Tải bản đầy đủ (.docx) (127 trang)

Ứng dụng phương trình sai phân tuyến tính trong sinh học

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (615.17 KB, 127 trang )

1

BỘ GIÁO DỤC VÀ ĐÀO TẠO
TRƯỜNG ĐẠI HỌC SƯ PHẠM HÀ NỘI 2
………………………………………

NGUYỄN HUY NGHĨA

ỨNG DỤNG
PHƯƠNG TRÌNH SAI PHÂN TUYẾN TÍNH
TRONG SINH HỌC
Chuyên ngành Toán Giải tích
Mã số: 60 46 01

LUẬN VĂN THẠC SĨ TOÁN HỌC

Người hướng dẫn khoa học: TS Nguyễn Văn Hùng

HÀ NỘI 2009


LỜI CẢM ƠN
Luận văn được thực hiện và hoàn thành dưới sự hướng dẫn nhiệt tình của
Tiến sĩ Nguyễn Văn Hùng, thầy đã truyền thụ cho tác giả những kinh nghiệm
quí báu trong học tập và nghiên cứu khoa học. Tác giả xin bày tỏ sự kính trọng,
lòng biết ơn chân thành tới thầy.
Tác giả chân thành cảm ơn Ban Giám Hiệu Trường ĐHSP Hà Nội 2,
phòng Sau Đại học đã tạo điều kiện thuận lợi cho tác giả kết thúc tốt đẹp chương
trình Cao học và hoàn thành luận văn tốt nghiệp.
Tác giả trân trọng cảm ơn Sở Giáo dục và Đào tạo Bắc Giang, Trường
THPT Lạng Giang số 1 đã tạo điều kiện giúp đỡ để tác giả an tâm học tập và


hoàn thành tốt luận văn.
Tác giả xin cảm ơn bạn bè, đồng nghiệp đã động viên, khích lệ trong suốt
quá trình viết luận văn.
Hà Nội, tháng 9 năm 2009
Tác giả


LỜI CAM ĐOAN
Tôi xin cam đoan luận văn là công trình nghiên cứu của riêng tôi.
Trong khi nghiên cứu luận văn, tôi đã kế thừa thành quả nghiên cứu của
các nhà khoa học, nhà nghiên cứu với sự trân trọng và biết ơn.
Hà Nội, tháng 9 năm 2009
Tác giả


MỤC LỤC
Trang phụ bìa………………………………………………………………..………..
Lời cảm ơn….…………………………………………………………………..…….
Lời cam đoan…………………………………………………………………………
Mục lục…………………………………………………………………………….....
MỞ ĐẦU……………………………………………………………………………..
NỘI DUNG………………………………………………………………………..….
Chương 1. Kiến thức chuẩn bị…………………………………………………….….
1.1. Dãy số…………………………………………………………………….….
1.2. Sai phân……………………………………………………………………...
1.2.1.
Định nghĩa……………………………………………………………....
1.2.2.
Tính chất………………………………………………………………..
1.2.3.

Một số ứng dụng trong toán phổ thông…………….…………………..
Chương 2. Phương trình sai phân tuyến tính…………………………………..……..
2.1. Phương trình sai phân tuyến tính…………………………………….……...
2.1.1.
Định nghĩa……………………………………………………………..
2.1.2.
Nghiệm của phương trình sai phân tuyến tính….……………………..
2.2. Dạng chính tắc của phương trình sai phân tuyến tính ……………………...
2.3. Phương trình sai phân tuyến tính với hệ số hằng số ………………………..
2.3.1.
Phương trình sai phân tuyến tính cấp 1 với hệ số hằng số ……………
2.3.2.
Phương trình sai phân tuyến tính cấp 2 với hệ số hằng số…………….
2.4. Phương trình sai phân tuyến tính với hệ số biến thiên……………………...
2.4.1.
Phương trình sai phân tuyến tính cấp 1 với hệ số biến ………………..
2.4.2.
Phương trình sai phân tuyến tính cấp 2 với hệ số biến thiên…………..
2.5. Hệ phương trình sai phân- phương trình phân thức…………………….…...
2.5.1.
Hệ phương trình sai phân……………………………………………...
2.5.2.
Phương trình phân thức………………………………………………..
2.6. Tuyến tính hoá……………………………………………………………....
2.6.1.
Tuyến tính hoá phương trình sai phân…………………………………
2.6.2.
Một số phương trình sai phân tự tuyến tính hoá……………………….
2.6.3.
Tuyến tính hoá phương trình sai phân bằng cách đặt ẩn phụ………….

Chương 3. Một số ứng dụng phương trình sai phân tuyến tính trong sinh học……....
3.1. Sự phân chia tế bào……………………………………………………….…
3.2. Sự sinh trưởng của một quần thể côn trùng………………………………....
3.3. Sự sinh trưởng của các sinh vật phân đốt……………………………….…...
3.4. Mô hình về sự sinh sản các tế bào hồng cầu……………………….………..
3.5. Dung tích khí lưu thông và mức độ CO 2 trong máu………………………..
3.6. Sự phát triển của thực vật một năm…………………………….…………...
3.7. Sự hoạt động của mạng thần kinh……………………………….…………..
3.8. Sự hoạt động của các cơ quan cảm giác…………………………………….
KẾT LUẬN……………………….…………………………………………..……...
TÀI LIỆU THAM KHẢO…………………………………………………..………..

1. Lý do chọn đề tài

Trang
1
2
3
4
5
7
7
7
7
7
8
11
15
15
15

16
24
25
25
30
42
42
43
45
45
47
48
48
52
53
56
56
57
59
63
65
67
71
75
76
80


MỞ ĐẦU
Phương pháp sai phân là một phương pháp quan trọng trong việc giải

các bài toán thực tiễn. Phương pháp sai phân được sử dụng để giải phương
trình các toán tử nói chung, đặc biệt là giải phương trình vi phân, phương
trình đạo hàm riêng. Phương pháp sai phân được áp dụng rộng rãi trong nhiều
lĩnh vực khoa học như: Vật lí, điều khiển học, y học…Nhờ vào việc giải
phương trình và hệ phương trình sai phân mà có thể dự báo được sự phát
triển dân số, dự báo về việc điều chỉnh trong nền kinh tế quốc dân qua
nghiên cứu mô hình ngoại thương giữa các nước, định hướng việc phát
triển diện tích gieo trồng loại cây nông sản nào đó…Kiến thức về sai phân còn
được áp dụng vào các quá trình sinh học. Kiến thức này giúp ta thiết lập mô
hình sinh học, phân tích đặc tính mô hình này và đặc tính nghiệm của chúng
để từ đó điều chỉnh mô hình sao cho phù hợp với thực tế. Với lý do nêu
trên, tôi đã chọn đề tài: “ Ứng dụng phương trình sai phân tuyến tính trong
Sinh học” để thực hiện luận văn tốt nghiệp.
2. Mục đích nghiên cứu
Luận văn nghiên cứu phương trình sai phân tuyến tính cấp 1, cấp 2 và
bài toán tuyến tính hoá phương trình sai phân.
Luận văn nghiên cứu các ứng dụng của phương trình sai phân tuyến tính
vào các quá trình sinh học .
3. Nhiệm vụ nghiên cứu
Chương 1: Trình bày định nghĩa sai phân, tóm tắt các tính chất cơ bản,
một vài ứng dụng trong giải toán phổ thông.
Chương 2: Trình bày về phương trình sai phân tuyến tính cấp 1 và cấp
2, phương trình sai phân với hệ số biến thiên, hệ phương trình sai phân,
tuyến tính hoá phương trình sai phân một cách có hệ thống.


Chương 3: Nêu các bài toán ứng dụng phương trình sai phân tuyến
tính trong sinh học, trong đó có nêu ra cách thiết lập các phương trình sai
phân đã biết cách giải. Từ việc phân tích phương trình và đặc tính nghiệm
của phương trình từ đó nêu ra các nhận xét mang tính dự báo hoặc kiến

nghị về việc điều chỉnh trong các quá trình sinh học.
4. Đối tượng và phạm vi nghiên cứu
Sai phân, phương trình và hệ phương trình sai phân tuyến tính,
tuyến tính hoá phương trình sai phân.
Một số áp dụng của phương trình sai phân tuyến tính trong sinh học
như: sự phân chia tế bào, sự sinh trưởng của một quần thể côn trùng, sự
sinh trưởng của các sinh vật phân đốt, sự sinh sản của tế bào hồng cầu, sự
sinh trưởng của thực vật một năm, mức độ CO2 và dung tích khí lưu thông
trong máu, sự hoạt động của mạng thần kinh, sự hoạt động của các cơ
quan cảm giác.
5. Phương pháp nghiên cứu
Nghiên cứu tài liệu chuyên khảo.
Tổng hợp kiến thức thu nhận được để vận dụng cho mục đích
nghiên cứu.
6. Những đóng góp mới của đề tài
Luận văn đã trình bày được một số ứng dụng của phương trình sai
phân tuyến tính trong sinh học. Hy vọng luận văn có thể làm tài liệu tham
khảo cho sinh viên quan tâm nghiên cứu về toán ứng dụng.


NỘI DUNG
Chương 1. KIẾN THỨC CHUẨN BỊ
1.1. Dãy số
Gọi M là tập hợp n+1 số tự nhiên đầu tiên: M= {0, 1, 2,…, n}. Một hàm số
x xác định trên tập M được gọi là một dãy số hữu hạn và tập giá trị của dãy số
hữu hạn này là:

 x(0) x0, x(1) x1 ,...., x(n) xn

Một hàm số x xác định trên tập N được gọi là một dãy số vô hạn ( gọi tắt

là dãy số) và tập giá trị của dãy số gồm vô số phần tử là:

 x(0) x0, x(1) x1,...., x(n) xn ,...
Vậy: Ta có thể xem dãy số là một hàm của đối số tự nhiên n, với kí hiệu:
x(n) xn, n Æ
1.2. Sai phân
1.2.1. Định nghĩa
Hàm số
x : ®  cho trước. Ta gọi
hiệu:

xn
x

1 x
là sai phân
n
n

cấp 1 của hàm số x(n) xn, n Æ
Ta gọi sai phân của sai phân cấp 1 của hàm số xn là sai phân cấp 2 của
hàm xn , kí hiệu:
2xn (xn)
(x
x
2x 2
n

xn
n1


xn)
1
x
n

2 
x

xn
1
(x
n

n

)
 (x
n1

1

xn )

n

Định nghĩa theo quy nạp: Sai phân của sai phân cấp k-1 của hàm số xn là
sai phân cấp k của hàm xn :



k
 xn


k
1x
 1
n

k

i i
k
∑ (1) .C
.x
k nki
i0

xn


( 1.1)

k!
trong đó Ci 
k i!k i !
Từ nay về sau, ta gọi tắt sai phân cấp 1 là sai phân.
1.2.2.

Tính chất


Tính chất 1: Sai phân các cấp đều biểu diễn qua các giá trị của hàm số
theo công thức ( 1.1) .
Chứng minh: Ta chứng minh công thức ( 1.1) bằng phương pháp quy nạp toán
học. Thật vậy: Với n= 1 ta có xn
x

x
1C 0nx
n

1
1 n
k

k
Giả sử ( 1.1) đúng với n= k, có nghĩa là:

C1xn
1
i

 x  ∑ (1) .C .x
n i 0
k n k i

Ta chứng minh ( 1.1) đúng với
i n= k+1, tức là chứng minh:

k

k
i
1

n k
 ∑ (1) k
.C i0
.x 1i
1x
1
n
Vế trái của ( 1.2) là:
 k 1xn k xn
1
k


 k xn

i

k

(1)i .C .x
i


1
0


k n ki i


0
k



i
(1)i .C .x

0

i

i
(1) .C .x

k1
1
n ki

 ∑ (1)
1

i

k nki
i
1


i1
.C

.x
1

( 1.2)


i k
i
nki
i
1
i1
k
1

 ∑ (1) .C .x
.x (1) .C
1
1
0
1

k
nk i
k nk i
i

i

k

i
k
x


1

nk

i

i

∑ (1) .C
.x
1
k
i
nk1i

k
i1
 ∑ (1)
1

i

1

k1
(1)

.C
.x
k

nk1i

xn


i

k

i
i
k
1).
x
 ∑ (1) .(C
(1 1x
C
n
)
x
nk i

k
k
nk1i
1
i
1
k
i
k k1
0 0
(1) .C .
.x
 ∑ (1) .C
(1 1.
.
)
x
C
x
k1 nk1 i
k nk1i
nk1i1
0
1
1
k1
k
i
1 (1) .Ci .x
 ∑

k nk1i
i0
1
*
Đây là vế phải của ( 1.2). Suy ra ( 1.2) đúng k Æ .
*
Vậy công thức ( 1.1) đúng với k Æ (Điều phải chứng minh).
Hệ quả: Nếu xn c thì xn c c c 0,nÆ
Tính chất 2: Sai phân mọi cấp của hàm số là một toán tử tuyến tính, nghĩa
k (axn byn ) ak xn bk yn; a, b , k 1, 2,...

là:

Chứng minh: Với a,b, k 1, 2,...ta có:
k (axn byn )


.
a.x

i
k ∑ (1)
i
.C
i0
k

k i(1)

.C

i0

k

nki
i i
a. (1) .C
.x

k
i0

.
(a.x

i

 b.y

k

nki
.b.y
i
k
 ∑ (1)
i
.C
i0
k


k

)
nki

nki

i i

b. (1) .C
a
.y


k nki
i0

nki
Đây là điều phải chứng minh.

k

k
xn b yn


Tính chất 3: Sai phân cấp k của đa thức bậc m là:
i)


Đa thức bậc m- k khi k< m

ii)

Hằng số khi k= m

iii)

Bằng 0 khi k> m

Chứng minh: Theo tính chất 2 thì sai phân cấp k cũng là toán tử tuyến tính, nên
ta chỉ cần chứng minh cho đơn thức P (n)
m
nm

là đủ.


10

i)

Ta có:

0
1
2 2
m m
nm (n 1)m nm C
m C

m .n C
m .n ...C .n
m
nm


C0 C1 .n C 2 .n2 ...C m 1.nm 1
(n)
P
m m
m
m
( 1.3)
m1
Giả sử k= s< m thì
 s nm Pms (n)
Ta chứng minh k= s+1< m thì

Thật vậy:

 s1nm
P

(n)
ms1

 s1nm  s (n 1)m
 s nm

Pms (n 1) Pms (n),

P
(n)
ms1
(n) , k< m.
k m
Suy ra  n P
mk

(theo(1.3))

ii)

Theo chứng minh trên khi k= m ta có:
( hằng số).
m nm Pmm (n) P (n) c
0

iii)

Khi k> m ta có:

k m
k m m m
k m
k m1
 n 
( n ) 
.c 
(c) 0 ( Theo hệ quả tính chất
1) Kết thúc chứng minh.


N

k

k

1x

k
1x , k Æ*
a

Tính chất 4: Ta có: ∑  xn
na


Chứng minh: Ta có
N 1
N k
N


)
)
) ...(k 1x )


k
1

k
1
x

k
1
(
x (
x
(∑ x


n
n n a
n
a
a 1
N
a
 k1
 k1xa
k1x
1

k
1
1 k1x
2 k1x
1
N

...
x
x


N 
a
a
a


11

k 1x

k 1xa , k Æ*
N 1
Suy ra điều phải chứng minh.


1.2.3. Một số ứng dụng trong toán phổ thông
1.2.3.1.
Tính tổng
Ví dụ 1: Tính tổng sau: S  n k
nÆ *
1
,

k1 k !
k 1




Giải: Ta có: k!
n k 1 n 

1

1


1

1 
1 




  k 1! 
!k 1! k  k!   k 1! 

1



1

0








1

Vậy:
S

 ∑ 
   


k1 k ! k1  k 1!
n!
n!


 ∑

Ví dụ 2: Tính các tổng sau:
n sin kx ; 2.
n cos kx
1. A  ∑
B  ∑

Giải:


 Ta có:

k
1

1
1
1
x



cos k  x cos k  x cos k  x 2sin kx.sin



2
2
2
2


Suy ra:

k1






1

cos k  x


2


sin kx




n

2sin

2 1
cos k  x



sin kx
k 1

k1
x
-2sin
nx





x

n
Vậy:





2



2sin
n 1
2

2
x.sin
x

1
x

cos n  x cos

sin


n 1







2
2sin

2
x
2

x.sin

2 
2 x
Kết quả: A 

nx
2


2sin

2


n
∑ sin kx 

ssin
in

n 1
2

x.sin

2

k1

sin

x
2

nx
2


 Ta có:

1
1
1




sin xk  x sin k  x sin k  x 2cos
kx.sin



2
2
2
2


Suy ra:

n



1




2

sin k 

∑x


n
cos kx
∑ k 1

k1
x







sin n 








2cos
nx

2



Kết quả: B



2sin

2
x.sin

sin

n 1

2 

x

2sin

1

2

n
∑ cos kx 

cos

k1

x.sin


2

n 1
2

x.sin
x

sin

x

sin



x  sin


2

2sin
n 1



nx




x

2
x
2

2

2
nx
2

2

1
1
1
Ví dụ 3: Tính tổng: S  2  2 ... 2 ,( n 2, nÆ)
A
A
An
2
3
n!
2
Giải: Ta có:
An 
n  n 1
 n 2!
1

1  1 1 1


n
n 1
A2n n  n 1 n
1


n



k2 A2
k

Vậy:

1
S  
A2
2

n

1



1


1 n 1
1 




k2 n 1

n

n

1
1 n 1
... 
,( n 2, nÆ)
2
2
n
A
An
3

1.2.3.2.

Tìm số hạng tổng quát của dãy số


Ví dụ 1: Cho dãy số: 1, -2, -2, 1, 7, 16, 28,…. Tìm số hạng tổng

quát của dãy số đó.


Giải: Để tìm số hạng tổng quát ( hay qui luật) của dãy số ta lập bảng
sai phân sau:
un f  n  1

-2
-3

un

-2
0

3

2u n

1
3

3

7
6

16
9


3

3

28
12

3

Do 2un =3 là hằng số nên un  f  n  là đa thức bậc 2.
Giả sử:

f  n an2 bn c  a 0, n là số thứ tự của các phần tử trong dãy.

Cho n= 0, 1, 2 ta được hệ phương trình sau:
3

a 

c 1

92

a b c
 b 
2


2


4a 2b c 2 

c 1



3 2 9
Vậy số hạng tổng quát của dãy số là: u  n  n 1; n 0, 1, 2,...
n 2
2
3
2 9
hay u   n 1   n 1 1; n 1, 2, 3,...
n 2
2
Ví dụ 2: Tìm số hạng tổng quát của dãy số sau:
1, 3, 11, 31, 69, 131, …
Giải: Để tìm số hạng tổng quát ( hay qui luật) của dãy số ta lập
bảng sai phân sau:
un f  n  1
un
2u n
 3u n

3
2

11
8


6

31
20

12
6

3
Do  un =6 là hằng số nên un


69
38

18
6

131
62

24
6

f  n  là đa thức bậc 3.


Giả sử:

f  n an3 bn2 cn d  a 0, n là số thứ tự của các phần tử

trong

dãy. Cho n= 0, 1, 2, 3 ta được hệ phương trình sau:
c 1

a b c d
3



a 1

b 0




c 1
8a 4b 2c d 11
 d 1
27a 9b 3c d



31

3
Vậy số hạng tổng quát của dãy số là: un n n 1; n 0, 1, 2,...
hay un n3 3n2 4n 1; n 1, 2, 3,...



Chương 2. PHƯƠNG TRÌNH SAI PHÂN TUYẾN TÍNH

2.1.

Phương trình sai phân tuyến tính

2.1.1.

Định nghĩa

Định nghĩa 1: Phương trình sai phân tuyến tính là một hệ thức tuyến tính
giữa sai phân các cấp: F (xn, xn, 2xn,..., k xn) 0
Hiểu: xn là sai phân cấp 0 của hàm xn , cấp lớn nhất của sai phân là cấp của
phương trình sai phân tuyến tính ( cấp k).
Định nghĩa 2: Phương trình sai phân tuyến tính của hàm xn là một biểu
thức tuyến tính giữa các giá trị của hàm xn tại các điểm khác nhau:
L xn
a
...a xn
1 fn
a x
x1
h0
nk
nk
k

( 2.1)


Trong đó: L
h là kí hiệu toán tử tuyến tính tác dụng lên hàm xn , xác định trên
lưới có bước h;

ai (i 0, 1, 2...,

là các hằng số hoặc các hàm số của n gọi là

k)
các hệ số của phương trình sai phân ( với a0 0, ak
0 ); fn là hàm số của n
được gọi là vế phải; xn là các giá trị cần tìm được gọi là ẩn.
Phương trình ( 2.1) được gọi là phương trình sai phân tuyến tính bậc k vì
tính các giá trị xn ta phải cho trước k giá trị liên tiếp của xn và tính theo công
thức truy hồi ( 2.1).
Định nghĩa 3: Nếu fn
0
tính thuần nhất.

thì ( 2.1) gọi là phương trình sai phân tuyến


Nếu f 0 thì ( 2.1) gọi là phương trình sai phân tuyến tính không thuần nhất.
n
Nếu
fn
0 thì ( 2.1) gọi là
và a , a ,...,
là các hằng số với a ,
0

a
a
0
1
k
0 k
phương trình sai phân tuyến tính thuần nhất bậc k với hệ số hằng số:
L xn
a
...a xn
a x
10
x1
0
h
nk
nk
k
2.1.2.

( 2.2)

Nghiệm của phương trình sai phân tuyến tính.

Hàm số xn biến n thoả mãn ( 2.1) được gọi là nghiệm của phương trình
sai phân tuyến tính ( 2.1).
Hàm số
x˜n

thoả mãn ( 2.2) gọi là nghiệm tổng quát của ( 2.2), nếu với


mọi tập giá trị ban đầu

x , x ,...,
ta đều xác định được duy nhất các tham
x0
1
1
k

số

,
C1 2 ,..., C để nghiệm x˜n trở thành nghiệm riêng của ( 2.2), tức là vừa
k
thoả mãn (2.2) vừa thoả mãn:
xx˜ x , x x ,...,
x .
0
0 1
1
1
˜
˜
k
k
1
xn
Định lí 1: Nghiệm xn của ( 2.1) bằng tổng x˜n
* là nghiệm

xn* ,
và riêng bất kì của ( 2.1).
với
Chứng minh: Giả sử x˜n

L xn 
h
Do
L

fn; L x*  fn .
n

h
tuyến tính nên:
h

( 2.2). Do đó:

2.1.2.1.

* là 2 nghiệm của ( 2.1), ta có:
xn
(xn x* ) 0 hay
x˜n -

L xn L x*
L
h


h n

h

n

*
x thoả mãn

n

x˜n*xn x* ⇒ xn x˜n
( điều phải chứng minh).
x
n
n
Nghiệm tổng quát x˜n .
Định lí 2: Nếu x , x


,..., x

là k nghiệm độc lập tuyến tính của
n1 n2
nk
( 2.2) thì nghiệm tổng quát của ( 2.2) có dạng:
x˜n
...C x
C x 1C x 2
1 n 2 n

k nk
,..., C là các hằng số tuỳ ý.
với C ,
k
1 2


Chứng minh: Do
L

vì x

ni

k
k
∑ Ci.xni  ∑ Ci .xni 0 ,
L
i1 h

tuyến tính nên: L x˜n
L
h
h
h i 1

là nghiệm của ( 2.2) nên

Giả sử


L xni 0 , Suy ra x˜n là nghiệm của ( 2.2) .
h
1 là k giá trị ban đầu tuỳ ý, ta chứng minh có thể xác

x , x ,...,
x0
1
k
định duy nhất các tham số

tức là hệ:

C , ,...,
C
C
1 2
k

C x C x

...C
1 01

2 02

 C x C x
 1 11
2 12



để


x , x ,..., x˜ x
,

0 0 1 1
k
k1
1

x
0
0
x kx
k
1
...C

x
k 1k
.............................................

x
C x -1,1
...C -1,k
C
x
1
-1,2

2
x
k
k
k k
k

có nghiệm duy nhất C ,
,...,
với mọi , x ,..., x
.
C
C
x
1 2
0 1
k1
k
Muốn vậy định thức:
x

01
x .............x
02
0k
x
x x .............
11 12

0 , điều này luôn đúng do tính độc lập tuyến


1k
..........................
x
x
1,1
.....x
1,
k
k1,2
kk
tính của các vectơ nghiệm x ,
,...,
đã cho ở giả thiết.
x
x
n1 n2
nk
Ta đi tìm nghiệm x˜n của ( 2.2)


x* của ( 2.1), từ đó ta tìm nghiệm xn


n
của ( 2.1). Do phương trình ( 2.2) luôn có nghiệm

xn 0 nên để tìm nghiệm
tổng quát ta tìm nghiệm xn của ( 2.2) dưới dạng:
xn C  n , C 0, 0 .

Thay

xn C  n , C 0,

vào ( 2.2) và giản ước cho C  n
0
0
L a  k a  k 1 ...a
0
1

ta thu được:
( 2.3)

0
h

k

Ta gọi ( 2.3) là phương trình đặc trưng của ( 2.2) ( cũng là phương trình đặc


trưng của ( 2.1)).
x˜n

Nghiệm

của ( 2.2) và * của ( 2.1) phụ thuộc cốt yếu
xn


vào cấu trúc nghiệm của ( 2.3).
Định lí 3: ( Từ các trường hợp về cấu trúc nghiệm của ( 2.3) cho ta
nghiệm x˜n của ( 2.2)).
Trường hợp 1: Nếu ( 2.3) có k nghiệm thực phân biệt  ,  ,..., thì nghiệm
1 1
k
tổng quát
x˜n
˜


của ( 2.2) có dạng:

n

n  
C
2
2

x C
1
1

n 

...
C
k k


k


C n

∑ i
i
i1

i
,(

k và với
C

1, 2,..., )

là các

i

hằng số.
k
L x˜n ∑ Ci L ni 0

h
i1 h
n
n
k

k 1
) 0 ).
( vì   (a0 a1
L
...a
h i
k
Thật vậy: Ta có

i
Ta lại có:

1 1...............1

  .............

  (i j ) 0 ( i , j
1
0,i


1 2

 k
.......................



1


1

k

2 1

....

k

1

jik

k
 k

k
n
Theo định lí 2 ta có x˜ ∑ Ci ,(i 1, 2,...,
 i1 i k)
Điều phải chứng minh.

j ).

là nghiệm tổng quát của ( 2.2).
Trường hợp 2:
Nếu ( 2.3) có
nghiệm thực j



×