Tải bản đầy đủ (.pdf) (676 trang)

Gold nanoparticles for physics, chemistry and biology (2nd ed)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (48.24 MB, 676 trang )


b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6


Q0036_9781786341242_tp.indd 1

28/4/17 5:11 PM


b2530   International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd 6


Q0036_9781786341242_tp.indd 2

28/4/17 5:11 PM


Published by
World Scientific Publishing Europe Ltd.
57 Shelton Street, Covent Garden, London WC2H 9HE
Head office: 5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

Library of Congress Cataloging-in-Publication Data
Names: Louis, Catherine (Chemist) | Pluchery, Olivier.
Title: Gold nanoparticles for physics, chemistry and biology / Catherine Louis (Université Pierre et
Marie Curie, France), Olivier Pluchery (Université Pierre et Marie Curie, France).


Description: 2nd edition. | New Jersey : World Scientific, 2017. |
Includes bibliographical references.
Identifiers: LCCN 2016034787 | ISBN 9781786341242 (hc : alk. paper)
Subjects: LCSH: Nanoparticles. | Gold.
Classification: LCC TA418.9.N35 L68 2017 | DDC 669/.22--dc23
LC record available at />
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Copyright © 2017 by World Scientific Publishing Europe Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.

Desk Editors: Herbert Moses/Mary Simpson
Typeset by Stallion Press
Email:
Printed in Singapore

Herbert Moses - Gold Nanoparticles for Physics, Chemistry and Biology-2nd Edition.indd 1

08-05-17 3:03:40 PM


April 29, 2017


9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page v

Contents

About the Authors
1.

xxi

Gold Nanoparticles in the Past: Before the
Nanotechnology Era
1.1 The First Usage of Gold . . . . . . . . . . . . . . .
1.1.1 Quest for Gold and Gold Production . . . . .
1.1.2 The First Gold Jewels and Artefacts . . . . .
1.1.3 Gold for Monetary Exchanges and the Gold
Standard . . . . . . . . . . . . . . . . . . . .
1.1.4 Gold for Human Well-being: Food, Drinks
and Medicine . . . . . . . . . . . . . . . . .
1.1.5 Gilding Gold and Gold-like Lustre . . . . . .
1.2 The First Uses of Gold Nanoparticles . . . . . . . .
1.2.1 Introduction . . . . . . . . . . . . . . . . . .
1.2.2 The Lycurgus Cup . . . . . . . . . . . . . .
1.2.3 Medieval Period . . . . . . . . . . . . . . . .
1.2.4 Fifteenth and Sixteenth Centuries . . . . . .

1.2.5 Seventeenth Century . . . . . . . . . . . . .
1.2.5.1 Purple of Cassius . . . . . . . . . .
1.2.5.2 Kunckel glass . . . . . . . . . . . .
1.2.5.3 Perrot glass . . . . . . . . . . . . .
1.2.6 Gold Ruby Glass in the Eighteenth Century .
1.2.7 Gold Ruby Glass and Cranberry Glass in the
Nineteenth Century . . . . . . . . . . . . . .
v

. . .
. . .
. . .

1
1
1
3

. . .

5

.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.


6
7
8
8
9
11
12
13
14
15
16
17

. . .

18


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page vi

Contents


1.2.8 Pink Enamel Porcelain: Rose Pompadour and
Famille Rose . . . . . . . . . . . . . . . . . . . .
1.3 Scientific Approach of the Preparation of the Gold Ruby
Colour . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1 Elucidation of the Constitution of the Purple of
Cassius in the Nineteenth Century . . . . . . . . .
1.3.2 Chemical Approach to the Formation of the Purple
of Cassius . . . . . . . . . . . . . . . . . . . . . .
1.3.3 Chemical Approach to the Preparation of Gold
Ruby Glass . . . . . . . . . . . . . . . . . . . . .
1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .
2.

3.

Introduction to the Physical and
Chemical Properties of Gold
2.1 Introduction . . . . . . . . . . . . . . . . . . . .
2.2 Physical Properties of Massive Gold . . . . . . .
2.2.1 Crystal Structure . . . . . . . . . . . . .
2.2.2 Density . . . . . . . . . . . . . . . . . .
2.2.3 Magnetic and Electrical Properties . . . .
2.2.4 Theoretical Calculations on Metallic Gold
2.2.5 Cohesive Properties . . . . . . . . . . . .
2.3 Relativistic Effects on the Properties of Gold . .
2.3.1 Why Relativity? . . . . . . . . . . . . . .
2.3.2 Optical Properties, Interband Transitions
and Relativistic Effect . . . . . . . . . .
2.4 Chemical Properties of Gold in Relation

to its Neighbours . . . . . . . . . . . . . . . . .
2.5 More on Gold Chemistry . . . . . . . . . . . . .
2.6 Surface Science and Cluster Studies . . . . . . .
2.7 The Aurophilic Attraction . . . . . . . . . . . .
2.8 Dependence of Physical and Chemical Properties
of Gold on Particle Size . . . . . . . . . . . . .
2.9 Conclusion . . . . . . . . . . . . . . . . . . . .

19
20
20
21
22
25

.
.
.
.
.
.
.
.
.

29
29
30
30
31

32
32
33
33
33

. . . . .

36

.
.
.
.

.
.
.
.

37
39
39
40

. . . . .
. . . . .

41
44


Optical Properties of Gold Nanoparticles
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .

51
51

vi

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.

.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.

.

.
.
.


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page vii

Contents

3.2

3.3

3.4

3.5

3.6

3.1.1 A Brief History of Plasmonics . . . . . . . . . . .
3.1.2 What Is the Ambition of the Present
Chapter? . . . . . . . . . . . . . . . . . . . . . .

Distinction between Localised Surface Plasmon
Resonance and Surface Plasmon Resonance . . . . . . . .
3.2.1 Optical Properties of Metals . . . . . . . . . . . .
3.2.2 The Dielectric Function of Gold . . . . . . . . . .
3.2.3 Plasmon Resonance at Surfaces (SPR) . . . . . . .
3.2.4 Localised Surface Plasmon Resonance
in Nanoparticles . . . . . . . . . . . . . . . . . . .
Theoretical Description of the Localised Plasmon
Resonance . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 About Mie Theory . . . . . . . . . . . . . . . . .
3.3.2 The Quasi-static Approximation for Describing the
Localised Plasmon Resonance . . . . . . . . . . .
3.3.3 Extinction and Scattering Cross-Sections . . . . .
3.3.4 Experimental Illustrations . . . . . . . . . . . . .
3.3.5 Local Field Enhancement and Nanoantennas . . .
3.3.6 Beyond the Quasi-static and Dipolar
Approximations . . . . . . . . . . . . . . . . . . .
Factors Shifting the Plasmon Resonance of Gold
Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1 What is the Dependence of the LSPR with the
Nanoparticle? . . . . . . . . . . . . . . . . . . . .
3.4.2 Influence of the Surrounding Medium . . . . . . .
3.4.3 Plasmon Resonance of Ellipsoids and Other
Shapes . . . . . . . . . . . . . . . . . . . . . . . .
3.4.4 The Case of Very Small (Less than 5 nm)
and Very Large Gold Nanoparticles
(Greater than 60 nm) . . . . . . . . . . . . . . . .
Optical Response of Assemblies of Nanoparticles . . . . .
3.5.1 Supported Gold Nanoparticles . . . . . . . . . . .
3.5.2 Nanoparticle Coupling . . . . . . . . . . . . . . .

3.5.3 Effective Medium Approximation Methods . . . .
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .
vii

52
53
54
55
56
57
59
60
60
60
63
65
66
68
69
70
71
72

77
78
79
79
81
83



April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page viii

Contents

4.

Photothermal Properties of Gold Nanoparticles
4.1 Introduction: Light to Heat Conversion
at the Nanoscale . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Electron–Phonon Scattering in Bulk Metal . . . . .
4.1.2 The Localised Plasmon Resonance as an Effective
Energy Input Channel . . . . . . . . . . . . . . . .
4.1.3 A Series of Energy Exchanges . . . . . . . . . . .
4.2 Basic Plasmonic Photothermal Properties . . . . . . . . .
4.2.1 Power Input in Nanoparticles . . . . . . . . . . . .
4.2.2 Basic Approach: Pure Diffusion,
Perfect Contact . . . . . . . . . . . . . . . . . . .
4.2.3 Accounting for Interface Thermal Resistance . . .
4.2.4 Steady-state Photo-heating . . . . . . . . . . . . .
4.2.4.1 Nanoparticle scale . . . . . . . . . . . . .
4.2.4.2 Macroscopic scale . . . . . . . . . . . . .

4.2.5 A Few Emblematic Applications . . . . . . . . . .
4.3 Transient Thermal Behaviour with Pulsed-Light
Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Instantaneous Light Pulse Approximation . . . . .
4.3.2 Athermal Regime . . . . . . . . . . . . . . . . . .
4.3.3 Thermal Regime . . . . . . . . . . . . . . . . . .
4.3.3.1 Analysis of the energy exchanges . . . . .
4.3.3.2 Tuning the thermal spatial range with
pulse duration . . . . . . . . . . . . . . .
4.3.3.3 Cumulative thermal effect . . . . . . . . .
4.3.4 When the Fourier Law Fails: What Occurs at Small
Space and Time Scales . . . . . . . . . . . . . . .
4.4 Influence of Morphological Parameters . . . . . . . . . .
4.4.1 Nanoparticle Environment . . . . . . . . . . . . .
4.4.2 Nanoparticle Size . . . . . . . . . . . . . . . . . .
4.4.3 Nanoparticle Shape . . . . . . . . . . . . . . . . .
4.4.4 Nanoparticle Density . . . . . . . . . . . . . . . .
4.5 Thermo-optical Properties of Gold Nanoparticles . . . . .
4.5.1 Bulk Gold . . . . . . . . . . . . . . . . . . . . . .
4.5.2 Gold Nanoparticles . . . . . . . . . . . . . . . . .
viii

87
88
88
89
89
91
92
94

95
96
97
98
99
102
102
104
107
108
113
113
115
117
118
118
120
121
121
122
123


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm


page ix

Contents

4.5.3 Melting Point Depression in Gold
Nanoparticles . . . . . . . . . . . . . . . . . . . . 124
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.

6.

Quantum Properties of Gold Nanoparticles
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Quantum Optical Properties . . . . . . . . . . . . . . . .
5.2.1 Single Nanoparticles — From Classical
to Quantum . . . . . . . . . . . . . . . . . . . . .
5.2.2 Many-nanoparticle Array . . . . . . . . . . . . . .
5.2.3 Single Nanoparticles Interacting with Emitters:
Weak and Strong Coupling Regime . . . . . . . .
5.2.4 Nanoparticle Systems as Unit Cells
in Metamaterials . . . . . . . . . . . . . . . . . .
5.2.5 Dealing with Metallic Loss . . . . . . . . . . . . .
5.3 Quantum Electronic Properties . . . . . . . . . . . . . . .
5.3.1 Quantum Size Effect: Analytical
and Numerical . . . . . . . . . . . . . . . . . . .
5.3.2 Quantum Tunnelling: Linear and Nonlinear
Regimes . . . . . . . . . . . . . . . . . . . . . . .
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .
Synthesis of Gold Nanoparticles in Liquid Phase

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . .
6.2 Chemical Properties and Characterisation of Gold
Nanoparticles for Liquid Phase Synthesis . . . . . .
6.2.1 Structure and Size Range of Gold
Nanoparticles . . . . . . . . . . . . . . . . .
6.2.2 Electrochemical Potentials of Gold Precursors
6.2.3 Surface Energy and Particle Morphology . .
6.2.4 Characterisation of Nanoparticles . . . . . .
6.2.4.1 Morphology characterisation . . . .
6.2.4.2 Surface characterisation . . . . . . .
6.2.4.3 Theoretical simulation . . . . . . .
6.3 Synthetic Methods of Gold Nanoparticles in
Liquid Phase . . . . . . . . . . . . . . . . . . . . .
ix

131
131
133
133
137
141
144
148
149
150
151
153

165
. . . 165

. . . 166
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.

166
168
169
170
170

170
171

. . . 171


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page x

Contents

6.3.1 Kinetic Consideration for Highly Monodisperse
Nanoparticles . . . . . . . . . . . . . . . . . . . .
6.3.2 Chemical Reduction of Gold Precursors . . . . . .
6.3.2.1 Chemical reduction in aqueous media . .
6.3.2.2 Chemical reduction in organic media . . .
6.3.2.3 Synthesis in micelles . . . . . . . . . . .
6.3.2.4 Polyol process . . . . . . . . . . . . . . .
6.3.3 Non-chemical Reduction for Preparation of Gold
Nanoparticles . . . . . . . . . . . . . . . . . . . .
6.3.3.1 Photochemical and radiolytic
methods . . . . . . . . . . . . . . . . . .
6.3.3.2 Electrochemical methods . . . . . . . . .

6.3.3.3 Sonochemical method . . . . . . . . . . .
6.3.3.4 Microwave-assisted methods . . . . . . .
6.4 Shape Control of Gold Nanoparticles . . . . . . . . . . .
6.4.1 Shaping Strategies with Seed-mediated
Growth . . . . . . . . . . . . . . . . . . . . . . .
6.4.2 Selective Binding of Capping Reagents . . . . . .
6.4.3 Underpotential Deposition of Heterometallic
Additives . . . . . . . . . . . . . . . . . . . . . .
6.4.4 Template-directed Synthesis . . . . . . . . . . . .
6.5 Synthetic Methods of Gold–Metal
Bimetallic Nanoparticles in Liquid Phase . . . . . . . . .
6.5.1 Structure and Composition of Gold–Metal
Bimetallic Nanoparticles . . . . . . . . . . . . . .
6.5.2 Synthetic Protocols of Gold–Metal
Bimetallic Nanoparticles . . . . . . . . . . . . . .
6.5.2.1 Co-reduction . . . . . . . . . . . . . . .
6.5.2.2 Seed-mediated growth . . . . . . . . . .
6.5.2.3 Galvanic replacement . . . . . . . . . . .
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .
7.

Functionalisation of Gold Nanoparticles

171
172
173
176
177
177
178

178
180
180
181
181
182
183
185
186
187
187
189
189
190
192
193
201

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.2 Geometric Considerations: Why Does the Size
Matter? . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
x


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in


b2699-fm

page xi

Contents

7.3

7.4

7.5

7.6
8.

7.2.1 Coordination and Arrangement of Surface Atoms .
7.2.2 Particle Curvature Influence . . . . . . . . . . . .
Major Strategies for Organic Chemical Derivatisation . . .
7.3.1 Self-Assembly of Monomeric Thiol and Amine
Molecules on Gold Nanoparticles . . . . . . . . .
7.3.2 Surface-regulating Polymers . . . . . . . . . . . .
7.3.3 Competitive Displacement . . . . . . . . . . . . .
Silica Capping of Gold Nanoparticles . . . . . . . . . . .
7.4.1 Primer-mediated Silica Coating . . . . . . . . . .
7.4.2 Direct Silica Coating . . . . . . . . . . . . . . . .
7.4.3 Other Protocols for Citrate-stabilised
Nanoparticle Coating . . . . . . . . . . . . . . . .
7.4.4 Silica-capping of CTAB-stabilised Gold
Nanoparticles . . . . . . . . . . . . . . . . . . . .
Biofunctionalisation of Gold Nanoparticles . . . . . . . .

7.5.1 Water-dispersible Gold Nanoparticles . . . . . . .
7.5.2 Non-biofouling Gold Nanoparticles . . . . . . . .
7.5.3 Active Biofunctional Gold Nanoparticles . . . . .
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . .

Chemical Synthesis of Gold Nanoparticles on Surfaces
and in Matrices
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .
8.2 Gold Nanoparticles Supported on Powder Inorganic
Supports . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.1 Deposition–Reduction (Deposition of Gold
Precursor) . . . . . . . . . . . . . . . . . . . . .
8.2.1.1 Impregnation and related methods . . .
8.2.1.2 Deposition–precipitation and related
methods . . . . . . . . . . . . . . . . .
8.2.1.3 Less common preparation methods . . .
8.2.1.4 Gold-based bimetallic catalysts prepared
by deposition–reduction . . . . . . . . .
8.2.2 Reduction in Liquid Phase . . . . . . . . . . . .
8.2.2.1 Chemical reduction . . . . . . . . . . .
xi

203
205
206
206
209
210
212
213

214
215
216
217
219
220
222
223

229
. 229
. 232
. 233
. 233
. 235
. 239
. 241
. 243
. 243


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page xii


Contents

8.2.2.2 Chemical reduction assisted by
microwave irradiation . . . . . . . . . . .
8.2.2.3 Photochemical deposition–reduction . . .
8.2.2.4 Sonochemical deposition–reduction . . .
8.2.2.5 Gold-based bimetallic catalysts obtained
by reduction in liquid phase . . . . . . . .
8.2.3 Reduction–Deposition (Deposition of Preformed
Gold Particles) . . . . . . . . . . . . . . . . . . .
8.2.3.1 Gold colloids . . . . . . . . . . . . . . .
8.2.3.2 Gold in micelles . . . . . . . . . . . . . .
8.2.3.3 Gold in dendrimers . . . . . . . . . . . .
8.2.3.4 Gold-based bimetallic catalysts prepared
by reduction–deposition . . . . . . . . . .
8.2.4 Specific Methods for the Preparation of Supported
Bimetallic Particles . . . . . . . . . . . . . . . . .
8.2.4.1 Bimetallic clusters . . . . . . . . . . . . .
8.2.4.2 Surface redox methods . . . . . . . . . .
8.3 Gold Nanoparticles Embedded into a Matrix . . . . . . .
8.3.1 Gold Embedded into an Inorganic Matrix . . . . .
8.3.1.1 Monometallic gold . . . . . . . . . . . .
8.3.1.2 Bimetallic systems . . . . . . . . . . . .
8.3.2 Gold in an Inorganic Matrix with Ordered
Porosity . . . . . . . . . . . . . . . . . . . . . . .
8.3.3 Gold on/in Organic Materials . . . . . . . . . . . .
8.3.4 Gold on/in Inorganic–Organic Materials . . . . . .
8.4 Gold Nanoparticles on Planar Surfaces . . . . . . . . . .
8.4.1 Non-ordered Deposition . . . . . . . . . . . . . .

8.4.2 Ordered Deposition . . . . . . . . . . . . . . . . .
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .
9.

Catalytic Properties of Gold Nanoparticles
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . .
9.2 CO Oxidation . . . . . . . . . . . . . . . . . . . . . .
9.3 Hydrocarbon Oxidation in the Presence of H2 or Other
Sacrificial Reductants . . . . . . . . . . . . . . . . . .
9.4 Oxidation Using Molecular O2 . . . . . . . . . . . . .
xii

244
244
245
245
247
248
251
252
253
258
258
258
260
261
261
263
264
265

266
268
268
269
270

285
. . 285
. . 286
. . 290
. . 293


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page xiii

Contents

9.5 Hydrogenation . . . . . . . . . . . . . . . . . . . . . . . 304
9.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 310
10. Plasmonic Photocatalysis
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Function of Gold and Mechanism of Plasmon-assisted

Reactions . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.1 Under UV Irradiation: Activation of
Semiconducting Support . . . . . . . . . . . . . .
10.2.2 Under Visible Irradiation: Activation of Plasmon
Resonance . . . . . . . . . . . . . . . . . . . . . .
10.2.2.1 Charge transfer (plasmon-assisted
photocatalysis) . . . . . . . . . . . . . .
10.2.2.2 Energy transfer (plasmon-assisted
photocatalysis) . . . . . . . . . . . . . .
10.2.2.3 Plasmonic heating (plasmon-assisted
catalysis) . . . . . . . . . . . . . . . . .
10.2.3 Mechanism Dependence on Properties
of Photocatalysts . . . . . . . . . . . . . . . . . .
10.2.3.1 Gold properties . . . . . . . . . . . . . .
10.2.3.2 Support properties . . . . . . . . . . . . .
10.2.3.3 Interaction interface between gold
and support . . . . . . . . . . . . . . . .
10.3 Application . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.1 Environmental Purification . . . . . . . . . . . . .
10.3.1.1 Water and wastewater treatment . . . . .
10.3.1.2 Gas phase purification (and artificial
photosynthesis) . . . . . . . . . . . . . .
10.3.1.3 Self-cleaning of surfaces . . . . . . . . .
10.3.2 Solar Energy Conversion . . . . . . . . . . . . . .
10.3.2.1 Photocurrent generation . . . . . . . . . .
10.3.2.2 Fuel generation . . . . . . . . . . . . . .
10.3.3 Synthesis of Organic Compounds . . . . . . . . .
10.4 Strategies for Activity and Stability Enhancement . . . . .
10.4.1 Nano-architecture Arrangement . . . . . . . . . .
xiii


319
319
321
324
327
328
331
332
335
335
337
338
340
340
340
342
343
344
344
345
348
349
349


April 29, 2017

9:57


Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page xiv

Contents

10.4.1.1 Gold properties: Extension of action for
overall solar spectrum . . . . . . . . . . . 349
10.4.1.2 Support properties and interface between
gold and support . . . . . . . . . . . . . . 351
10.4.2 Hybrid Nanostructures . . . . . . . . . . . . . . . 353
10.4.2.1 Heterogeneous nanostructures:
Plasmonic photocatalysts and other
solid materials . . . . . . . . . . . . . . . 353
10.4.2.2 Heterogeneous–homogeneous
photocatalysts (plasmonic
photocatalysts–metal complexes) . . . . . 354
10.4.2.3 Bimetallic plasmonic photocatalysts . . . 355
10.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 356
11. Electrical Generation of Light from Plasmonic
Gold Nanoparticles

365

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 365
11.2 Light from Electrons via Gold Nanoparticles: Mechanisms
and Experimental Set-ups . . . . . . . . . . . . . . . . . 366
11.2.1 Light from the Low-energy Electrical Excitation

of Gold: Biased Tunnel Junctions . . . . . . . . . 366
11.2.1.1 Excitation . . . . . . . . . . . . . . . . . 368
11.2.1.2 Emission . . . . . . . . . . . . . . . . . . 370
11.2.1.3 Probe size and experimental
apparatus for the local electrical
excitation of gold nanoparticles with
low energy electrons . . . . . . . . . . . 371
11.2.2 Light from the High-energy Electrical Excitation
of Gold: Cathodoluminescence . . . . . . . . . . . 372
11.2.2.1 Excitation and emission . . . . . . . . . . 372
11.2.2.2 Cathodoluminescence and
the radiative local electromagnetic
density of states . . . . . . . . . . . . . . 373
xiv


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page xv

Contents

11.2.2.3 Probe size and experimental apparatus
for the local electrical excitation

of gold nanoparticles with high-energy
electrons . . . . . . . . . . . . . . . . . .
11.3 Recent Achievements in the Electrical Generation
of Light from Gold Nanoparticles . . . . . . . . . . . . .
11.3.1 A Probe of Nanoscale Electronic Phenomena . . .
11.3.2 Selective Electrical Excitation and Imaging
of the Plasmonic Modes of Gold Nanoparticles . .
11.3.3 A Single Gold Nanoparticle as an Electrically
Driven Nanosource of Light . . . . . . . . . . . .
11.3.4 A Gold NanoparticleArray as an Electrically Driven
Optical Antenna or Resonator . . . . . . . . . . .
11.4 Towards On-chip Applications of Electron-to-photon
Energy Conversion Using Gold Nanoparticles . . . . . . .
11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .
12. Surface Structures of Gold and Gold-based
Bimetallic Nanoparticles
12.1 Introduction . . . . . . . . . . . . . . . . . . .
12.2 Background . . . . . . . . . . . . . . . . . . .
12.3 Surface Structures of Gold Single Crystals . .
12.4 Morphology of Gold Nanoparticles: General
Considerations . . . . . . . . . . . . . . . . .
12.5 Planar Supports . . . . . . . . . . . . . . . . .
12.6 Gold Deposition on Planar Supports . . . . . .
12.6.1 Physical Vapour Deposition . . . . . .
12.6.2 Cluster Deposition . . . . . . . . . . .
12.6.3 Reactive Deposition Methods . . . . . .
12.6.4 Deposition from Solution . . . . . . . .
12.6.5 Deposition of Ordered Particles . . . .
12.7 Surface Science Studies of Gold Nanoparticles
12.7.1 Nucleation and Growth . . . . . . . . .

12.7.2 Particle Size Effects . . . . . . . . . . .
12.7.3 Environmental Effects . . . . . . . . .
12.8 Two-dimensional Gold . . . . . . . . . . . . .
xv

375
375
377
378
381
383
384
386

393
. . . . . . 393
. . . . . . 395
. . . . . . 397
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.

399
403
405
405
407
411
412
413
415
415
419
421
423


April 29, 2017

9:57


Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page xvi

Contents

12.9 Au-based Bimetallic Nanoparticles . . . . . . . . . . . . 425
12.10 Concluding Remarks . . . . . . . . . . . . . . . . . . . 429
13. Theoretical Studies of Gold Nanoclusters in Various
Chemical Environments: When the Size Matters
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .
13.2 Computational Methods . . . . . . . . . . . . . . . . .
13.3 Clusters in Gas Phase . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .
13.3.1 Cationic Clusters Au+
N

13.3.2 Anionic Clusters AuN . . . . . . . . . . . . . . .
13.3.3 From Flakes to Cages to Tubes: Anionic Clusters
with N = 13–24 . . . . . . . . . . . . . . . . .
13.3.4 Au−
16 : The Smallest Golden Cage
and the Manifestation of Shell Closing
of 18 Delocalised Electrons . . . . . . . . . . . .
13.3.5 Anionic Clusters with N > 30 . . . . . . . . . .
13.4 Ligand-protected Nanocluster . . . . . . . . . . . . . .
13.4.1 Synthesis of Ligand-protected Gold

Nanoparticles . . . . . . . . . . . . . . . . . . .
13.4.2 The Noble Metal–Thiolate Bond . . . . . . . . .
13.4.3 Early Theoretical Models . . . . . . . . . . . . .
13.4.4 The ‘Divide and Protect’ Concept . . . . . . . .
13.4.5 The Experimental Breakthroughs: X-Ray
Crystallography for All-thiolate Protected
Au102 and Au25 Clusters and the Success
of the Superatom Model . . . . . . . . . . . . .
13.4.6 Phosphine-stabilised Au11 and Au39 Clusters:
Superatoms with 8 and 34 Electrons . . . . . . .
13.4.7 The Unifying Superatom Concept . . . . . . . .
13.4.8 Use of the Superatom Concept to Understand
the Reactivity of Gold Clusters: Dioxygen
Activation and CO Oxidation . . . . . . . . . . .
13.5 Gold-based Bimetallic Clusters . . . . . . . . . . . . .
13.6 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . .
xvi

.
.
.
.
.

437
437
439
441
441
443


. 447

. 449
. 451
. 452
.
.
.
.

452
455
457
458

. 460
. 465
. 466

. 468
. 470
. 473


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in


b2699-fm

page xvii

Contents

14. Optical and Thermal Properties of Gold Nanoparticles
for Biology and Medicine
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . .
14.2 Gold Nanoparticles for Biomolecule Sensing . . . . . . .
14.2.1 LSP Sensing: Concept and Motivation . . . . . . .
14.2.2 Sensitivity of LSPR Sensors . . . . . . . . . . . .
14.2.3 State of the Art in LSP Sensing: From Single
Particle to Engineered Architectures . . . . . . . .
14.2.4 Towards Integrated Biosensing Platforms . . . . .
14.3 Gold Nanoparticles as Contrast Agents for Bio-imaging:
Application to Cancer Diagnosis . . . . . . . . . . . . . .
14.3.1 Linear Imaging Techniques . . . . . . . . . . . . .
14.3.1.1 Reflectance microscopy . . . . . . . . . .
14.3.1.2 Dark-field microscopy . . . . . . . . . .
14.3.1.3 Enhanced-fluorescence microscopy . . . .
14.3.2 Nonlinear Imaging Techniques . . . . . . . . . . .
14.3.2.1 Multiphoton imaging . . . . . . . . . . .
14.3.2.2 SERS imaging . . . . . . . . . . . . . . .
14.3.2.3 Two-photon induced luminescence . . . .
14.3.3 Photo-acoustic Imaging . . . . . . . . . . . . . . .
14.4 Photothermal Properties of Gold Nanoparticles and their
Application to Photothermal Cancer Therapy . . . . . . .
14.4.1 Optimising Heat Generation in Gold

Nanoparticles . . . . . . . . . . . . . . . . . . . .
14.4.2 Photothermal Therapy (Thermal Ablative
Therapy) . . . . . . . . . . . . . . . . . . . . . .
14.5 Drug Delivery . . . . . . . . . . . . . . . . . . . . . . .
14.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . .
15. Physical and Chemical Processes for Gold Nanoparticles
and Ionising Radiation in Medical Contexts
15.1 Introduction . . . . . . . . . . . . . . . . . . . . .
15.1.1 Radiobiology . . . . . . . . . . . . . . . .
15.1.2 Radiotherapy and Radiosensitisers . . . . .
15.1.3 Basic Principles of the Interactions of
Radiation with Matter . . . . . . . . . . . .
xvii

483
483
484
484
485
486
489
491
491
492
492
494
496
496
497
498

498
500
501
504
505
506

509
. . . . 509
. . . . 513
. . . . 515
. . . . 517


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page xviii

Contents

15.2 Physical Processes . . . . . . . . . . . . . . . .
15.2.1 Nanoscale Local Effect Description . . .
15.2.2 Nanoparticle Imaging and the Role of the
Photoelectrons . . . . . . . . . . . . . .

15.3 Chemical Processes . . . . . . . . . . . . . . . .
15.4 Conclusions and Future Outlook . . . . . . . . .

. . . . . 521
. . . . . 522
. . . . . 528
. . . . . 530
. . . . . 532

16. Gold Nanoparticles for Sensors and Drug Delivery
16.1 Gold Nanoparticles for Health . . . . . . . . . . . . .
16.1.1 Overview and Societal Issues . . . . . . . . . .
16.1.2 Surface Modification of Gold Nanoparticles . .
16.1.3 Gold Nanoparticles and Biocompatibility . . .
16.2 Gold Nanoparticles for Diagnosis . . . . . . . . . . .
16.2.1 Detection of Gold Nanoparticles Using Optical
Techniques . . . . . . . . . . . . . . . . . . .
16.2.1.1 SPR-based techniques . . . . . . . . .
16.2.1.2 Fluorescence . . . . . . . . . . . . .
16.2.1.3 Modification of absorbance . . . . . .
16.2.2 Tomography and Gold Nanoparticles . . . . . .
16.3 Gold Nanoparticles for Medical Treatment . . . . . .
16.3.1 Gold Nanoparticles as Delivery Vehicles . . . .
16.3.1.1 Problem for specific delivery . . . . .
16.3.1.2 Gold nanoparticles and drug transport
16.3.2 Heat Reaction . . . . . . . . . . . . . . . . . .
16.4 Other Biological Applications of Gold Nanoparticles .
16.4.1 Localisation of Proteins in Tissues . . . . . . .
16.4.1.1 Electronic microscopy . . . . . . . .
16.4.1.2 Reflection/fluorescence . . . . . . . .

16.4.2 Immunisation Using Gene Gun . . . . . . . . .
16.4.3 Gold Nanoparticles and Fingerprints . . . . . .
16.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.

.
.
.
.
.

537
537
537
538
540
542

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

543

544
547
548
554
556
556
556
557
559
562
562
562
565
566
567
568

17. What About Toxicity and Ecotoxicity of Gold Nanoparticles?
575
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 575
17.2 Impact of Gold Nanoparticles on Human Health . . . . . 576
xviii


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in


b2699-fm

page xix

Contents

17.2.1 The Toxicological Approach, Applied
to Nanoparticles . . . . . . . . . . . . . . . .
17.2.2 Biokinetics and Target Organs of Gold
Nanoparticles after Systemic Exposure . . . .
17.2.3 Translocation of Gold Nanoparticles through
Physiological Barriers . . . . . . . . . . . .
17.2.4 Cellular Toxicity, In Vitro Studies . . . . . .
17.3 Environmental Impact of Gold Nanoparticles . . . .
17.3.1 What Can Make Nanoparticles Toxic for the
Environment? . . . . . . . . . . . . . . . . .
17.3.2 Impact of Gold Nanoparticles on Unicellular
Organisms: Bacteria and Algae . . . . . . . .
17.3.3 Impact of Gold Nanoparticles on Aquatic
Organisms: Daphnids, Bivalves, Fishes . . .
17.3.4 Impact of Gold Nanoparticles on Plants . . .
17.4 Conclusions . . . . . . . . . . . . . . . . . . . . . .
18. Technological Applications of Gold Nanoparticles
18.1 Introduction . . . . . . . . . . . . . . . . . . . .
18.2 Electronic and Opto-electronic Applications . . .
18.2.1 Applications of the Optical and Electronic
Properties of Gold . . . . . . . . . . . .
18.2.2 Sinter Inks . . . . . . . . . . . . . . . .
18.2.3 Spectrally Selective Coatings . . . . . . .
18.2.4 Nonlinear Optical Applications . . . . . .

18.2.5 Data Storage . . . . . . . . . . . . . . .
18.2.6 Single-Electron Conductivity and
Quantum Devices . . . . . . . . . . . . .
18.3 Catalytic Applications . . . . . . . . . . . . . .
18.4 Decorative Applications . . . . . . . . . . . . .
18.4.1 Historic Uses in Ceramics and Glass . . .
18.4.2 Colouring Textiles . . . . . . . . . . . .
18.4.3 Use in Paint and Polymers . . . . . . . .
18.5 Use in Sensors and Biomedical Diagnostics . . .
18.5.1 Refractometric Sensors . . . . . . . . . .
xix

. . . 576
. . . 581
. . . 584
. . . 587
. . . 590
. . . 590
. . . 591
. . . 595
. . . 597
. . . 598

601
. . . . . 601
. . . . . 602
.
.
.
.

.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

602
603
605
605

608

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

609
610
610
610
611
611
612
612


April 29, 2017

9:57


Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

page xx

Contents

18.5.2 Colorimetric Assays and Related Diagnostic
Techniques . . . . . . . . . . . . . . . . . . .
18.5.3 Assays Based on Quartz Microbalance . . . . .
18.5.4 Contrast Enhancement in Electron and Optical
Microscopy . . . . . . . . . . . . . . . . . . .
18.5.5 Bifunctional Metallo-dielectric Hybrids
for Microscopy . . . . . . . . . . . . . . . . .
18.5.6 Surface-enhanced Raman Spectroscopy . . . .
18.5.7 Two-photon Technologies . . . . . . . . . . .
18.6 Potential or Actual Therapeutic Applications . . . . .
18.6.1 Drug Delivery . . . . . . . . . . . . . . . . . .
18.6.2 Gene Therapy . . . . . . . . . . . . . . . . . .
18.6.3 Radiotherapy . . . . . . . . . . . . . . . . . .
18.6.4 Hyperthermal Techniques . . . . . . . . . . . .
18.7 Environmental Remediation . . . . . . . . . . . . . .
18.8 Conclusions and Outlook . . . . . . . . . . . . . . . .

. . 613
. . 614
. . 616
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

616
617
617
617
618
619
619
620
621

621

Glossary

627

Index

633

xx


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

About the Authors

Chapters 1 and 8
Catherine Louis is a Research Director at the
Laboratoire de Réactivité de Surface of the
University Pierre et Marie Curie. She has been
with the academic group since 1982, when she
was appointed by the French National Centre
of Research (CNRS). She received her PhD in

Chemistry in 1985 (prepared under the direction of Prof. Michel Che). From 1986 to 1988,
she was a post-doctoral fellow at the University of Berkeley with Prof. Alex Bell. She
is a specialist in catalyst preparation and has
worked on gold-based monometallic and bimetallic catalysts since 2000.
She has authored around 140 publications. She co-authored Catalysis by
Gold (Imperial College Press, 2006) with Geoffrey C. Bond and David T.
Thompson. She is also the author of seven book chapters on synthesis of supported metal catalysts and CO oxidation of gold nanoparticles. From 2006
to 2013, she was the Director of Or-Nano (www.or-nano.com), a CNRS
network gathering around 500 French researchers (physics, chemists and
biologists) working with gold nanoparticles.

xxi

page xxi


April 29, 2017

9:57

Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

About the Authors

Chapter 2
Pekka Pyykkö was an Associate Professor
of Quantum Chemistry at Åbo Akademi University (1974–1984) and Professor of Chemistry at the University of Helsinki (1984–
2009). Since November 2009, he is enjoying research there as Professor Emeritus. He

currently has published about 320 papers. He
identified the chemical difference between silver and gold as a relativistic effect (1976, with
Jean-Paul Desclaux), pointed out the importance of electron correlation, or dispersion,
effects in aurophilicity 1991 (with Zhao Yongfang and later co-workers)
and wrote the reviews Theoretical Chemistry of Gold I–III (2003–2008). He
chaired the European Science Foundation programme Relativistic Effects
in Heavy-Element Chemistry and Physics (REHE) during which the Hanau
conference on the Science and Technology of Gold was held in 1996.

Geoffrey C. Bond held academic positions
at the Universities of Leeds and Hull before
being appointed Head of the Johnson Matthey
Research Group on Catalysis (1962–1970).
He then became Professor of Applied Chemistry at Brunel University, Uxbridge, where
he held various posts (Head of the Chemistry Department, Dean of the Faculty of Science, Vice-Principal) until his retirement in
1992. His research has mainly concerned supported metal catalysts for hydrogenation and
hydrogenolysis and supported oxides for selective oxidation. He has published more than 250 scientific papers and review articles. Since retirement,
he has worked on gold catalysts, and has co-authored several review articles
as well as the book Catalysis by Gold published by Imperial College Press.
Earlier books include Catalysis by Metals (1962), Heterogeneous Catalysis,
Principles and Applications (2nd edn., 1987) and Metal-Catalysed Reactions of Hydrocarbons (2005).
xxii

page xxii


April 29, 2017

9:57


Gold Nanoparticles for Physics, …9in x 6in

b2699-fm

About the Authors

Chapter 3
Olivier Pluchery graduated from the Ecole
Normale Supérieure de Cachan (Paris, France)
in 1997 with a specialisation in laser physics.
He obtained his PhD in chemical physics from
University Paris-Sud in 2000 and was interested in the investigation of the electrochemical reactions on a gold interface, monitored
with sum frequency generation, a nonlinear
optical spectroscopy. In 2001, he joined Yves
Chabal’s team at Bell Labs (USA) to work on
semiconductor interfaces. In 2002, he obtained
a position as Associate Professor at University Pierre et Marie Curie (Paris)
where he developed several research programmes dealing with the control
of the adsorption of organic molecules on silicon for molecular electronics
and the use of gold nanoparticles for nanoelectronics. He is the founder with
Catherine Louis of the research network Or-Nano (www.or-nano.com).

Chapter 4
Bruno Palpant is a Professor at CentraleSupélec in Paris region. He leads research
activities in the Quantum and Molecular
Photonics Laboratory (LPQM, belonging to
CNRS, CentraleSupélec and Ecole Normale
Supérieure de Cachan). He is in charge of a
group devoted to the study and application
of the ultrafast transient optical and thermal

responses of plasmonic nanoparticles. He got
his PhD in 1998 from University of Lyon
(France) about quantum size effects in the optical properties of noble metal nanoparticles, before joining Keio University
(Japan) for one year. Assistant professor in the Institut des NanoSciences de
Paris (CNRS-UPMC) for 10 years, he has been interested in the linear and
non-linear optical responses of noble metal nanoparticles as well as their
xxiii

page xxiii


×