Tải bản đầy đủ (.pdf) (6 trang)

DSpace at VNU: Crosstalk effect in the case of three monomode plan wave guides

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.25 MB, 6 trang )

VNU . JOURNAL O F S C IE N C E , Mathematics - Physics, T.XXI, N02, 2006

C R O SS T A L K E F F E C T IN THE CASE
O F TH R EE MONOMODE PLAN WAVE GUIDES
D inh V an H oang, Mai H ong H anh
College o f sciences V ietnam N ational U niversity
A b stra c t. In th is paper, we exam ined the crosstalk effect in the case of th re e
monomode pro p ag atin g wave in th ree plan wave guides.
On th e basis of solving p ro pagatin g wave equations, we have received the
influence of s tru c tu re p a ra m e te r as the refractive index difference, the lengths
of p ro p a g a tin g waves, th e d iam eter of wave guides, th e sep arated distance
betw een two adjacen t wave guides etc... on the crosstalk effect.
Key words: wave guides optics, optical communication.

L I n tr o d u c tio n
Since th e n in e tie s of la s t cen tu ry , m ankind h as gone into th e period of infob rea k out. By th e tech n iq u e WDM, one can obtain a larg e gigabit a t far in te rv a l of
optical tra n s m iss io n line. H ow ever, one of th e defects in th is m u ltican al
com m unication is th e exhib itio n of c ro sstalk effect - th e power exchange betw een
th e two w aves p ro p a g a tin g in two ad jacen t canals. T his phenom enon re s u lts in the
noise of in fo rm a tio n which needed exclude.
T he c ro ssta lk effect h a s been studied in the case of two ad jacen t can a ls th a t
m ay be co nsidered as two p la n wave guides [1-4]
In th is p a p er, we h ave e n la rg ed th e resea rch to th e case th re e ad ja ce n t plan
w ave guides. On th e b a sis of resolving th e p ro p ag atin g wave equations p re se n te d in
section 2 , we h av e m ade a stu d y of th e influence of s tru c tu re p a ra m e te rs of wave
guides
as th e d iffe re n t of refractiv e index, th e len g th of p ropagating wave,
the
d iam ete r of w ave guide e tc... on th e c ro sstalk in te rv al - a ch arac teristic q u a n tity of
c ro sstalk effect. T hese re s e a rc h ’s re s u lts have been in d icated in section 3. A t last,
discussion a n d conclusions h ave given in section 4.



2. B a sic e q u a tio n s
We supposed th e re a re th re e p lan wave guides in which the p lan w aves
p ro p ag ate follow ing th e Oz directio n as seen in fig 1
T hese wa-ve guides h av e th e w idths of lị, l2ĩ / 3, th e refractive index n u n 2i n 3
an d s e p a ra tin g d ista n c e s of d u d 2 .
T he p ro p a g a tin g w aves h ave forms:
.E i (y,z) = a iul(y)e~jp'*

(1 )

E 2(y,z) = a2u2(y)e~J^

(2)

34


C ro s sta lk Effect in th e C ase o f Three M on om ode P la n W ave G u id e s
E 3{y,z) = azu A y ) e ilhz

35
(3)

H ere a u a 2, a 3 - c o n stan ts, /?!, jS2, /?3 - p ro p ag atio n c o n sta n ts, u x(y)f u 2(y), ỉ/3(y)
- am p litu d e functions of waves.
W hen th e pow er exchange betw een th e wave guides a p p eared , c o n sta n ts a x
become functions slowly changed by z.

The H elm holtz e q u atio n for each wave, in th is case, h a s th e follow ing form:

V2i£. +k?Eị = - S m

(i,m = 1,2,3)

(4)

H ere th e source Sm d e m o n stra te s th e field of one wave suffered th e influence
of th e a n o th e r wave. Follow ing [ 1 ] we can give
s m = K - n 2) K K = K - k 2) K

(5)

27Ĩ
W ith k0 = — - wave num ber, A - velocity of lig h t in vacuum .
A

From (4), (5), we have the system of equations for three plan wave guides, as follows.
v

2£ ,

+ k fE l = - ( k ị - k 2)E 2

(6 )

V 2E 2 + % E 2 = -[(* 32 - k 2)E3 + (kỉ - k 2)Ex]

(7)

V % +k%E3 = - ( k l - k 2)E 2


(8)

d2a
Solving th is system of eq u atio n s a fte r th e a p p ro x im atio n of neg lectin g —
dzÔCL■
before — - , we received a new system of equations:
dz


Dinh Van Hoangy Mai Hong H an h

36

(9)

^
= - j C 2la2(z)eJ
dz

( 10)

dz
%

= - j C l2aẠ z)e-j^

- jC 32a3(z)e-J^

( 11)


w ith
&p\ —P\

$2 >^03 ~ Pz

02
2

C 32

=

k ĩ —ị? \
0/?
I u3(y)u2(y)dy
p2 Ả

c 23 = o n

í

2

í

u3(y)u2(y)dy

2/*3


2

T his system is solved n u m erically for d ifferen t cases, depending on th e diverse
form s of function Ui(y).

3. T he in flu e n c e o f str u c tu r e p a ra m eter o f w ave g u id e s on th e c r o ssta lk
in terv a l
3.1 D e fin itio n : C ro ssta lk in te rv a l L 0 is th e in te rv al d eterm in ed since the
tran sm issio n of lig h t in one w ave guide begins u n til th e power exchange a p p ears.
3.2 E xpression o f fu n c tio n Uị(y) a n d va lu es o f p a r a m e te r . We ta k e for
function Ui(y) th e follow ing expressions
( 12 )

Uj(y) = Ae s'y-,u2(y) = Be Sỉy;u3(y) = Ce s*y
w here A = c =1, B =1, <51=<53=1,<52=2.
N um erical v a lu e s of p a ra m e te rs are chosen
Ằị = Ă2 = y?3 = 133ịxm.a^ - a2 = a 3 = 1Ịum.cl^ = d 2 = d3 = 1CT4m
nx = n 2 = n 3 = 1.5 \n = 1.4999

3.3 The influence o f refra ctive index difference on L0
U sing M atlab lan g u ag e and s ta rtin g from (9) - (12), we plotted th e curves
|a-(2)|2v ersu s

z.

In

fig.2,

a re


p resen te d

th e

c u rv e s|a t(z)| w hen

An = (nx - n) = (n 2 - rt) = (n3 - n) varies.
From figure 2 a n d ta b le 1, one can see th a t th e dim inution of An re s u lts in th e
in crease of L 0.


C ro s sta lk E ffect in th e Case o f T hree M on om ode P la n W ave G u id e s

37

T a b le 1
An

0.01

0.001

0.0001

L 0(m)

23.585

235.136


2350.8

F ig.2. The diag ram allow s to determ in e th e dependence of L 0 on An

3.4 The depen den ce o f L0 on s e p a r a tin g d ista n c e d l9 d 2
By th e sam e m ethod of calculation w ith all o th e r p a ra m e te rs rem ainin g
anchanged b u t dị varies, we obtained fig .3 and tab le 2
T a b le 2
ư,=rf 2(m)

10-5

10 “

10-3

10-2

L q(m)

2351.2

2350.8

2353

2369.6

Fig. 3. T he d iag ra m allow s to determ in e th e dependence of 0 on d lt d 2

T he received re s u lts show th a t L 0 is alm ost u n ch an g ed w hen dj varies.


Dinh Van Hoang, Mai Hong H anh

38

3.5 The influence o f w ave length on L0
In th is case, we v aried only th e len g th of Aj. The re s u lts from fig.4 and tab le 3
in d icate th a t th e in cre ase of Aj will lead to in th e au g m e n ta tio n of L 0 i.e. th e
c ro sstalk effect will dim in ish a t longer w ave lengths.

T able 3
A (nm)
L 0(m)

1.08

1.33

1.55

1909.1

2350.8

2739.4

Fig. 4. The d iag ra m allow s to d ete rm in e th e dependence of L 0 on A.


3.6 The charge o f L0 when a m p litu d e o f wave varies
W hen th e a m p litu d e B of wave p ro p ag atin g in th e second wave guide is
v aried, we obtained fig 5 and tab le 4.

Fig. 5. The d iag ram allow s to d e te rm in e the dependence of L 0 on B


C ro s sta lk Effect in the Case o f Three M onom ode P l a n W ave G u ides

39

T a b le 4
B

1

2

3

L 0(m)

4707.5

2350.8

1567.2

From fig 5 and tab le 4, L 0 decreases by in c re a sin g B. T his show s th a t the
stro n g in te ra c tio n betw een th e w aves p ro p ag atin g in 3 w ave guides re s u lts in the

in crease of c ro sstalk effect.

4. D isc u s sio n and c o n c lu s io n s
From o b tain ed re s u lts p resen ted above, we could reveal some following
conclusions:
- The
p a ra m e te rs
influence of
p ro p ag atin g

c ro sstalk effect depends clearly on th e change in th e stru c tu re
of wave guides. The m ost sensitive p a ra m e te rs which dim in ish the
c ro sstalk effect a re refractive index difference An and wave length A
in wave guides.

■ The distribution of am plitude functions Uj can create the transformation of
cro sstalk effect. T he obtain ed re s u lts also in d icate t h a t d ifferen t wave functions will
give d iverse crosstalkv effect and th is point needs to be fu rth e r exam ined.
- The m ethod of calculátion used in th is p a p e r m ay be applied to th e case of
m ore th a n 3 w ave guides or th e case of m ultim ode w ave guides.

Reference:
1.

A .Y ariv, Q u a n tu m E lectronics T h ird E d itio n , J o h n W iley & Sons, N.Y. 1988
as

applied

to


Microwave

2.

H .H u an g , Couple M ode Theory
T ra n sm issio n , N e th e rla n d s 1984.

and

O ptical

3.

T. T am ir, G uided Wave O ptoelectronics, S p rin g er-V erlag N.Y. 1990

4.

B.E.A S aleh , M .c Teich, F u n d a m en ta ls o f p h o to n ics, Jo h n W illey & Sons N Y
1991.



×