + 2ε r + 4ε r2 − 4ε r ( 1 − ε r )
Cb Ca 1 + ε r
(
2ε r

=

=

=
=
> 0. So Cb > Ca ]
C0 C0
2
1+ εr
2(1+ εr )
2( 1+ εr )
2( 1+ εr )
2

2

If the x axis points down :
Problem 4.20
4
1
⇒ D 4π r 2 = ρ π r 3 ⇒ D = ρ r ⇒ E = ( ρ r 3ε ) rˆ , for
3
3
4
r < R; D 4π r 2 = ρ π R 3 ⇒ D = ρ R 3 3r 2 ⇒ E = ( ρ R 3 3ε 0 r 2 ) rˆ, for r >R .
3

∫ D.da = Q
0

f enc

V = − ∫ E.dl =



ρ R3 1
3ε 0 r

R




ρ




0

R

rdr =

ρ R2 ρ R2 ρ R2 
1 
+
=
1 +
÷.
3ε 0 3ε 2
3ε 0  2ε r 



117

Problem 4.21
Let Q be the charge on a length l of the inner conductor .
Q

Ñ
∫ D.da = D2π sl = Q ⇒ D = 2π sl ;

E=

Q
( a < s < b ) , E = Q ( b< r< c ).
2πε 0 sl
2πε sl

a
b
c  Q  ds
Q  ds
Q   b  ε 0  c 
V = − ∫ E.dl = ∫ 
+∫ 
=
÷
÷
ln  ÷+ ln  ÷ .
c
a 2πε l

b 2πε l

 s 2πε 0l   a  ε  b  
0  s

2πε 0
C Q
= =
.
l Vl ln ( b a ) + ( 1 ε r ) ln ( c b )

Problem 4.22
Same method as Ex. 4.7 : Solve Laplace’s equation for Vin ( s, φ ) ( s < a ) and
Vout ( s, φ ) (s > a ), subject the boundary condition .
(i) Vin = Vout
at s = a ,
∂Vout
∂s
(iii) Vout → − E 0 s cos φ

(ii) ε

at s = a ,

for s >> a .
From Prob. 3.23 (invoking boundary condition (iii)):


Vin ( s, φ ) = ∑ s k ( ak cos kφ + bk sin kφ )
k =1


.

( I eliminated the constant terms by seting V = 0 on the y z plane .) Condition (i)
says

∑a ( a
k

k

cos kφ + bk sin kφ ) = − E0 s cos φ + ∑ a − k ( ck cos kφ + d k sin kφ ) ,

While (ii) says

ε r ∑ ka k −1 ( ak cos kφ + bk sin kφ ) = − E0 cos φ − ∑ ka − k −1 ( ck cos kφ + d k sin kφ ) .

Evidently bk = d k = 0 for all k , ak = ck = 0 unless k = 1 , whereas for k = 1 ,
aa1 = − E0 a + a −1c1 , ε r a1 = − E0 − a −2c1 .
Solving for a1 ,
a1 = −

E0
E0
E0
, so Vin ( s, φ ) = −
s cos φ = −
x,
( 1 + χe 2)
( 1 + χe 2)

( 1 + χe 2 )


118

∂V

E

in
0
and hence Ein ( s, φ ) = − ∂x xˆ = ( 1 + χ 2 ) . As in the spherical case ( Ex. 4.7 ) , the
e

field inside is uniform .
Problem 4.23
P0 = ε 0 χ e E0 ; E1 = −

χ
ε χ2
χ
1
1
p0 = − e E0 ; P1 = ε 0 χ e E1 = − 0 e E0 ; E2 = −
P1 = e E0 ; …
3ε 0
3
3
3ε 0
9

n

 χ 
Evidently En =  − e ÷ E0 , so
 3 
 ∞  χ e n 
E = E0 + E1 + E2 + ... =  ∑  − ÷  E0 .
 n = 0  3  

The geometric series can be summed explicitly :


∑x
n =0

n

=

1
1
E
, so E =
( 1 + χ e 3) 0 ,
1− x

Which agrees with Eq. 4.49. [Curiously , this method formally requires that
χ e < 3 (else the infinite series diverges ) , yet the result is subject to no such
restriction , since we can also get it by the method of Ex. 4.7.]
Problem 4.24

Potentials :
Bl

Vout ( r , θ ) = − E0 r cos θ + ∑ r l +1 Pl ( cos θ ) ,


 t Bl 
( a < r Vmed ( r , θ ) = ∑  At r + l +1 ÷Pl ( cos θ ) ,
r 


Vin ( r , θ ) = 0,



Boundary Conditions :


( i ) Vout = Vmed , (r = b);

∂Vmed
∂V
= ε 0 out , (r = b ) ;
(ii )
∂r
∂r
(iii )V = 0(r = a)
med



(i) ⇒ − E0b cos θ + ∑



Bl
B 
P cos θ ) = ∑  Al bl + l +l1 ÷Pl ( cos θ ) ;
l +1 l (
b
b 


l −1
(ii) ⇒ ε r ∑ lAl b − ( l + 1)



(iii) ⇒ A1al +

119

Bl 
B
P cos θ ) = − E0 cos θ − ∑ ( l + 1) l +l 2 Pc
1 ( cos θ ) ;
l+2  l (
b 
b


Bl
= 0 ⇒ − a 2l +1 Al .
a l +1

For l #1 :
B1
a 3 A1
=
A
b

⇒ B1 − E0b3 = A1 2 ( b3 − a 3 ) ;
1
2
2
b
b
3

a A
B
3
3
3
(ii) ε r  A1 + 2 3 1 ÷ = − E0 − 2 31 ⇒ −2 B1 − E0b = ε r A1 ( b + 2a ) .
b
b


−3E0

3
3
3
3
3
So −3E0b = A1  2 ( b − a ) + ε r ( b + 2a )  ; A1 = 2 1 − ( a b ) 3  + ε 1 + 2 ( a b ) 3  .

 r

3

−3E0
a 
Vmed =
r − 2 ÷cos θ ,
3
3 
r 
2 1 − ( a b )  + ε r 1 + 2 ( a b )  





(i) − E0b +

E ( r , θ ) = −∇Vmed =

 2a 3 
 a3 

ˆ 
ˆ
1
+
cos
θ
r

1

sin
θθ


÷

÷
3
3
.
3
3
r 

2 1 − ( a b )  + ε r 1 + 2 ( a b )  
 r 





3E0

Problem 4.25
There are four charges involved : (i) q , (ii) polarization charge surrounding q ,
(iii) surface charge ( σ b ) on the top surface of the lower dielectric , (iv) surface


charge ( σ

'
b

)

120

on the lower surface of the upper dielectric . In view of Eq. 4.39 ,

'
'
the bound charge (ii) is q p = −q ( χ e 1 + χ e ) , so the total ( point ) charge at ( 0 , 0 ,
'
'
d ) is ql = q + q p = q ( 1 + χ e ) = q ε r . As in Ex. 4.8,



'
σ b σ b' 
 −1 qd ε r



(a) σ b = ε 0 χ e 
( here σ b = P.nˆ = + Pz = ε 0 χ e Ez );
3
4πε 0 2
2ε 0 2ε 0 
2 2


(r +d )




σ b σ b' 
qd ε r'
'
'  1


(b) σ b = ε 0 χ e 
( here σ b = − Pz = −ε 0 χ e' Ez );
3

4πε 0 2

( r + d 2 ) 2 2ε 0 2ε 0 

'

Solve for ( σ b ) , ( σ b ) : first divide by χ e and χ e' ( respectively ) and subtract :


'
 σ b 1 qd ε r 
⇒σ = χ  +
3
3  .
χ e 2π 2
2
2 2
2 2

r
+
d
r
+
d
(
)
(
) 

Plug this into (a) and solve for σ b , using ε r' = 1 + χ e' :

σ b' σ b
1

=

'
χ e χ e 2π

σb =

−1


qd ε r'

qd ε r'

(r

2

+d

3
2 2

)

'
b

χ e ( 1 + χ e' ) −

'
e


σb
χ e + χ e' )
(
2

, so

σb =

1
σ
=
σ
+
σ
=
t
b
The total bound surface chage is

'
b

−1


ε r χ e' ε r'

qd


(r

2

+d

3
2 2

2

+d

(χ −χ )
1 + ( χ + χ )

'
e

qd

(r

)

1 + ( χ e + χ e' ) 2 




3
2 2

)

ε r'

e

e

'
e

2 

( Which vanishies , as it should , when χ e' = χ e ) . The total bound charge is
( compare Eq. 4.51 ) :
qt =



'
e

− χe ) q

2ε r' 1 + ( χ e + χ e' )

 ε ' − εr  q

=  r'
÷ ' , and hence
2   ε r + ε r  ε r

.


121


qt
1 
q ε r'
V ( r) =
+

2
2
2
2
4πε 0  x 2 + y 2 + ( z − d )
x
+
y
+
z
+
d
(
)








(for z > 0 )

1
q
q  ε r' − ε r 
2q
Meanwhile , since ' + qt = ' 1 + '
, V ( r ) = 4θε
= '
εr
εr  εr + εr  εr + εr
0

 2q ( ε r' + ε r ) 


x2 + y 2 + ( z − d )

(for z < 0 ).
Problem 4.26
From Ex. 4.5:



0, ( r < a )



0, ( r < a )



 Q

D= Q
rˆ, ( a < r < b ) 
 , E=
2
rˆ, ( r > a ) 

 4πε r

 4π r 2

 Q

 4πε r 2 rˆ, ( r > b ) 
0


W=
=

1 b 1 1

1
1 Q
1
D.Edr =
4π  ∫ 2 2 r 2 dr +
2

2
2 ( 4π )
ε0
ε a r r

Q2
8πε 0





b

1  Q2
dr  =
r 2  8π

 1  1 1  1 
Q2
 1 χe

+

=


÷ 
 +
 ( 1 + χ e )  a b  b  8πε 0 ( 1 + χ e )  a b

 1  −1  b 1  −1  ∞
  ÷ +  ÷ 
ε  r  a ε 0  r  b 


÷.


Problem 4.27
Using Eq. 4.55 : W =

ε0
E 2 dr . From Ex. 4.2 and Eq. 3.103 ,
2 ∫

2


122

 −1
 3ε Pzˆ,
 0

E= 3
 R P 2cos θ rˆ + sin θθˆ ,
 3ε 0 r 3

(

)

( r < R) 


 , so
( r > R ) 

2

Wr < R

ε  P  4 3 2π P 2 R 3
= 0
.
÷ πR =
2  3ε 0  3
27 ε 0

Wtot =

2π R 3 P 2
9ε 0


This is the crrect electricstic energy of the configuration , but it is not the “ total
work necessary to assemble the system ,” because it leaves out the mechanical
energy involved in polarizing the molecules .
1
1
D.Edr. For r < R, D = ε 0 E + D = − P + P = −2ε 0 E , so

2
3
 2π P 2 R 3 
4π R 3 P 2
ε
1
=

D.E = −2 0 E 2 , and this contribution is now ( −2 ) 
, exactly
÷
27 ε 0
2
2
 27 ε 0 

Using Eq. 4.58 : W =

canceling the exterior term . Conclusion : Wtot = 0 . This is not surprising , since
the derivation in Sect. 4.4.3 calculates the work done on the free charge , and in
this problem there is no free charge in sight . Since this is a nonlinear dielectric ,
however , the result cannot be interpreted as the “ work necessary to assemble
the configuration’’ – the latter would depend entirely on how you assemble it .

Problem 4.28
First find the capacitance , as a function of h :


123



E=
⇒V =
ln ( b a )
4πε 0 s
4πε 0



λ λ' ' ε


= ; λ = λ = ε r λ.

Air part :
ε
ε
ε0
2λ '
2λ '
2λ '
0
D=

⇒E=
⇒V =
ln ( b a ) , 

4π s
4πε s
4πε


Oil part :

Q = λ ' h + λ ( l − h ) = ε r λ h − λ h + λl = λ ( ε r − 1) h + l  = λ ( χ e h + l ) , where l is the total

height .
C=

( χ h + l)
Q λ ( χeh + l )
=
4πε 0 = 2πε 0 e
V 2λ ln ( b a )
ln ( b a )
1

dC

1

2πε χ


2
2
0 e
The net upward force is given by Eq. 4.64 : F = 2 V dh = 2 V ln ( b a )
2
2
The gravitational force down is F = mg = ρπ ( b − a ) gh
Problem 4.29



(a) Eq. 4.5 ⇒ F2 = ( p2∇ ) E1 = p2 ∂y ( E1 ) ;
p

p

1
1
Eq. 3.103 E1 = 4πε r 3 θˆ = − 4πε y 3 zˆ . Therefore
0

E2 = −

0

3 p1 p2
p1 p2  d  1  
3 p1 p2
F2 =
zˆ ( upward )

  3 ÷ zˆ =
4 or
4πε 0 r 4
4πε 0  dy  y  
4πε 0 y

To calculate F1 , put p2 at the origin , poiting in the z direction ; then p1 is at −rzˆ ,
and it points in the − yˆ direction . So F1 = ( p1∇ ) E2 = − p1
need E2 as a function of x , y , and z .
From Eq. 3.104 : E2 =
and hence p2 .r = − p2 y

∂E2
∂y

; we
x = y = 0, z = − r


1 1  3 ( p2 .r ) r
− p  , where r = xxˆ + yyˆ + zzˆ , p2 = − p2 yˆ ,
3 
2
4πε 0 r  r



124

2

2
2
2
2
2




p2  −3 y ( xxˆ + yyˆ + zzˆ ) + ( x + y + z ) yˆ 
p2  −3xyxˆ + ( x − 2 y + z ) yˆ − 3 yzzˆ 
E2 =
=
52
2
2
2 52
 4πε 0 

4∞ε 0 
x
+
y
+
z
(
)
( x2 + y 2 + z 2 )





∂E2
p  5 1
1

= 2 − 7 2 y  −3 xyxˆ + ( x 2 − 2 y 2 + z 2 ) yˆ − 3 yzzˆ  + 5 ( −3xxˆ − 4 yyˆ = 3 zzˆ ) 
∂y 4πε 0  2 r
r


∂E2
∂y

=

( 0, 0 )

 p 3r 
p 2 −3 z
3p p
zˆ; F1 = − p1  2 5 zˆ ÷ = − 1 24 zˆ.
5
4πε 0 r
4πε 0 r
 4πε 0 r 

There results are consistent with Newton’s third law : F1=-F2 .
(c) From page 165 , N 2 = ( p2 × E1 ) + ( r × F2 ) . The first term was calculated in
Prob . 4.5 ; the second we get from (a) , using r = ryˆ :

p2 × E1 =

p1 p2
 3p p
− xˆ ) ; r × F2 = ( ryˆ ) ×  1 24
3 (
4πε 0 r
 4πε 0 r

2 p1 p2
 3 p1 p2

zˆ ÷ =
xˆ ; so N 2 =
3
4πε 0 r 3
 4πε 0 r

This is equal and opposite to the torque on p1 due to p2 , with respect to the
center of p1 ( see Prob. 4.5 ) .
Problem 4.30
Net force is to the right ( see diagram ) . Note that the field lines must bulge to
the right , as shown , beause E is perpendicular to the surface of each conductor .
Problem 4.31
P = kr = k ( xxˆ + yyˆ + zzˆ ) ⇒ ρb = −∇.P = − k ( 1 + 1 + 1) = −3k .
Total volume bound charge : Qvol = −3ka3
σ b = P.nˆ . At top surface , nˆ = zˆ, z = a 2 ; so σ b = ka 2 . Clearly , σ b = ka 2 on all

six surface .
2

3
Total surface bound charge : Qsorf = 6 ( ka 2 ) a = 3ka . Total bound charge is
zero .


125

Problem 4.32

Ñ
∫ D.da = Q

f enc

ρb = −∇.P = −

⇒D=

qχe
q
1
q


rˆ; E = D =
; P = ε 0 χe E =
.
2
2
2

4π r
ε
4πε 0 ( 1 + χ e ) r r
4π ( 1 + χ e ) r 2

qχe
4π ( 1 + χ e )

Qsurf = σ b ( 4π R 2 ) = q

χe 3
qχe
 rˆ 
δ ( r ) ; ( Eq.1.99 ) ; σ b = P.rˆ =
 ∇. 2 ÷ = − q1
1 + χe
4π ( 1 + χ e ) R 2
 r 

χe
. The compensating negative charge is at the center :
1 + χe



∫ ρ dr = − 1 + χ ∫ δ ( r ) dr = − 1 + χ
3

e


e

.

b

e

e

Problem 4.33
E is continuous ( Eq. 4.29 ) ; D ⊥ is continuous ( Eq. 4.26 , with σ f = 0 ) . So
Ex = Ex ; Dy = Dy ⇒ ε1 E y = ε 2 E y , and hence
1

2

1

2

1

2

tan θ 2
ε
=
=
= 2 . qed

tan θ1 Ex1 E y1 E y2 ε1
Ex2 E y2

E y1

tan θ 2

ε2

If 1 is air 2 is dielectric , tan θ = ε > 1 , and the field lines bend away from the
1
1
normal . This is the opposite of light rays , so a convex “lens” would defocus the
field lines .
Problem 4.34
In view of Eq. 4.39 , the net dipole moment at the center is
p' = p −

1
1
1
p=
p = p .We want the potential produced by p’ ( at the
1 + χe
1 + χe
εr


center ) and σ b ( at R ). Use separation of variables :



Bl

( Eq.3.72 )
Outside
:
V
r
,
θ
=
P cos θ )
(
)


l +1 l (

l =0 r







1 p cos θ
l
 Inside : V ( r , θ ) =
+

A
r
P
cos
θ
(
)

( Eqs.3.66,3.102 ) 
l
l
4πε 0 ε r r 2
l =0


126




or
 .

p
B1 =
+ A1R 3 
4πε 0ε r

B
∂V

∂V
1 2 p cos θ
1

= −∑ ( l + 1) l +l 2 Pl ( cosθ ) +
− ∑ lAl R l −1 Pl ( cos θ ) = − σ b
3
∂r R + ∂r R −
R
4πε 0 ε r R
ε0

 Bl
l
 l +1 = Al R
 R
R

V continuous at R

B
1
p
 12 =
+ A1 B,
4πε 0 ε r R 2
 R

=−


Bl = R 2l +1 Al

 1 2 p cos θ

1
1
∂V
P.rˆ = − ( ε 0 χ e Erˆ ) = χ e
= χ e −
+ ∑ lAl R l −1Pl ( cos θ )  .
3
ε0
ε0
∂r R −
 4πε 0 ε r R


− ( l + 1)

Bl
− lAl R l −1 = χ e lAl R l −1 ( l #1) ; or − ( 2l + 1) Al R l −1 = χ elAl R l −1 ⇒ Al = 0 ( l #1) .
l +2
R

For l = 1
−2



B1

1 2p
1 2p
p
A1 R 3
1 χe p
A1 R 3
+

A
=
χ

+
A

B
+

=

+
χ
l
e

1
e
3
R 3 4πε 0 ε r R 3
4πε 0ε r

2
4πε 0 ε r
2
 4πε 0 ε r R


p
p
A1 R3
1 χe p
A1 R3
A1 R3
1 χe p
3

− A1 R +

=−
+ χe

( 3 + χe ) =
4πε 0ε r
4πε 0ε r
2
4πε 0 ε r
2
2
4πε 0 ε r
⇒ A1 =


2χe p
1
1 2 ( ε r − 1) p
p
=
; B1 =
3
3
4πε 0 R ε r ( 3 + χ e ) 4πε 0 R ε r ( ε r + 2 )
4πε 0ε r
 q cos θ  3 
V ( r ,θ ) = 
÷( r ≥ R ) .
2 ÷
 4πε 0 r   ε r + 2 

 2 ( ε r − 1) 
p
3ε r
.
1 +
=
ε
+
2
4
πε
ε
ε
+

2
(
)
r
0 r
r




Meanwhile , for

1 p cos θ
1 pr cos θ 2 ( ε r − 1)
r ≤ R, V ( r , θ ) =
+
2
4πε 0 ε r r
4πε 0
R3
εr + 2

127

 ε r −1  r3 
p cos θ 
1
+
2



÷ 3  ( r ≤ R) .
4πε 0 r 2ε r 
 εr + 2  R 

Problem 4.35
Given two solution ,V1 ( and E1 = −∇V1 , D1 = ε E1 ) V2 ( E2 = −∇V2 , D2 = ε E2 ) ,
define V3 ≡ V2 − V1 ( E3 = E2 − E1 , D3 = D2 − D1 ) .

∫ ∇. ( V D ) dr = ∫ V D .da = 0, (V = 0 on S ) , so ∫ ( ∇V ) .D dr + ∫ V ( ∇.D ) dr = 0.
3

3

ν

3

3

3

s

3

3

3


3

But ∇.D3 = ∇.D2 − ∇D1 = ρ f − ρ f = 0 ,and ∇.V3 = ∇.V2 − ∇V1 = − E2 + E1 = − E3 , so

∫ E .D dr = 0 .
3

3

But D3 = D2 − D1 = ε E2 − ε E1 = ε E3 ,so ∫ ε ( E3 ) dr = 0 . But ε > 0 , so E3 = 0, so V2V1=constant . But at surface , V2=V1 , so V2=V1 everywhere . qed
2

Problem 4.36
(a) Proposed potential : V ( r ) = V0
case P = ε 0 χ eV0

R
R
If so , then E = −∇V = V0 2 rˆ in which
r
r

R
rˆ, in the region z < 0 . ( P = 0 for z > 0 , of course ) .
r2

Then σ b = ε 0 χ eV0

ε χV
R

rˆ.nˆ ) = − 0 e 0 . (Note : points out of dielectric ⇒ nˆ = − rˆ
2 (
r
R

) . This is on the surface at r = R . The flat surface z = 0 carries no hound
charge , since nˆ = zˆ ⊥ rˆ . Nor is there any volume bound charge ( Eq. 4.39 )
. If V is to have the required spherical symmetry , the net charge must be
unliform :
σ tot 4π R 2 = Qtot = 4πε 0 RV0 (since V0 = Qtot 4πε 0 R , so σ tot = ε 0V0 R . Therefore


128

( ε 0V0 R )
on northern hemisphere 
σf =
.
( ε 0V0 R ) ( 1 + χ e ) on southern hemisphere 

(b) By construction , σ tot = σ b + σ f = ε 0V0 R is uniform (on the northern
hemisphere σ b = 0, σ f = ε 0V0 R ; on the southern hemisphere σ b = − ε 0 χ eV0 R
, so σ f = εV0 R ) . The potential of a uniform charge sphere is
σ tot ( 4π R 2 ) ε 0V0 R 2
Qtot
R
V0 =
=
=
= V0 .

4πε 0 r
4πε 0 r
R ε 0r
r

(c) Since everything is consistent , and the boundary conditions (
V = V0 at r = R at ∞ ) are met , Prob. 4.35 guaratees that this the solution .
(d) Figure (b) works the way , but Fig. (a) does not : on the flat surface , P is
not perpendicular to , so we’d get bound charge on this surface , spoiling
the symmetry .
Problem 4.37
λ
sˆ Since the sphere is tiny , this is essentially constant , and hence
2πε 0 s
ε χ
P = 0 e Eext ( Ex. 4.7 )
1 + χe 3
Eext =

2

 ε χ  λ  d  λ 
 ε χ 

ˆ =  0 e ÷ λ ÷
F = ∫  0 e ÷
÷ 
÷sdr
 1 + χ e 3   2πε 0 s  ds  2πε 0 s 
 1 + χ e 3  2πε 0 s 


 1  −1  ˆ
 ÷ 2 ÷s ∫ dr
 s  s 

 − χ e  λ 2  1 4
 χ e  λ 2 R3
3
ˆ
π
R
s
=

sˆ.
=
÷ 2 ÷ 3

÷
3
 1 + χ e 3  4π ε 0  s 3
 3 + χ e  πε 0 s

Problem 4.38
1

The density of atoms is N = ( 4 3) π R 3 . The macroscopic field E is , where Eself is
the average field over the sphere due to the atom itself .



129

p = α Eelse ⇒ P = N α Eelse .

[Actually , it is the field at the center , not the average over the sphere , that
belongs here , but the two are in fact equal , as we found in Prob. 3.41. ] Now
1

α

(Eq. 3.105) , so Eself = − 4πε R 3 Eesle
0
E=−

So
P=


 Nα 
1 α
α 
Eesle + Eelse = 1 −
E = 1 −
÷Eesle .
3
3 ÷ esle
4πε 0 R
 4πε 0 R 
 3ε 0 



E = ε 0 χe E,
( 1 − Nα 3ε 0 )

And hence
χe =

Nα ε 0
.
( 1 − Nα 3ε 0 )


Nα  χ e 
1 + ÷ = χ e ,
3 




Solving for α : χ e − 3ε χ e = ε ⇒ ε
0
0
0
ε

χ



χ


3ε  ε − 1 
0
e
0
e
Or α = N ( 1 + χ 3) = N ( 3 + χ ) . But χ e = ε r − 1 , so α = 0  r ÷. qed
N  εr + 2 
e
e

Problem 4.39
For an ideal gas , N = Avagadro’s number / 22.4 liters
= ( 6.02 ×1023 )

( 22.4 ×10 ) = 2.7 ×10
−3

. Nα ε 0 = ( 2.7 × 1025 ) ( 4πε 0 ×10 −30 ) β ε 0 = 3.4 ×10 −4 β

25

, where is the number listed in Table 4.1 .

H : β = 0.667, Nα ε 0 = ( 3.4 ×10−4 ) ( 0.67 ) = 2.3 ×10 −4 , χ e = 2.5 × 10 −4 

He : β = 0.205, Na ε 0 = ( 3.4 ×10−4 ) ( 0.21) = 7.1×10−5 , χ e = 6.5 ×10 −4 
 agreement is
Ne :β = 0.396, Nα ε 0 = ( 3.4 ×10−4 ) ( 0.40 ) = 1.4 ×10−4 , χ e = 1.3 × 10−4 


Ar :β = 1.64, Nα ε 0 = ( 3.4 ×10−4 ) ( 1.64 ) = 5.6 ×10−4 , χ e = 5.2 ×10−4 

quite good .


130

Problem 4.40
(a)
u =



pE

ue

− pE
pE



− pE

− u kT

du

e − u kT


=

( kT )

2

pE
e − u kT  − ( u kT ) − 1
− pE
pE
−kTe −u kT
− pE

 e − pE kT − e pE kT  + ( pE kT ) e − pE kT + ( pE kT ) e pE kT  
 

= kT  

− pE kT
pE kT
e
−e


 e pE kT + e − pE kT 
 pE 
= kT − pE  pE kT
= kT − pE coth 
÷.
− pE kT 

−e
 kT 
e

− u

 pE  kT 
P = N ( p ) ; p = ( p cos θ ) Eˆ = ( P.E ) Eˆ E = − u Eˆ E ; P = N p
= N p coth 
.
÷−
pE
 kT  pE 


(

)

(

)

Let y ≡ P N ( p ) ; x ≡ pE kT . Then y = coth x − 1 x . As
 1 x x3
 1 x x3
x → 0, y =  + − + ... ÷− = − + ... → 0 , so the graph starts at the origin ,
 x 3 45
 x 3 45
with an initial slope of 1/3 . As x → ∞, y → coth ( ∞ ) = 1 , so the graph goes


asymptotically to y = 1 (see Figure ) .
P
pE
1
Np 2

x
,
y

x
,
P

E = ε 0 χ e E ⇒ P is proportional to
(b) For small
so N 3kT , or
3
3kT
p

E , and χ e =

Np 2
3ε 0 kT
molecules

0
−30

For water at 20 = 293K , p = 6.1×10 Cm; N = volume =

molecules moles gram
×
×
.
mole
gram volume

0.33 ×1029 ) ( 6.1×10−30 )
(
1
23
6
29
N = ( 6.0 ×10 ) ×  ÷× ( 10 ) = 0.33 × 10 ; χ e =
= 12.
 18 
( 3) ( 8.85 ×10−12 ) ( 1.38 ×10−23 ) ( 293)
2


131

Table 4.2 gives an experimental value of 79 , so it’s pretty far off .
For water vapor at 100o = 373K , treated as an ideal gas ,
volume
 373 
−2
3

= ( 22.4 ×10−3 ) × 
÷ = 2.85 ×10 m
mole
 293 

( 2.11×1025 ) ( 6.1×10−30 )
6.0 ×1023
25
N=
=
2.11
×
10
;
χ
=
= 5.7 ×10−3.
e
−2
−12
−23
2.85 × 10
( 3) ( 8.85 ×10 ) ( 1.38 ×10 ) ( 373)
2

Table 4.2 gives 5.9 ×10−3 , so this time the agreement is quite good .
Chapter 5
Manetostatics
Problem 5.1
Since v × B points upward , and that is also thr direction of the force , q must the

positive . To find R , in terms of a and d , use the Pythagorean theorem :

( R−d)

2

+ a 2 = R 2 ⇒ R 2 − 2 Rd + d 2 + a 2 = R 2 ⇒ R =

a2 + d 2
2d

The cyclotron formula then gives

(a
p = qBR = qB

2

+ d2)

2d

.

Problem 5.2
The general solution is ( Eq. 5.6 ) :
E
t + C3 ; z ( t ) = C2 cos ( ωt ) − C1 sin ( ωt ) + C4
B
( a ) y ( 0 ) = z ( 0 ) = 0; y&( 0 ) = E B; z&( 0 ) . Use these to determine C1 , C2 , C3 , and

y ( t ) = C1 cos ( ωt ) + C2 sin ( ωt ) +

C4 .

y ( 0 ) = 0 ⇒ C1 + C3 = 0; y&( 0 ) = ωC2 + E B ⇒ C2 = 0; z ( 0 ) = 0 ⇒ C2 + C4 = 0 ⇒ C4 = 0 ,

z&( 0 ) = 0 ⇒ C1 = 0 and hence also C3=0 . So y ( t ) = Et B; z ( t ) = 0 . Does this

make sense ? The magnetic force is q ( v × B ) = −q ( E B ) Bzˆ = −qE , which


Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×