MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Find the average velocity of the function over the given interval.
1) y = x2 + 8x, [5, 8]
128
B)
3
A) 16
1)
C) 21
63
D)
8
2) y = 2x3 + 5x2 + 7, [-5, -1]
A) - 10
3) y =
C) 32
D) - 128
2x, [2, 8]
3)
A) 7
4) y =
2)
5
B)
2
B)
1
3
C) -
3
10
D) 2
3
, [4, 7]
x-2
A) -
4)
3
10
5) y = 4x2 , 0,
B) 7
C)
1
3
D) 2
7
4
5)
A) 7
1
3
C) 2
1
B) 6
1
C)
2
B)
D) -
3
10
6) y = -3x2 - x, [5, 6]
A) -34
7) h(t) = sin (2t), 0,
A)
7)
B)
8) g(t) = 3 + tan t, 8
5
D) -2
π
4
2
π
A) -
6)
π
4
C)
4
π
D) -
4
π
π π
,
4 4
8)
B)
4
π
C) 0
1
D) -
4
π
Use the table to find the instantaneous velocity of y at the specified value of x.
9) x = 1.
x y
0 0
0.2 0.02
0.4 0.08
0.6 0.18
0.8 0.32
1.0 0.5
1.2 0.72
1.4 0.98
A) 2
B) 1.5
C) 0.5
9)
D) 1
10) x = 1.
x y
0 0
0.2 0.01
0.4 0.04
0.6 0.09
0.8 0.16
1.0 0.25
1.2 0.36
1.4 0.49
A) 1.5
10)
B) 0.5
C) 2
D) 1
11) x = 1.
x y
0 0
0.2 0.12
0.4 0.48
0.6 1.08
0.8 1.92
1.0 3
1.2 4.32
1.4 5.88
A) 6
11)
B) 2
C) 8
2
D) 4
12) x = 2.
12)
x y
0 10
0.5 38
1.0 58
1.5 70
2.0 74
2.5 70
3.0 58
3.5 38
4.0 10
A) -8
B) 4
C) 0
D) 8
13) x = 1.
13)
x
y
0.900 -0.05263
0.990 -0.00503
0.999 -0.0005
1.000 0.0000
1.001 0.0005
1.010 0.00498
1.100 0.04762
A) 0.5
B) 1
D) -0.5
C) 0
For the given position function, make a table of average velocities and make a conjecture about the instantaneous
velocity at the indicated time.
14) s(t) = t2 + 8t - 2 at t = 2
14)
t
s(t)
1.9
1.99
1.999
2.001
2.01
2.1
A)
t
1.9
1.99
1.999 2.001 2.01
2.1
; instantaneous velocity is 17.70
s(t) 16.692 17.592 17.689 17.710 17.808 18.789
B)
t 1.9
1.99 1.999 2.001 2.01 2.1
; instantaneous velocity is 5.40
s(t) 5.043 5.364 5.396 5.404 5.436 5.763
C)
t 1.9
1.99 1.999 2.001 2.01 2.1
; instantaneous velocity is ∞
s(t) 5.043 5.364 5.396 5.404 5.436 5.763
D)
t
1.9
1.99
1.999 2.001 2.01
2.1
; instantaneous velocity is 18.0
s(t) 16.810 17.880 17.988 18.012 18.120 19.210
3
15) s(t) = t2 - 5 at t = 0
t
s(t)
-0.1
15)
-0.01
-0.001
0.001
0.01
0.1
A)
t -0.1
s(t) -4.9900
-0.01
-4.9999
-0.001
-5.0000
0.001
0.01
0.1
; instantaneous velocity is -5.0
-5.0000 -4.9999 -4.9900
t -0.1
s(t) -2.9910
-0.01
-2.9999
-0.001
-3.0000
0.001
0.01
0.1
; instantaneous velocity is -3.0
-3.0000 -2.9999 -2.9910
t -0.1
s(t) -1.4970
-0.01
-1.4999
-0.001
-1.5000
0.001
0.01
0.1
; instantaneous velocity is -15.0
-1.5000 -1.4999 -1.4970
t -0.1
s(t) -1.4970
-0.01
-1.4999
-0.001
-1.5000
0.001
0.01
0.1
; instantaneous velocity is ∞
-1.5000 -1.4999 -1.4970
B)
C)
D)
Find the slope of the curve for the given value of x.
16) y = x2 + 5x, x = 4
16)
4
B) slope is 25
C) slope is -39
4
B) slope is 25
1
C) slope is
20
D) slope is -39
18) y = x3 - 5x, x = 1
A) slope is 1
B) slope is 3
C) slope is -2
D) slope is -3
19) y = x3 - 3x2 + 4, x = 3
A) slope is 0
B) slope is -9
C) slope is 1
D) slope is 9
20) y = 2 - x3 , x = -1
A) slope is -1
B) slope is 0
C) slope is -3
D) slope is 3
A) slope is 13
1
D) slope is
20
17) y = x2 + 11x - 15, x = 1
A) slope is 13
17)
18)
19)
20)
Solve the problem.
21) Given lim f(x) = Ll, lim f(x) = Lr, and Ll ≠ Lr, which of the following statements is true?
x→0 x→0 +
I.
lim f(x) = Ll
x→0
II.
lim f(x) = Lr
x→0
III. lim f(x) does not exist.
x→0
A) I
B) II
C) none
4
D) III
21)
22) Given
lim f(x) = Ll, lim f(x) = Lr , and Ll = Lr, which of the following statements is false?
x→0 x→0 +
I.
lim f(x) = Ll
x→0
II.
lim f(x) = Lr
x→0
22)
III. lim f(x) does not exist.
x→0
A) I
B) II
C) none
D) III
23) If lim f(x) = L, which of the following expressions are true?
x→0
I.
lim f(x) does not exist.
x→0 -
II.
lim f(x) does not exist.
x→0 +
III.
lim f(x) = L
x→0 -
IV.
lim f(x) = L
x→0 +
A) I and II only
B) III and IV only
C) I and IV only
23)
D) II and III only
24) What conditions, when present, are sufficient to conclude that a function f(x) has a limit as x
approaches some value of a?
A) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, and
these two limits are the same.
B) Either the limit of f(x) as x→a from the left exists or the limit of f(x) as x→a from the right
exists
C) The limit of f(x) as x→a from the left exists, the limit of f(x) as x→a from the right exists, and
at least one of these limits is the same as f(a).
D) f(a) exists, the limit of f(x) as x→a from the left exists, and the limit of f(x) as x→a from the
right exists.
5
24)
Use the graph to evaluate the limit.
25) lim f(x)
x→-1
25)
y
1
-6 -5 -4 -3 -2 -1
1
2
3
4
5
B) -
3
4
6 x
-1
A) ∞
C) -1
D)
3
4
26) lim f(x)
x→0
26)
y
4
3
2
1
-4
-3
-2
-1
1
2
3
4 x
-1
-2
-3
-4
A) 0
C) -1
B) 1
6
D) does not exist
27) lim f(x)
x→0
27)
6
y
5
4
3
2
1
-6 -5 -4 -3 -2 -1
-1
1
2
3
4
5
6 x
-2
-3
-4
-5
-6
A) -1
B) 1
C) does not exist
D) 0
28) lim f(x)
x→0
28)
12
y
10
8
6
4
2
-2
-1
1
2
3
4
5
x
-2
-4
A) 6
B) -1
C) 0
7
D) does not exist
29) lim f(x)
x→0
29)
y
4
3
2
1
-4
-3
-2
-1
1
2
3
4 x
-1
-2
-3
-4
A) ∞
B) -1
C) does not exist
D) 1
30) lim f(x)
x→0
30)
y
4
3
2
1
-4
-3
-2
-1
1
2
3
4 x
-1
-2
-3
-4
A) -1
B) ∞
C) 1
8
D) does not exist
31) lim f(x)
x→0
31)
y
4
3
2
1
-4
-3
-2
-1
1
2
3
4
x
-1
-2
-3
-4
B) -2
A) does not exist
C) 2
D) 0
32) lim f(x)
x→0
32)
y
4
3
2
1
-4
-3
-2
-1
1
2
3
4
x
-1
-2
-3
-4
A) -2
B) 0
C) 1
9
D) does not exist
33) lim f(x)
x→0
33)
y
4
3
2
1
-4
-3
-2
-1
1
2
3
x
4
-1
-2
-3
-4
A) -2
34) Find
B) -1
C) does not exist
D) 2
lim f(x) and
lim f(x)
x→(-1)x→(-1)+
34)
y
2
-4
-2
2
4
x
-2
-4
-6
A) -7; -5
B) -7; -2
C) -5; -2
10
D) -2; -7
Use the table of values of f to estimate the limit.
35) Let f(x) = x2 + 8x - 2, find lim f(x).
x→2
x
f(x)
1.9
1.99
1.999
35)
2.001
2.01
2.1
A)
x 1.9
1.99 1.999 2.001 2.01 2.1
; limit = ∞
f(x) 5.043 5.364 5.396 5.404 5.436 5.763
B)
x 1.9
1.99 1.999 2.001 2.01 2.1
; limit = 5.40
f(x) 5.043 5.364 5.396 5.404 5.436 5.763
C)
x
1.9
1.99
1.999 2.001 2.01
2.1
; limit = 17.70
f(x) 16.692 17.592 17.689 17.710 17.808 18.789
D)
x
1.9
1.99
1.999 2.001 2.01
2.1
; limit = 18.0
f(x) 16.810 17.880 17.988 18.012 18.120 19.210
36) Let f(x) =
x
f(x)
x-4
, find lim f(x).
x-2
x→4
3.9
3.99
3.999
36)
4.001
4.01
4.1
A)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = ∞
f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745
B)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = 1.20
f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745
C)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = 4.0
f(x) 3.97484 3.99750 3.99975 4.00025 4.00250 4.02485
D)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = 5.10
f(x) 5.07736 5.09775 5.09978 5.10022 5.10225 5.12236
11
37) Let f(x) = x2 - 5, find lim f(x).
x→0
x
f(x)
-0.1
-0.01
37)
-0.001
0.001
0.01
0.1
A)
x -0.1
f(x) -1.4970
-0.01
-1.4999
-0.001
-1.5000
0.001
0.01
0.1
; limit = ∞
-1.5000 -1.4999 -1.4970
x -0.1
f(x) -2.9910
-0.01
-2.9999
-0.001
-3.0000
0.001
0.01
0.1
; limit = -3.0
-3.0000 -2.9999 -2.9910
x -0.1
f(x) -4.9900
-0.01
-4.9999
-0.001
-5.0000
0.001
0.01
0.1
; limit = -5.0
-5.0000 -4.9999 -4.9900
x -0.1
f(x) -1.4970
-0.01
-1.4999
-0.001
-1.5000
0.001
0.01
0.1
; limit = -15.0
-1.5000 -1.4999 -1.4970
B)
C)
D)
38) Let f(x) =
x
f(x)
x-4
x2 - 5x + 4
3.9
, find lim f(x).
x→4
3.99
3.999
38)
4.001
4.01
4.1
A)
x
3.9
3.99
3.999 4.001
4.01
4.1 ; limit = 0.4333
f(x) 0.4448 0.4344 0.4334 0.4332 0.4322 0.4226
B)
x
3.9
3.99
3.999
4.001
4.01
4.1
; limit = -0.3333
f(x) -0.3448 -0.3344 -0.3334 -0.3332 -0.3322 -0.3226
C)
x
3.9
3.99
3.999 4.001
4.01
4.1 ; limit = 0.3333
f(x) 0.3448 0.3344 0.3334 0.3332 0.3322 0.3226
D)
x
3.9
3.99
3.999 4.001
4.01
4.1 ; limit = 0.2333
f(x) 0.2448 0.2344 0.2334 0.2332 0.2322 0.2226
12
39) Let f(x) =
x
f(x)
x2 - 7x + 10
, find lim f(x).
x2 - 9x + 20
x→5
4.9
4.99
39)
4.999
5.001
5.01
5.1
A)
x
4.9
4.99
4.999 5.001
5.01
5.1 ; limit = 2.9
f(x) 3.1222 2.9202 2.9020 2.8980 2.8802 2.7182
B)
x
4.9
4.99
4.999 5.001
5.01
5.1 ; limit = 0.7778
f(x) 0.7802 0.7780 0.7778 0.7778 0.7775 0.7753
C)
x
4.9
4.99
4.999 5.001
5.01
5.1 ; limit = 3
f(x) 3.2222 3.0202 3.0020 2.9980 2.9802 2.8182
D)
x
4.9
4.99
4.999 5.001
5.01
5.1 ; limit = 3.1
f(x) 3.3222 3.1202 3.1020 3.0980 3.0802 2.9182
40) Let f(x) =
sin(6x)
, find lim f(x).
x
x→0
x
f(x)
-0.01
5.99640065
-0.1
-0.001
40)
0.001
0.01
5.99640065
A) limit = 5.5
C) limit = 0
41) Let f(θ) =
0.1
B) limit = 6
D) limit does not exist
cos (5θ)
, find lim f(θ).
θ
θ→0
x
-0.1
f(θ) -8.7758256
-0.01
-0.001
41)
0.001
0.01
A) limit = 8.7758256
C) limit does not exist
0.1
8.7758256
B) limit = 0
D) limit = 5
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
Provide an appropriate response.
42) It can be shown that the inequalities 1 -
x2
x sin(x)
<
< 1 hold for all values of x close
6
2 - 2 cos(x)
to zero. What, if anything, does this tell you about
x sin(x)
? Explain.
2 - 2 cos(x)
13
42)
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
43) Write the formal notation for the principle "the limit of a quotient is the quotient of the limits" and
include a statement of any restrictions on the principle.
lim g(x)
x→a
g(x)
M
A) If lim g(x) = M and lim f(x) = L, then lim
=
= , provided that
f(x)
lim
f(x)
L
x→a
x→a
x→a
x→a
43)
f(a) ≠ 0.
g(x) g(a)
B) lim
.
=
f(a)
x→a f(x)
g(x) g(a)
C) lim
, provided that f(a) ≠ 0.
=
f(a)
x→a f(x)
lim g(x)
x→a
g(x)
M
D) If lim g(x) = M and lim f(x) = L, then lim
=
= , provided that L ≠ 0.
f(x)
lim
f(x)
L
x→a
x→a
x→a
x→a
44) Provide a short sentence that summarizes the general limit principle given by the formal notation
lim [f(x) ± g(x)] = lim f(x) ± lim g(x) = L ± M, given that lim f(x) = L and lim g(x) = M.
x→a
x→a
x→a
x→a
x→a
44)
A) The limit of a sum or a difference is the sum or the difference of the limits.
B) The sum or the difference of two functions is the sum of two limits.
C) The limit of a sum or a difference is the sum or the difference of the functions.
D) The sum or the difference of two functions is continuous.
45) The statement "the limit of a constant times a function is the constant times the limit" follows from
a combination of two fundamental limit principles. What are they?
A) The limit of a function is a constant times a limit, and the limit of a constant is the constant.
B) The limit of a product is the product of the limits, and a constant is continuous.
C) The limit of a product is the product of the limits, and the limit of a quotient is the quotient of
the limits.
D) The limit of a constant is the constant, and the limit of a product is the product of the limits.
Find the limit.
46) lim
x→7
3
A)
3
47)
48)
46)
B) 7
C)
7
D) 3
lim (6x - 1)
x→-4
A) 23
47)
B) -23
C) -25
D) 25
lim (20 - 6x)
x→-14
A) -64
45)
48)
B) 104
C) 64
14
D) -104
Give an appropriate answer.
49) Let lim f(x) = 4 and lim g(x) = 5. Find lim [f(x) - g(x)].
x→6
x→6
x→6
A) 4
B) -1
C) 6
49)
D) 9
50) Let lim f(x) = -1 and lim g(x) = -6. Find lim [f(x) ∙ g(x)].
x→1
x→1
x→1
A) -7
51) Let
B) -6
C) 1
50)
D) 6
f(x)
lim f(x) = 10 and lim g(x) = 4. Find lim
.
g(x)
x → -3
x → -3
x → -3
A) -3
B)
2
5
C)
52) Let lim f(x) = 225. Find lim
x→5
x→5
A) 225
5
2
51)
D) 6
f(x).
52)
B) 3.8730
C) 5
D) 15
53) Let lim f(x) = -4 and lim g(x) = 2. Find lim [f(x) + g(x)]2 .
x→4
x→4
x→4
A) -6
B) 20
54) Let lim f(x) = 81. Find lim
x→8
x→8
A) 8
4
C) -2
54)
B) 81
B) -
D) 4
f(x).
C) 3
55) Let lim f(x) = -9 and lim g(x) = 5. Find lim
x→ 10
x→ 10
x→ 10
A) 10
53)
D) 4
8f(x) - 3g(x)
.
10 + g(x)
29
5
C) -
51
5
55)
D) -
19
5
Find the limit.
56) lim (x3 + 5x2 - 7x + 1)
x→2
A) 15
56)
B) 0
C) 29
D) does not exist
57) lim (2x5 - 2x4 + 4x3 + x2 + 5)
x→2
A) 41
58)
57)
B) 137
C) 73
D) 9
x
lim
3x
+2
x→-1
A) does not exist
58)
B) 0
C) 1
15
D) -
1
5
59) lim
x→0
x3 - 6x + 8
x-2
A) 0
59)
B) Does not exist
D) -4
C) 4
3x2 + 7x - 2
60) lim
x→1 3x2 - 4x - 2
60)
B) -
A) 0
8
3
C) -
7
4
D) Does not exist
61) lim (x + 2)2 (x - 3)3
x→1
A) 64
62) lim
x→7
B) -8
C) -72
D) 576
x2 + 2x + 1
A) 8
63) lim
x→1
61)
62)
C) ±8
B) 64
D) does not exist
10x + 15
B) -5
A) -25
64) lim
h→0
A) 0
C) 25
D) 5
2
3h + 4 + 2
A) 2
65) lim
x→0
63)
64)
B) Does not exist
C) 1/2
D) 1
1+x-1
x
65)
B) 1/2
C) Does not exist
D) 1/4
Determine the limit by sketching an appropriate graph.
for x < 5
66) lim f(x), where f(x) = -4x + 2
2x
+
3
for x ≥ 5
x→5
A) -18
67)
68)
B) 4
lim f(x), where f(x) = -5x - 3
3x - 2
x → 2+
A) -2
C) 13
D) 3
for x < 2
for x ≥ 2
67)
B) -1
2
lim f(x), where f(x) = x + 2
0
x → -4+
A) 14
66)
C) -13
D) 4
for x ≠ -4
for x = -4
68)
B) 0
C) 16
16
D) 18
69)
70)
9 - x2
0≤x<3
lim f(x), where f(x) = 3
3≤x<5
x → 55
x=5
A) 5
B) Does not exist
3x
lim f(x), where f(x) = 3
x → -7+
0
A) 7
B) -0
69)
C) 0
-7 ≤ x < 0, or 0 < x ≤ 3
x=0
x < -7 or x > 3
C) -21
D) 3
70)
D) Does not exist
Find the limit, if it exists.
x3 + 12x2 - 5x
71) lim
5x
x→0
A) Does not exist
72) lim
x→1
lim
x→5
A) -
77)
D) 2
73)
C) 10
D) Does not exist
74)
B) 56
C) Does not exist
D) 7
75)
B) 0
C) 4
D) 12
x2 + 2x - 35
x2 - 25
1
5
76)
B) Does not exist
C) 0
D)
6
5
x2 - 16
lim
x → 4 x2 - 6x + 8
A) 0
78)
C) 0
x2 + 4x - 32
x-4
A) Does not exist
76)
B) 4
x2 + 7x + 12
x+4
lim
x → -4
lim
x→4
72)
B) 20
A) -1
75)
D) 0
x2 - 100
x - 10
lim
x → 10
A) 1
74)
C) -1
B) 5
x4 - 1
x-1
A) Does not exist
73)
71)
77)
B) Does not exist
C) 2
D) 4
x2 - 6x - 7
lim
x→-1 x2 - 2x - 3
A) - 2
78)
B) Does not exist
C) 2
17
D) -
3
2
79)
lim
h→0
(x + h)3 - x3
h
A) 3x2 + 3xh + h2
80)
79)
C) 3x2
B) 0
D) Does not exist
7-x
7-x
lim
x→7
80)
A) Does not exist
B) 1
D) -1
C) 0
Provide an appropriate response.
81) It can be shown that the inequalities -x ≤ x cos
1
≤ x hold for all values of x ≥ 0.
x
81)
1
Find lim x cos
if it exists.
x
x→0
A) 0
B) 1
82) The inequality 1Find lim
x→0
C) does not exist
D) 0.0007
x2 sin x
<
< 1 holds when x is measured in radians and x < 1.
2
x
sin x
if it exists.
x
A) 0.0007
B) 1
C) 0
D) does not exist
83) If x3 ≤ f(x) ≤ x for x in [-1,1], find lim f(x) if it exists.
x→0
A) -1
B) 0
83)
C) 1
D) does not exist
Compute the values of f(x) and use them to determine the indicated limit.
84) If f(x) = x2 + 8x - 2, find lim f(x).
x→2
x
f(x)
1.9
82)
1.99
1.999
2.001
2.01
84)
2.1
A)
x 1.9
1.99 1.999 2.001 2.01 2.1
; limit = 5.40
f(x) 5.043 5.364 5.396 5.404 5.436 5.763
B)
x 1.9
1.99 1.999 2.001 2.01 2.1
; limit = ∞
f(x) 5.043 5.364 5.396 5.404 5.436 5.763
C)
x
1.9
1.99
1.999 2.001 2.01
2.1
; limit = 17.70
f(x) 16.692 17.592 17.689 17.710 17.808 18.789
D)
x
1.9
1.99
1.999 2.001 2.01
2.1
; limit = 18.0
f(x) 16.810 17.880 17.988 18.012 18.120 19.210
18
85) If f(x) =
x
f(x)
x4 - 1
, find lim f(x).
x-1
x→1
0.9
0.99
85)
0.999
1.001
1.01
1.1
A)
x 0.9
0.99 0.999 1.001 1.01 1.1
; limit = ∞
f(x) 1.032 1.182 1.198 1.201 1.218 1.392
B)
x 0.9
0.99 0.999 1.001 1.01 1.1
; limit = 4.0
f(x) 3.439 3.940 3.994 4.006 4.060 4.641
C)
x 0.9
0.99 0.999 1.001 1.01 1.1
; limit = 1.210
f(x) 1.032 1.182 1.198 1.201 1.218 1.392
D)
x 0.9
0.99 0.999 1.001 1.01 1.1
; limit = 5.10
f(x) 4.595 5.046 5.095 5.105 5.154 5.677
86) If f(x) =
x
f(x)
x3 - 6x + 8
, find lim f(x).
x-2
x→0
-0.1
-0.01
-0.001
86)
0.001
0.01
0.1
A)
x -0.1
-0.01
-0.001
0.001
0.01
0.1
; limit = -1.20
f(x) -1.22843 -1.20298 -1.20030 -1.19970 -1.19699 -1.16858
B)
x -0.1
-0.01
-0.001
0.001
0.01
0.1
; limit = ∞
f(x) -1.22843 -1.20298 -1.20030 -1.19970 -1.19699 -1.16858
C)
x -0.1
-0.01
-0.001
0.001
0.01
0.1
; limit = -4.0
f(x) -4.09476 -4.00995 -4.00100 -3.99900 -3.98995 -3.89526
D)
x -0.1
-0.01
-0.001
0.001
0.01
0.1
; limit = -2.10
f(x) -2.18529 -2.10895 -2.10090 -2.99910 -2.09096 -2.00574
19
87) If f(x) =
x
f(x)
x-4
, find lim f(x).
x-2
x→4
3.9
3.99
3.999
87)
4.001
4.01
4.1
A)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = 1.20
f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745
B)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = 4.0
f(x) 3.97484 3.99750 3.99975 4.00025 4.00250 4.02485
C)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = 5.10
f(x) 5.07736 5.09775 5.09978 5.10022 5.10225 5.12236
D)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = ∞
f(x) 1.19245 1.19925 1.19993 1.20007 1.20075 1.20745
88) If f(x) = x2 - 5, find
x
f(x)
-0.1
lim f(x).
x→0
-0.01
88)
-0.001
0.001
0.01
0.1
A)
x -0.1
f(x) -1.4970
-0.01
-1.4999
-0.001
-1.5000
0.001
0.01
0.1
; limit = ∞
-1.5000 -1.4999 -1.4970
x -0.1
f(x) -2.9910
-0.01
-2.9999
-0.001
-3.0000
0.001
0.01
0.1
; limit = -3.0
-3.0000 -2.9999 -2.9910
x -0.1
f(x) -1.4970
-0.01
-1.4999
-0.001
-1.5000
0.001
0.01
0.1
; limit = -15.0
-1.5000 -1.4999 -1.4970
x -0.1
f(x) -4.9900
-0.01
-4.9999
-0.001
-5.0000
0.001
0.01
0.1
; limit = -5.0
-5.0000 -4.9999 -4.9900
B)
C)
D)
20
89) If f(x) =
x
f(x)
x+1
, find lim f(x).
x+1
x→1
0.9
0.99
89)
0.999
1.001
1.01
1.1
A)
x 0.9
0.99
0.999
1.001
1.01
1.1
; limit = ∞
f(x) 0.21764 0.21266 0.21219 0.21208 0.21160 0.20702
B)
x 0.9
0.99
0.999
1.001
1.01
1.1
; limit = 0.7071
f(x) 0.72548 0.70888 0.70728 0.70693 0.70535 0.69007
C)
x 0.9
0.99
0.999
1.001
1.01
1.1
; limit = 0.21213
f(x) 0.21764 0.21266 0.21219 0.21208 0.21160 0.20702
D)
x 0.9
0.99
0.999
1.001
1.01
1.1
; limit = 2.13640
f(x) 2.15293 2.13799 2.13656 2.13624 2.13481 2.12106
90) If f(x) =
x
f(x)
x - 2, find
3.9
lim f(x).
x→4
3.99
3.999
90)
4.001
4.01
4.1
A)
x 3.9
f(x) 3.9000
3.99
2.9000
3.999
1.9000
4.001
4.01
4.1
; limit = ∞
2.0000 3.0000 4.0000
B)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = 1.50
f(x) 1.47736 1.49775 1.49977 1.50022 1.50225 1.52236
C)
x 3.9
3.99
3.999
4.001
4.01
4.1
; limit = 0
f(x) -0.02516 -0.00250 -0.00025 0.00025 0.00250 0.02485
D)
x 3.9
f(x) 3.9000
3.99
2.9000
3.999
1.9000
4.001
4.01
4.1
; limit = 1.95
2.0000 3.0000 4.0000
21
For the function f whose graph is given, determine the limit.
91) Find lim f(x) and
lim f(x).
x→4 x→4 +
91)
y
8
6
4
2
1 2 3 4 5 6 7 8 9 10 11 x
-2 -1
-2
-4
-6
-8
A) ∞, -∞
92) Find
B) -∞, ∞
lim f(x) and
x→3 5
C) 4; 4
D) -4, 4
lim f(x).
x→3 +
92)
y
4
3
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 x
-1
-2
-3
-4
-5
A) 3; -3
C) ∞; ∞
B) 0; 1
22
D) -∞; ∞
93) Find lim f(x).
x→3
93)
5
y
4
3
2
1
-5
-4
-3
-2
-1
1
2
3
4
5 x
-1
-2
-3
-4
-5
A) -∞
C) ∞
B) 3
D) does not exist
94) Find lim f(x).
x→-4
94)
6
y
5
4
3
2
1
-6 -5 -4 -3 -2 -1
-1
1
2
3
4
5
6 x
-2
-3
-4
-5
-6
A) ∞
C) -4
B) 0
D) -∞
95) Find lim f(x).
x→0
95)
y
4
2
-4
-2
2
4
x
-2
-4
A) ∞
B) 0
C) 1
23
D) -∞
Find the limit.
96)
1
lim
x
x→-2 + 2
A) ∞
97)
B) 1/2
D) 0
99)
B) -1
C) ∞
D) -∞
1
lim
2
x
- 25
x → 5+
100)
B) ∞
C) 1
D) 0
lim
tan x
x→(π/2)+
101)
B) ∞
C) 1
D) -∞
lim
sec x
x→(-π/2)-
102)
B) -∞
A) 1
103)
C) -∞
6
lim
2
x → -5- x - 25
A) 0
102)
D) -1
98)
B) ∞
A) -∞
101)
C) -∞
1
lim
2
x → 7 + (x - 7)
A) 0
100)
D) -∞
97)
B) ∞
A) -1
99)
C) Does not exist
1
lim
x
+
9
x → -9+
A) 0
98)
96)
C) 0
D) ∞
lim (1 + csc x)
x→0+
A) ∞
103)
B) 1
C) 0
D) Does not exist
104) lim (1 - cot x)
x→0
A) ∞
105)
lim
x → -2+
lim
x→0
A) ∞
C) -∞
B) 0
D) Does not exist
x2 - 6x + 8
x3 - 4x
A) ∞
106)
104)
105)
B) -∞
C) Does not exist
D) 0
x2 - 3x + 2
x3 - x
106)
B) -∞
C) 2
24
D) Does not exist
Find all vertical asymptotes of the given function.
9x
107) g(x) =
x+4
B) x = -4
A) none
108) f(x) =
107)
C) x = 4
x+9
x2 - 36
108)
A) x = 0, x = 36
C) x = 36, x = -9
109) g(x) =
B) x = -6, x = 6
D) x = -6, x = 6, x = -9
x+9
x2 + 25
109)
A) x = -5, x = -9
C) x = -5, x = 5, x = -9
110) h(x) =
B) x = -5, x = 5
D) none
x + 11
x2 - 36x
110)
A) x = -6, x = 6
C) x = 36, x = -11
111) f(x) =
B) x = 0, x = 36
D) x = 0, x = -6, x = 6
x-1
3
x + 36x
111)
A) x = 0, x = -6, x = 6
C) x = 0
112) R(x) =
B) x = 0, x = -36
D) x = -6, x = 6
-3x2
112)
x2 + 4x - 77
A) x = -11, x = 7
C) x = 11, x = -7
113) R(x) =
B) x = - 77
D) x = -11, x = 7, x = -3
x-1
113)
x3 + 2x2 - 80x
A) x = -8, x = -30, x = 10
C) x = -10, x = 8
114) f(x) =
B) x = -8, x = 0, x = 10
D) x = -10, x = 0, x = 8
-2x(x + 2)
114)
2x2 - 5x - 7
A) x =
115) f(x) =
D) x = 9
7
, x = -1
2
B) x =
2
, x = -1
7
C) x = -
7
,x=1
2
x-5
D) x = -
2
,x=1
7
115)
25x - x3
A) x = -5, x = 5
C) x = 0, x = 5
B) x = 0, x = -5, x = 5
D) x = 0, x = -5
25