MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Decide whether the limit exists. If it exists, find its value.
1)
1) _______
Find
f(x) and
A) -5; -2
f(x).
B) -7; -5
C) -7; -2
D) -2; -7
2)
2) _______
Find
f(x) and
A) 3; -1
f(x).
B) 3; 1
C) - 3; -1
D) -1; 3
3)
3) _______
Find
f(x).
A) Does not exist
B) 2
C) 1
D) 0
4)
4) _______
Find
f(x).
A) Does not exist
B) 1
C) -1
D) 0
5)
5) _______
Find
f(x).
A) -1
B) 0
C) -2
D) Does not exist
6)
6) _______
Find
f(x).
B) -2
A) 2
C) Does not exist
D) 0
7)
7) _______
Find
f(x).
A)
B) Does not exist
C) 0
D) 1
8)
8) _______
Find
f(x).
B) -1
A) 0
9)
Find
f(x).
C) 1
D) Does not exist
9)
_______
A) Does not exist
B) 0
C) -2
D) -1
10)
10) ______
Find
A) -1
f(x).
B) Does not exist
C) 0
Use the graph to determine whether each statement is true or false.
11)
A) True
11) ______
B) False
12)
12) ______
A) False
13)
D) -2
B) True
13)
___
___
A) False
B) True
14)
14) ______
f(x) = 2
A) True
B) False
15)
15) ______
A) True
16)
B) False
16)
______
A) True
B) False
17)
17) ______
A) True
B) False
18)
18) ______
A) True
B) False
19)
19) ______
A) True
20)
B) False
20)
___
___
A) False
B) True
Graph the function and then find the specified limit. When necessary, state that the limit does not exist.
21)
f(x) =
;
f(x)
A)
B)
f(x) = 3
C)
f(x) = 0
D)
f(x) = 7
21) ______
f(x) = 2
22)
22) ______
f(x) =
;
A)
f(x)
B)
f(x) = 0
C)
f(x) = 5
D)
f(x) = 5
f(x) = -5
23)
23) ______
f(x) =
;
f(x)
A)
B)
f(x) = 0
C)
D)
f(x) = 0
24)
f(x) = -4
f(x) does not exist
;
f(x)
f(x) does not exist
24)
___
___
A)
B)
f(x) = -4
C)
f(x) = 4
D)
f(x) = 0
25)
f(x) = 0
25) ______
y = x2 - 5;
f(x)
A)
B)
f(x) = -5
f(x) = 5
C)
D)
f(x) = -5
f(x) = 5
26)
26) ______
f(x) =
;
A)
f(x) = 5
f(x)
B)
f(x
)=
5
C)
D)
f(x) = 1
f(x) = -3
27)
27) ______
y(x) =
;
A)
f(x) does not exist
f(x)
B)
f(x
)=
9
C)
D)
f(x) = -4
f(x) does not exist
28)
28) ______
f(x) =
;
A)
f(x) = 4
f(x)
B)
f(x
)=
3
C)
D)
f(x) does not exist
29)
f(x) = 3
29) ______
y=
- 2;
f(x)
A)
f(x) = -2
B)
f(x
)=
2
C)
D)
f(x) = 0
f(x) = 0
Solve the problem.
30) Given is a graph of a portion of the postage function, which depicts the cost (in cents) of mailing
a letter, p, versus the weight (in ounces) of the letter, x. Find each limit, if it exists:
p(x),
p(x),
p(x)
30) ______
A) 77; 99; 77
C) 99; 77; does not exist
B) 77; 99; does not exist
D) 77; 77; 77
31) Given is a graph of a portion of the postage function, which depicts the cost (in cents) of mailing
a letter, p, versus the weight (in ounces) of the letter, x. What is the postage for a letter weighing
31) ______
Is the postage function continuous?
A) 55 cents; 55 cents; 77 cents; no
C) 55 cents; 77 cents; 77 cents; no
B) 33 cents; 55 cents; 77 cents; no
D) 55 cents; 55 cents; 77 cents; yes
32) Suppose that the cost, p, of shipping a 3-pound parcel depends on the distance shipped, x,
according to the function p(x) depicted in the graph. Is p continuous at
at
32) ______
at
at
A) No; no; yes; no
C) Yes; no; no; no
B) Yes; yes; yes; no
D) Yes; no; yes; no
33) Suppose that the cost, p, of shipping a 3-pound parcel depends on the distance shipped, x,
according to the function p(x) depicted in the graph. Find each limit, if it exists:
p(x),
p(x),
p(x)
33)
______
A) 5; 10; 15
C) 5; does not exist; does not exist
B) 5; does not exist; 15
D) 5; 5; 15
34) Suppose that the cost, C, of producing x units of a product can be illustrated by the given graph.
Find each limit, if it exists:
p(x),
p(x),
p(x)
A) 200; 300; does not exist
C) 200; 300; 200
B) 200; 200; 200
D) 200; does not exist; does not exist
35) Suppose that the cost, C, of producing x units of a product can be illustrated by the given graph.
Is
34) ______
35) ______
continuous at
A) Yes; yes; yes
B) No; no; no
C) Yes; no; no
D) Yes; no; yes
36) Suppose that the unit price, p, for x units of a product can be illustrated by the given graph. Find
each limit, if it exists:
p(x),
p(x),
p(x),
p(x)
36)
______
A) 8; 8; does not exist; 8
C) 10; 8; does not exist; 8
B) 8; 8; 8; 8
D) 10; 8; 8; 8
37) Suppose that the unit price, p, for x units of a product can be illustrated by the given graph. Is p
37) ______
continuous at
A) No; no; no
B) No; yes; no
C) Yes; no; yes
D) No; yes; yes
38) Consider the learning curve defined in the graph. Depicted is the accuracy, p, expressed as a
percentage, in performing a series of short tasks versus the accumulated amount of time spent
practicing the tasks, t. Is
A) Yes; yes; yes
continuous at
B) Yes; no; yes
at
at
C) Yes; no; no
D) No; no; no
39) Consider the learning curve defined in the graph. Depicted is the accuracy, p, expressed as a
percentage, in performing a series of short tasks versus the accumulated amount of time spent
practicing the tasks, t. Find each limit, if it exists:
p(x),
p(x),
p(x)
38) ______
39)
______
A) 40; 100; 100
C) 100; 100; 100
B) 40; 100; does not exist
D) 40; 40; 40
Find the limit, if it exists.
40)
(8x + 8)
A) -40
40) ______
B) 16
C) 8
D) 56
41)
41) ______
(
A) 0
+ 8x - 2)
(
A) 0
- 5)
B) Does not exist
C) -18
D) 18
42)
42) ______
B) Does not exist
C) -5
D) 5
43)
43) ______
( +5
- 7x + 1)
A) Does not exist
B) 0
C) 15
D) 29
44)
44) ______
(2
A) 63
-2
+4
+
- 5)
B) -1
C) 127
D) 31
45)
45) ______
A) Does not exist
B) 2
C) 4
D) 0
46)
46) ______
A) 14
B) 0
C) 1
D) Does not exist
In the exercise below, the initial substitution of x = a yields the form 0/0. Look for ways to simplify the function
algebraically, or use a table and/or graph to determine the limit. When necessary, state that the limit does not exist.
47)
47) ______
A) Does not exist
B) 1
C) 7
D) 14
48)
48) ______
A) -16
B) -8
C) 1
D) Does not exist
49)
49) ______
A) - 3
B) Does not exist
50)
C) 4
D) 0
50) ______
A)
-
B)
C)
D)
-
51)
51) ______
A) -3
B)
C)
D) 3
-
52)
52) ______
A) - 6
B) -12
C) 12
D) 6
53)
53) ______
A) -8
B) 8
C) -4
D) 16
54)
54) ______
A) 0
Find the limit, if it exists.
55)
-2
A) 2
B)
C) 7
D)
55) ______
B) 0
C) -2
D) Does not exist
56)
56) ______
A) ±14
B) Does not exist
C) 196
D) 14
57)
57) ______
A) -1
B) Does not exist
C) 1
D) 0
58)
58) ______
A) Does not exist
B) ±
C) 93.5
D)
59)
59) ______
A) 0
B) Does not exist
C) 3.5
Determine whether the function shown is continuous over the interval (-5, 5).
60)
D) 7
60)
A) Yes
___
___
B) No
61)
61) ______
A) Yes
B) No
62)
62) ______
A) Yes
63)
B) No
63)
A) Yes
___
___
B) No
64)
64) ______
A) Yes
B) No
65)
65) ______
A) Yes
66)
B) No
66)
A) Yes
___
___
B) No
67)
67) ______
A) Yes
B) No
68)
68) ______
A) Yes
Use the graph to answer the question.
69) Is f continuous at x = 1?
B) No
69)
A) Yes
___
___
B) No
70) Is f continuous at x = 1?
A) No
70) ______
B) Yes
71) Is f continuous at x = -1?
A) Yes
72) Is f continuous at x = 3?
71) ______
B) No
72)
A) Yes
___
___
B) No
73) Is f continuous at x = 0?
A) Yes
73) ______
B) No
74) Is f continuous at x = 4?
A) No
75) Is f continuous at x = 0?
74) ______
B) Yes
75)
___
___
A) Yes
B) No
76) Is f continuous at x = -1?
76) ______
A) Yes
B) No
77) Is f continuous at x = 2?
77) ______
A) Yes
B) No
Evaluate or determine that the limit does not exist for each of the limits
and
for the given function f and number d.
78)
78) ______
f(x) =
; d = -1