Tải bản đầy đủ (.pdf) (18 trang)

Linh kiện ic741

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (91.96 KB, 18 trang )

HA17741/PS
General-Purpose Operational Amplifier
(Frequency Compensated)

Description
The HA17741/PS is an internal phase compensation high-performance operational amplifier, that is
appropriate for use in a wide range of applications in the test and control fields.

Features






High voltage gain
: 106 dB (Typ)
Wide output amplitude : ±13 V (Typ) (at RL ≥ 2 kΩ)
Shorted output protection
Adjustable offset voltage
Internal phase compensation

Ordering Information
Application

Type No.

Package

Industrial use


HA17741PS

DP-8

Commercial use

HA17741

Pin Arrangement

Offset
Null

1

Vin(−)

2

Vin(+)

3

VEE

4

8

NC




7

VCC

+

6

Vout

5

Offset
Null

(Top view)


HA17741/PS
Circuit Structure
VCC

Vin(+)
Vin(−)

Vout
To VCC


To VCC

VEE
1 Pin

5 Pin

Offset Null

Absolute Maximum Ratings (Ta = 25°C)
Ratings
Item

Symbol

HA17741PS

HA17741

Unit

Power-supply voltage

VCC

+18

+18


V

VEE

–18

–18

V

Input voltage

Vin

±15

±15

V

Differential input voltage

Vin(diff)

±30

±30

V


Allowable power dissipation

PT

670 *

670 *

mW

Operating temperature

Topr

–20 to +75

–20 to +75

°C

Storage temperature

Tstg

–55 to +125

–55 to +125

°C


Note: These are the allowable values up to Ta = 45°C. Derate by 8.3 mW/°C above that temperature.

2


HA17741/PS
Electrical Characteristics
Electrical Characteristics-1 (VCC = –VEE = 15 V, Ta = 25°C)
Item

Symbol

Min

Typ

Max

Unit

Test Condition

Input offset voltage

VIO



1.0


6.0

mV

RS ≤ 10 kΩ

Input offset current

I IO



18

200

nA

Input bias current

I IB



75

500

nA


Power-supply

∆VIO/∆VCC



30

150

µV/V

RS ≤ 10 kΩ

rejection ratio

∆VIO/∆VEE



30

150

µV/V

RS ≤ 10 kΩ

Voltage gain


AVD

86

106



dB

RL ≥ 2 kΩ, Vout = ±10 V

Common-mode
rejection ratio

CMR

70

90



dB

RS ≤ 10 kΩ

Common-mode input
voltage range


VCM

±12

±13



V

RS ≤ 10 kΩ

Maximum output

VOP-P

±12

±14



V

RL ≥ 10 kΩ

±10

±13




V

RL ≥ 2 kΩ

voltage amplitude
Power dissipation

Pd



65

100

mW

No load

Slew rate

SR



1.0




V/µs

RL ≥ 2 kΩ

Rise time

tr



0.3



µs

Vin = 20 mV, RL = 2 kΩ,

Overshoot

Vover



5.0



%


CL = 100 pF

Input resistance

Rin

0.3

1.0



MΩ

Electrical Characteristics-2 (VCC = –VEE = 15 V, Ta = –20 to +75°C)
Item

Symbol

Min

Typ

Max

Unit

Test Condition


Input offset voltage

VIO





9.0

mV

RS ≤ 10 kΩ

Input offset current

I IO





400

nA

Input bias current

I IB






1,100

nA

Voltage gain

AVD

80





dB

RL ≥ 2 kΩ, Vout = ±10 V

Maximum output
voltage amplitude

VOP-P

±10






V

RL ≥ 2 kΩ

3


HA17741/PS
IC Operational Amplifier Application Examples
Multivibrator
A multivibrator is a square wave generator that uses an RC circuit charge/discharge operation to generate
the waveform. Multivibrators are widely used as the square wave source in such applications as power
supplies and electronic switches.
Multivibrators are classified into three types, astable multivibrators, which have no stable states,
monostable multivibrators, which have one stable state, and bistable multivibrators, which have two stable
states.
1. Astable Multivibrator
R3
Vin(−)



VCC
Vout

Vin(+)
C1


+
VEE

R1
RL
R2

Figure 1 Astable Multivibrator Operating Circuit

Vin(+) 0

Vin(−) 0

Vertical:
5 V/div
Horizontal: 2 ms/div
Vout 0

Circuit constants
R1 = 8 kΩ, R2 = 4 kΩ
R3 = 100 kΩ, C1 = 0.1 µF
RL = ∞
VCC = 15 V, VEE = −15 V

Figure 2 HA17741 Astable Multivibrator Operating Waveform

4



HA17741/PS
2. Monostable Multivibrator
R3
C1

VCC


Vout

Input
+

0

VEE

C2

RL
R2

R1

Figure 3 Monostable Multivibrator Operating Circuit

Trigger input 0
Vin(+) 0
Vin(−) 0


Vertical:
Horizontal:
Circuit constants
R1 = 10 kΩ, R2 = 2 kΩ
R3 = 40 kΩ, C1 = 0.47 µF
C2 = 0.0068 µF
RL = ∞
VCC = 15 V, VEE = −15 V

Vout 0

Figure 4 HA17741 Monostable Multivibrator Operating Waveform
3. Bistable Multivibrator
Vin(−)

VCC



Vout

Vin(+)
+

VEE

Input
0
C


R2

R1

RL

Figure 5 Bistable Multivibrator Operating Circuit

5


HA17741/PS

Trigger input 0
Vin(+) 0
Vertical:
5 V/div
Horizontal: 2 ms/div
Circuit constants
R1 = 10 kΩ, R2 = 2 kΩ
C = 0.0068 µF
RL = ∞
VCC = 15 V, VEE = −15 V

Vout 0

Figure 6 HA17741 Bistable Multivibrator Operating Waveform
Wien Bridge Sine Wave Oscillator
1S2074 H
R4

470 kΩ

R3 1 MΩ

C3

2SK16 H

5.1 kΩ
RS


500 Ω

Rin

Vout

+

R2

C2

C1

50 kΩ
RL

R1


Figure 7 Wien Bridge Sine Wave Oscillator
30 k
VOP-P = 2 V

Oscillator Frequency f (Hz)

10 k

3k

VOP-P = 20 V

VCC = 15 V,
VEE = −15 V
C1 = C2/10
R1 = 110 kΩ,
R2 = 11 kΩ

1k

300
100
30

10
30 p

100 p


300 p

1,000 p 3,000 p

0.01 µ 0.03 µ

0.1 µ

C1 Capacitance (F)

Figure 8 HA17741 Wien Bridge Sine Wave Oscillator f–C Characteristics

6


HA17741/PS
Vertical:
5 V/div
Horizontal: 0.5 ms/div
Test circuit condition
VCC = 15 V, VEE = −15 V
R1 = 110 kΩ, R2 = 11 kΩ
C1 = 0.0015 µF, C2 = 0.015 µF
Test results
f = 929.7 Hz, T.H.P = 0.06%

Figure 9 HA17741 Wien Bridge Sine Wave Oscillator Operating Waveform
Quadrature Oscillator
Sin out
CT2


CT1


V4

Cos out

RT2
A1

R11

D1

R22



+

A2
+

RT1

R44

C1
R1

D2

R33
V8

Figure 10 Quadrature Sine Wave Oscillator
Figure 10 shows the circuit diagram for a quadrature sine wave oscillator. This circuit consists of two
integrators and a limiter circuit, and provides not only a sine wave output, but also a cosine output, that is,
it also supplies the waveform delayed by 90°. The output amplitude is essentially determined by the limiter
circuit.

7


HA17741/PS
30

VCC = −VEE = 15 V
RT1 = 150 kΩ, RT2 = 150 kΩ
R1 = 151.2 kΩ
R11 = 15 kΩ, R22 = 10 kΩ
R33 = 15 kΩ, R44 = 10 kΩ
CT1, CT2, C1 → 1,000 pF
Use a Mylar capacitor.
With VOP-P = 21 VP-P and
R22 = R44 = 10 kΩ
the frequency of the sine
wave will be under 10 kHz.

CT1 = 102 pF

CT2 = 99 pF
C1 = 106 pF

10

3

1.0

Sin out
Cos out

0.3

0.1

0.03

0.01
100 p

0.01 µ

1,000 p

0.1 µ

CT1, CT2, C1 (F)

Figure 11 HA17741 Quadrature Sine Wave Oscillator

f−CT1, CT2, C1 Characteristics
Vertical:
5 V/div
Horizontal: 0.2 ms/div
Circuit constants
CT1 = 1000 pF (990), CT2 = 1000 pF (990)
RT1 = 150 kΩ, RT2 = 150 kΩ
C1 = 1000 pF (990), R1 = 160 kΩ
R11 = 15 kΩ, R22 = 10 kΩ
R33 = 16 V, R44 = 10 kΩ
VCC = 15 V, VEE = −15 V

← Sin out
0
← Cos out

Figure 12 Sine and Cosine Output Waveforms
Triangular Wave Generator
C

Integrator
D1

R3

A1

D2

R4


Vout1

+
R1

R2

VA
+
Vout2

A2

R1/R2

Hysteresis comparator

Figure 13 Triangular Wave Generator Operating Circuit

8


HA17741/PS

0
Vout1

Vout2


0
Vertical:
10 V/div
Horizontal: 10 ms/div

VA

Circuit constants
VCC = 15 V, VEE = −15 V
R1 = 10 kΩ, R2 = 20 kΩ
R3 = 100 kΩ, R4 = 200 kΩ
C = 0.1 µF

0

Figure 14 HA17741 Triangular Wave Generator Operating Waveform
Sawtooth Waveform Generator
R3
R2
Vin

VA

6 kΩ
+

VB

6 kΩ
R4

3 kΩ



R5
2.7 kΩ

R1

VC

+

Vout

I


R6
2.7 kΩ

R7
2.7 kΩ

2SC1706 H
C1

Q1

R8

2.7 kΩ

5 kΩ
VR

Figure 15 Sawtooth Waveform Generator

VR
0

Vertical:
5 V/div
Horizontal: 2 ms/div

0

Circuit constants
VCC = 15 V, VEE = −15 V
R1 = 100 kΩ, C1 = 0.1 µF
Vin = 10 V

Vout

Figure 16 HA17741 Sawtooth Waveform Generator Operating Waveform

9


HA17741/PS
Characteristic Curves

Input Offset Current vs.
Power-Supply Voltage Characteristics

Voltage Offset Adjustment Circuit

20

Input offset current IIO (nA)

R2

R1
2
5 6
3

R1

1

R

R2
a = 0%

16

12

8


4

a = 100%
VEE

0

±3

±6

±9

±12

±15

±18

Power-supply voltage VCC, VEE (V)

Power Dissipation vs.
Power-Supply Voltage Characteristics

Voltage Gain vs.
Power-Supply Voltage Characteristics

100


120

80

Voltage gain AVD (dB)

Power dissipation Pd (mW)

No load

60

40

20

0

±3

±6

±9

±12

±15

±18


Power-supply voltage VCC, VEE (V)

10

110

100

90
RL ≥ 2 kΩ

80

70

±3

±6

±9

±12

±15

±18

Power-supply voltage VCC, VEE (V)



HA17741/PS
Maximum Output Voltage Amplitude vs.
Power-Supply Voltage Characteristics
5

Input offset voltage VIO (mV)

RL ≥ 2 kΩ

16

O

8

PP

+V

O

PP

12

−V

Maximum output voltage amplitude
±VOP-P (V)


20

4

0

Input Offset Voltage vs.
Ambient Temperature Characteristics

±3

±6

±9

±12

±15

VCC = +15 V
VEE = −15 V
RS ≤ 10 kΩ

4

3

2

1


0
−20

±18

0

Power-supply voltage VCC, VEE (V)

Input Offset Current vs.
Ambient Temperature Characteristics

60

80

120

Input bias current IIB (nA)

Input offset current IIO (nA)

40

Input Bias Current vs.
Ambient Temperature Characteristics

20


16

12

8
VCC = +15 V
VEE = −15 V
4

0
−20

20

Ambient temperature Ta (°C)

0

20

40

60

Ambient temperature Ta (°C)

80

100
80

60
40
VCC = +15 V
VEE = −15 V

20
0
−20

0

20

40

60

80

Ambient temperature Ta (°C)

11


HA17741/PS
Power Dissipation vs.
Ambient Temperature Characteristics

Voltage Gain vs.
Ambient Temperature Characteristics

120

VCC = +15 V
VEE = −15 V
No load

80

Voltage gain AVD (dB)

Power dissipation Pd (mW)

90

70

60

50

40
−20

0

20

40

60


110

100

90

80

VCC = +15 V
VEE = −15 V
RL ≥ 2 kΩ

70
−20

80

Ambient temperature Ta (°C)

Maximum Output Voltage Amplitude vs.
Ambient Temperature Characteristics

12
8
4
0
VCC = +15 V
VEE = −15 V
RL = 10 kΩ


−4
−8

0

20

40

60

80

Ambient temperature Ta (°C)

Output shorted current IOS (mA)

Maximum output voltage amplitude
VOP-P (V)

40

60

80

20

−12


12

20

Output Shorted Current vs.
Ambient Temperature Characteristics

16

−20

0

Ambient temperature Ta (°C)

VO = VCC
VCC = +15 V
VEE = −15 V

16

12

8

4

0
−20


0

20

40

60

Ambient temperature Ta (°C)

80


HA17741/PS
Offset Adjustment
Characteristics

16

1.6

12

1.2

Output voltage Vout (V)

Maximum output voltage amplitude
VOP-P (V)


Maximum Output Voltage Amplitude vs.
Load Resistance Characteristics

8
4
0
VCC = +15 V
VEE = −15 V

−4
−8

R = 10 kΩ

0.4

R = 5 kΩ

0
−0.4

R = 20 kΩ

−0.8

−1.6

200


500 1 k

2k

5 k 10 k

0

20

40

60

80

100

Load resistance RL (Ω)

Resistor position a (%)

Maximum Output Voltage Amplitude vs.
Frequency Characteristics

Input Resistance vs.
Frequency Characteristics

28


1.4

24

1.2

Input resistance Rin (MΩ)

Maximum output voltage amplitude
VOP-P (V)

0.8

−1.2

−12

20

16

12

8

VCC = +15 V, VEE = −15 V
R1 = 51 Ω, R2 = 5.1 kΩ
See the voltage offset
adjustment circuit diagram.


VCC = +15 V
VEE = −15 V
RL = 10 kΩ

4

1.0

0.8

0.6

0.4

0.2

0
100 200

500

1k

2k

5k

10 k

20 k


Frequency f (Hz)

50 k 100 k 200 k

500 k

0

100 200

500

1k

2k

5k

10 k

20 k

50 k 100 k 200 k

500 k

1M

Frequency f (Hz)


13


HA17741/PS
Voltage Gain vs
Frequency Characteristics

Phase vs.
Frequency Characteristics
40

120

VCC = +15 V
VEE = −15 V
Open loop

−40
−80
−120
−160
−200

80
60
40
20
0
−20

40

50

100

200

500

1k

2k

5k

10 k 20 k

50 k 100 k 200 k

500 k 1 M

2M

10 20

50

Voltage Gain and Phase vs.
Frequency Characteristics (1)

120

0

80
60

−60

φ

40
−120

AVD

20

−180

0
−20

10 20

50 100 200 500

1k

2k


5 k 10 k 20 k

50 k 100 k 200 k 500 k 1 M 2 M

Voltage gain AVD (dB)

100

50 k 100 k 200 k 500 k 1 M 2 M

VCC = +15 V
VEE = −15 V
Closed loop gain = 40 dB

100

φ

60

−60

40
−120
20

AVD
−180


0
−20

10 20

50 100 200 500

1k 2k

5 k 10 k 20 k

50 k 100 k 200 k 500 k 1 M 2 M

Frequency f (Hz)

14

0

80

−40

Frequency f (Hz)

5 k 10 k 20 k

Voltage Gain and Phase vs.
Frequency Characteristics (2)


Phase φ (deg.)

Voltage gain AVD (dB)

VCC = +15 V
VEE = −15 V
Closed loop gain = 60 dB

500 1 k 2 k

Frequency f (Hz)

Frequency f (Hz)

120

100 200

Phase φ (deg.)

−240

VCC = +15 V
VEE = −15 V
Open loop

100

Voltage gain AVD (dB)


Phase φ (deg.)

0


HA17741/PS
Voltage Gain and Phase vs.
Frequency Characteristics (3)

Voltage Gain and Phase vs.
Frequency Characteristics (4)

0

80
60
40

−60

VCC = +15 V
VEE = −15 V
Closed loop gain = 20 dB

−120

AVD
20

−180


0
−20

100

φ

0

80

VCC = +15 V
VEE = −15 V
Closed loop gain = 0 dB

60
40

−60

−120

20

AVD

0

Phase φ (deg.)


φ

Voltage gain AVD (dB)

120

100

Phase φ (deg.)

−180

−20

−40
10 20

50 100 200 500

−40
1k

2k

5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M

10 20

50 100 200 500


Frequency f (Hz)

1k

2k

5 k 10 k 20 k 50 k 100 k 200 k 500 k 1 M 2 M

Frequency f (Hz)

Impulse Response
Characteristics Test Circuit

Rise time vs.
Power-Supply Voltage Characteristics
0.8
Vin = 20 mV
RL = 2 kΩ
CL = 100 pF

2

Vout

6
3

CL


Vin

RL

Vout =
90%

V2

Vout

V2
× 100 (%)
V1

0.6

Rise time tr (µs)

Voltage gain AVD (dB)

120

0.4

0.2

V1
0
±3


10%
tr

±6

±9

±12

±15

±18

Power-supply voltage VCC, VEE (V)

15


HA17741/PS
Impulse Response
Characteristics

Overshoot vs.
Power-Supply Voltage Characteristics
40
Vin = 20 mV
RL = 2 kΩ
CL = 100 pF
30


20

10

0
±3

±6

±9

±12

±15

±18

Power-supply voltage VCC, VEE (V)

16

Output voltage Vout (mV)

Overshoot Vover (%)

40

VCC = +15 V
VEE = −15 V

RL = 2 kΩ
CL = 100 pF
Vin = 20 mV

30

20

10

0

0

0.4

0.8

Time t (µs)

1.2

1.6


HA17741/PS
Package Dimensions
Unit: mm

6.3

7.4 Max

9.6
10.6 Max
8
5

4
1.3

0.1 Min

1.27 Max

2.54 ± 0.25

7.62

2.54 Min 5.06 Max

1
0.89

0.48 ± 0.10

+ 0.10

0.25 – 0.05
0° – 15°
Hitachi Code

JEDEC
EIAJ
Mass (reference value)

DP-8
Conforms
Conforms
0.54 g

17


HA17741/PS
Cautions
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other

consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.

Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

URL

NorthAmerica
: http:semiconductor.hitachi.com/
Europe
: />Asia (Singapore)
: />Asia (Taiwan)
: />Asia (HongKong) : />Japan
: />For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223

Hitachi Europe GmbH
Electronic components Group

Dornacher Straβe 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd.
16 Collyer Quay #20-00
Hitachi Tower
Singapore 049318
Tel: 535-2100
Fax: 535-1533
Hitachi Asia Ltd.
Taipei Branch Office
3F, Hung Kuo Building. No.167,
Tun-Hwa North Road, Taipei (105)
Tel: <886> (2) 2718-3666
Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower, World Finance Centre,

Harbour City, Canton Road, Tsim Sha Tsui,
Kowloon, Hong Kong
Tel: <852> (2) 735 9218
Fax: <852> (2) 730 0281
Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

18



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×