Tải bản đầy đủ (.doc) (3 trang)

ĐỀ ÔN THI TN 2009

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (129.61 KB, 3 trang )

¤n Thi tốt N GHIỆP THPT . N¨m häc : 2008 -
2009
ĐỀ 1
( Thời gian làm bài 150 phút )
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )

Câu I ( 3,0 điểm )
Cho hàm số
3 2
y x 3x 1= − + −
có đồ thị (C)
a. Khảo sát sự biến thiên và vẽ đồ thị (C).
b. Dùng đồ thị (C) , xác định k để phương trình sau có đúng 3 nghiệm phân biệt

3 2
x 3x k 0− + =
.
Câu II ( 3,0 điểm )
a. Giải phương trình
3x 4
2x 2
3 9


=
b. Cho hàm số
2
1
y
sin x
=


. Tìm ngun hàm F(x ) của hàm số , biết rằng đồ thị của hàm số
F(x) đi qua điểm M(
6
π
; 0) .
c. Tìm giá trị nhỏ nhất của hàm số
1
y x 2
x
= + +
với x > 0 .
Câu III ( 1,0 điểm )
Cho hình chóp tam giác đều có cạnh đáy bằng
6
và đường cao h = 1 . Hãy tính diện tích
của mặt cầu ngoại tiếp hình chóp .
II . PHẦN RIÊNG ( 3 điểm ) Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
Trong khơng gian với hệ tọa độ Oxyz , cho đường thẳng (d) :
x 2 y z 3
1 2 2
+ +
= =

và mặt phẳng
(P) :
2x y z 5 0+ − − =

a. Chứng minh rằng (d) cắt (P) tại A . Tìm tọa độ điểm A .
b. Viết phương trình đường thẳng (


) đi qua A , nằm trong (P) và vng góc với (d) .
Câu V.a ( 1,0 điểm ) : Tính diện tích hình phẳng giới hạn bởi các đường :
1
y ln x,x ,x e
e
= = =
và trục hồnh .
¤n Thi tốt N GHIỆP THPT . N¨m häc : 2008 -
2009
HƯỚNG DẪN
I . PHẦN CHUNG CHO TẤT CẢ THÍ SINH ( 7 điểm )
Câu I ( 3,0 điểm )
a. (2d)
b. (1đ) pt
3 2
x 3x 1 k 1⇔ − + − = −

Đây là pt hồnh độ điểm chung của (C) và đường thẳng
(d) : y k 1= −
Căn cứ vào đồ thị , ta có :
Phương trình có ba nghiệm phân biệt
1 k 1 3 0 k 4
⇔ − < − < ⇔ < <

Câu II ( 3,0 điểm )
a. ( 1đ )
3x 4 3x 4
2x 2 2(2x 2)
2 2

x 1
8
3 9 3 3 3x 4 4x 4 x
7
(3x 4) (4x 4)
− −
− −



= ⇔ = ⇔ − = − ⇔ ⇔ =

− = −


b. (1đ) Vì F(x) =
cotx + C−
. Theo đề :
F( ) 0 cot C 0 C 3 F(x) 3 cot x
6 6
π π
= ⇔ − + = ⇔ = ⇒ = −
c. (1đ) Với x > 0 . Áp dụng bất đẳng thức Cơsi :

1
x 2
x
+ ≥
. Dấu “=” xảy ra khi
x 0

2
1
x x 1 x 1
x
>
= ⇔ = → =


y 2 2 4⇒ ≥ + =
. Vậy :
(0; )
Miny y(1) 4
+∞
= =
Câu III ( 1,0 điểm )
Gọi hình chóp đã cho là S.ABC và O là tâm đường tròn ngoại tiếp của đáy ABC .
Khi đó : SO là trục đường tròn đáy (ABC) . Suy ra : SO

(ABC) .
Trong mp(SAO) dựng đường trung trực của cạnh SA , cắt SO tại I .
x
−∞
0 2
+∞
y



0 + 0


y
+∞
3

1−

−∞
¤n Thi tốt N GHIỆP THPT . N¨m häc : 2008 -
2009
Khi đó : I là tâm của mặt cầu ngoại tiếp S.ABC
Tính bán kính R = SI .
Ta có : Tứ giác AJIO nội tiếp đường tròn nên :
SJ.SA SI.SO
=

SI =
SJ.SA
SO
=
2
SA
2.SO

SAO vuông tại O . Do đó : SA =
2 2
SO OA+
=
6
2
1

3
+
=
3

SI =
3
2.1
=
3
2
Diện tích mặt cầu :
2
S 4 R 9= π = π
II . PHẦN RIÊNG ( 3 điểm )
1. Theo chương trình chuẩn :
Câu IV.a ( 2,0 điểm ) :
a. (0,5 đ) A(5;6;

9)
b. (1,5đ)
+ Vectơ chỉ phương của đường thẳng (d) :
u (1; 2;2)
d
= −
r
+ Vectơ pháp tuyến của mặt phẳng (P) :
n ((2;1; 1)
P
= −

r
+ Vectơ chỉ phương của đường thẳng (

) :
u [u ;n ] (0;1;1)
d P
= =

r r r
+ Phương trình của đường thẳng (

) :
x 5
y 6 t (t )
z 9 t

=

= + ∈


= − +

¡
Câu V.a ( 1,0 điểm ) :
+ Diện tích :
1 e
S ln xdx ln xdx
1/e 1
= − +

∫ ∫
+ Đặt :
1
u ln x,dv dx du dx,v x
x
= = ⇒ = =
+
ln xdx x ln x dx x(ln x 1) C= − = − +
∫ ∫
+
1
1 e
S x(ln x 1) x(ln x 1) 2(1 )
1/e 1
e
= − − + − = −

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×