Tải bản đầy đủ (.pdf) (400 trang)

Principles of polymer chemistry 1

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (29.41 MB, 400 trang )

Principles of Polymer Chemistry



A. Ravve

Principles of Polymer Chemistry
Third Edition


A. Ravve
Niles, IL, USA

ISBN 978-1-4614-2211-2
ISBN 978-1-4614-2212-9 (eBook)
DOI 10.1007/978-1-4614-2212-9
Springer New York Heidelberg Dordrecht London
Library of Congress Control Number: 2012934695
1st and 2nd editions: # Kluwer Academic/Plenum Publishers 1995, 2000
3rd edition: # Springer Science+Business Media, LLC 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and
permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even
in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and


therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors
nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher
makes no warranty, express or implied, with respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)


Preface

This book, unlike the first and second editions, is primarily aimed to be a textbook for a graduate
course in polymer chemistry and a reference book for practicing polymer chemists. The first and
second editions, on the other hand, were aimed at both graduate and undergraduate students.
Comments by some reviewers, that the first two editions are too detailed for use by the undergraduates,
prompted the change.
The book describes organic and physical chemistry of polymers. This includes the physical
properties of polymers, their syntheses, and subsequent use as plastics, elastomers, reagents, and
functional materials. The syntheses are characterized according to the chemical mechanism of their
reactions, their kinetics, and their scope and utility. Whenever possible, descriptions of industrialscale preparations are included. Emphasis is placed on reaction parameters both in the preparation of
the polymeric materials and in their utilization as reagents. Also, when possible, industrial or trade
names of the polymeric materials are included to familiarize the students. This book also describes
chemical modifications of polymers. A separate chapter is dedicated to utilization of polymers as
reagents, supports for catalyst or for drug release, as electricity conductors, and in photonic materials.
Use of this book requires proficiency in organic and physical chemistries. While prior knowledge
of polymer chemistry on the elementary level is not required, some exposure to the subject on the
undergraduate level would probably be helpful. Each topic, however, is presented with the assumption that the reader has no prior knowledge of the subject.
This book consists of ten chapters. A separate chapter on physical properties and physical
chemistry of polymers was added. In the previous editions, this subject was part of the introduction
and handled on a limited scale. This book is aimed at graduate students, however, and a more rigorous
treatment is required.

The kinetic treatment was expanded in the chapters that deal with polymer syntheses. In addition,
discussions of the thermodynamics of these reactions were added to each of these chapters.
In the earlier two editions, a 5¼ in. diskette was included at the end of the books with some
computer programs in Pascal. These programs were there to offer the students experience in
calculating results from size exclusion chromatograph or to determine sequence distribution in
polymers from NMR spectra, and some others. These programs have been omitted, however, because
there are now considerably better programs, written by professional computer scientists, now
commercially available.
This book, like the earlier editions, is dedicated to all the scientists whose names appear in the
references.
Niles, IL, USA

A. Ravve

v



Contents

1

Introduction and Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Brief Historical Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Nomenclature of Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.1 Nomenclature of Chain-Growth Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3.2 Nomenclature of Step-Growth Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Steric Arrangement in Macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1
1
2
7
7
11
11
13
13
15

2

Physical Properties and Physical Chemistry of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Structure and Property Relationship in Organic Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Effects of Dipole Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Induction Forces in Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 The Amorphous State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 The Glass Transition and the Glassy State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Elasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3 Rheology and Viscoelasticity of Polymeric Materials . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 The Crystalline State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.1 Crystallization from the Melt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 Crystallization from Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.3 Spherulitic Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 The Mesomorphic State, Liquid Crystal Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Orientation of Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.6 Solutions of Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Radius of Gyration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.2 The Thermodynamics of Polymer Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 Molecular Weights and Molecular Weight Determinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.1 Molecular Weight Averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.2 Methods for Measuring Molecular Weights of Polymers . . . . . . . . . . . . . . . . . . . . . . .
2.8 Optical Activity in Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17
17
17
18
21
21
24
27
34
34
36
38
43
47
48
48
50
51
51
53

60
61
66

vii


viii

3

4

Contents

Free-Radical Chain-Growth Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
Free-Radical Chain-Growth Polymerization Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.1
Kinetic Relationships in Free-Radical Polymerizations . . . . . . . . . . . . . . . . . . . . .
3.2
Reactions Leading to Formation of Initiating Free Radicals . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1
Thermal Decomposition of Azo Compound and Peroxides . . . . . . . . . . . . . . . . .
3.2.2
Bimolecular Initiating Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3
Boron and Metal Alkyl Initiators of Free-Radical Polymerizations . . . . . . . . . .
3.2.4
Photochemical Initiators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2.5
Initiation of Polymerization with Radioactive Sources
and Electron Beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3
Capture of Free Radicals by Monomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4
Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.1
Steric, Polar, and Resonance Effects in the Propagation Reaction . . . . . . . . . .
3.4.2
Effect of Reaction Medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.3
Ceiling Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.4
Autoacceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4.5
Polymerization of Monomers with Multiple Double Bonds . . . . . . . . . . . . . . . . .
3.5
The Termination Reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6
Copolymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.1
Reactivity Ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.2
Q and e Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.6.3
Solvent Effect on Copolymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.7
Terpolymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.8

Allylic Polymerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.9
Inhibition and Retardation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10 Thermal Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.11 Donor–Acceptor Complexes in Copolymerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.12 Polymerization of Complexes with Lewis Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13 Steric Control in Free-Radical Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14 Controlled/“Living” Free-Radical Polymerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14.1 Cobalt Mediated Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14.2 Atom Transfer Radical Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14.3 Nitroxide-Mediated Radical Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14.4 Reversible Addition-Fragmentation Chain Transfer Polymerization . . . . . . .
3.14.5 Special Types of Controlled/“Living” Polymerizations . . . . . . . . . . . . . . . . . . . .
3.14.6 Kinetics of Controlled/Living Free-Radical Polymerizations . . . . . . . . . . . . . .
3.15 Thermodynamics of the Free-Radical Polymerization Reaction . . . . . . . . . . . . . . . . . . . .
3.15.1 Effects of Monomer Structure on the Thermodynamics
of the Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.15.2 Thermodynamics of the Constrains of the Free-Radical
Polymerization Reaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.16 Polymer Preparation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ionic Chain-Growth Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1
The Chemistry of Ionic Chain-Growth Polymerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2
Kinetics of Ionic Chain-Growth Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

69
69

69
72
72
76
79
79
80
80
84
84
87
88
89
90
92
96
97
99
100
101
102
103
106
107
111
113
114
116
117
121

126
129
130
131
131
132
132
139
143
151
151
152


Contents

4.3

5

ix

Cationic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Two Electron Transposition Initiation Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 One Electron Transposition Initiation Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3 Propagation in Cationic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.4 Termination Reactions in Cationic Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.5 Living Cationic Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.6 Thermodynamics of Cationic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4

Anionic Polymerization of Olefins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.1 Initiation in Anionic Chain-Growth Polymerization . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.2 Propagation in Anionic Chain-Growth Polymerization . . . . . . . . . . . . . . . . . . . . . .
4.4.3 Termination in Anionic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.4.4 Thermodynamics of Anionic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5
Coordination Polymerization of Olefins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.1 Heterogeneous Ziegler–Natta Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.2 Homogeneous Ziegler–Natta Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.3 Steric Control in Polymerization of Conjugated Dienes . . . . . . . . . . . . . . . . . . . . .
4.5.4 Post Ziegler and Natta Coordination Polymerization of Olefins . . . . . . . . . . . . .
4.5.5 Effect of Lewis Bases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.6 Terminations in Coordination Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.7 Reduced Transition Metal Catalysts on Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.8 Isomerization Polymerizations with Coordination Catalysts . . . . . . . . . . . . . . . . .
4.6
Polymerization of Aldehydes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1 Cationic Polymerization of Aldehydes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.2 Anionic Polymerization of Aldehydes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.3 Polymerization of Unsaturated Aldehydes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.4 Polymerizations of Di Aldehydes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7
Polymerization of Ketones and Isocyanates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8
Copolymerizations by Ionic Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.9
Group Transfer Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10 Configurational Statistics and the Propagation Mechanism in Chain-Growth
Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11 Thermodynamics of Equilibrium Polymerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

154
155
163
167
177
178
181
182
182
191
198
201
201
202
207
209
211
219
219
219
220
221
221
223
226
227
228

228
231

Ring-Opening Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1
Chemistry of Ring-Opening Polymerizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2
Kinetics of Ring-Opening Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3
Polymerization of Oxiranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1 Cationic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2 Anionic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3 Polymerization by Coordination Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.4 Steric Control in Polymerizations of Oxiranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4
Polymerization of Oxetanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.1 The Initiation Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.2 The Propagation Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5
Polymerization of Tetrahydrofurans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1 The Initiation Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.2 The Propagation Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.3 The Termination Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

253
253
253
255
255
259

261
264
266
267
268
269
270
271
272

234
240
241
243


x

6

Contents

5.6
5.7

Polymerization of Oxepanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ring-Opening Polymerizations of Cyclic Acetals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.1 Polymerization of Trioxane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.2 Polymerization of Dioxolane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.3 Polymerization of Dioxopane and Other Cyclic Acetals. . . . . . . . . . . . . . . . . . . . .

5.8
Polymerization of Lactones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.1 Cationic Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.2 Anionic Polymerization of Lactones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.8.3 Polymerization of Lactones by Coordination Mechanism . . . . . . . . . . . . . . . . . . .
5.8.4 Special Catalysts for Polymerizations of Lactones. . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9
Polymerizations of Lactams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9.1 Cationic Polymerization of Lactams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9.2 Anionic Polymerization of Lactams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.9.3 Hydrolytic Polymerization of Lactams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.10 Polymerization of N-Carboxy-a-Amino Acid Anhydrides . . . . . . . . . . . . . . . . . . . . . . . . . .
5.11 Metathesis Polymerization of Alicyclics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.12 Polymerization of Cyclic Amines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.13 Ring-Opening Polymerizations of Cyclic Sulfides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.14 Copolymerization of Cyclic Monomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.15 Spontaneous Alternating Zwitterion Copolymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.16 Ring-Opening Polymerizations by a Free Radical Mechanism. . . . . . . . . . . . . . . . . . . . . .
5.17 Thermodynamics of Ring-Opening Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

273
273
274
276
277
278
278
280

281
283
284
285
290
296
297
301
307
309
311
312
316
318
319
322

Common Chain-Growth Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1
Polyethylene and Related Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.1 Preparation of Polyethylene by a Free-Radical Mechanism . . . . . . . . . . . . . . . . .
6.1.2 Preparation of Polyethylene by Coordination Mechanism . . . . . . . . . . . . . . . . . . .
6.1.3 Commercial High-Density Polyethylene, Properties,
and Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1.4 Materials Similar to Polyethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2
Polypropylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Manufacturing Techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.2 Syndiotactic Polypropylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.3

Polyisobutylene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4
Poly(a-olefin)s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.1 Properties of Poly(a-olefin)s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.2 Poly(butene-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.4.3 Poly(4-methyl pentene-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5
Copolymers of Ethylene and Propylene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.1 Ethylene and Propylene Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.2 Copolymers of Ethylene with a-Olefins and Ethylene
with Carbon Monoxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.3 Copolymers of Propylene with Dienes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.4 Copolymers of Ethylene with Vinyl Acetate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.5.5 Ionomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6
Homopolymers of Conjugated Dienes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.1 Polybutadiene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.6.2 Polyisoprene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

329
329
329
332
335
338
339
342
342
343
345

345
345
345
347
347
348
351
351
351
352
352
356


Contents

xi

6.7
6.8
6.9
6.10
6.11

Methyl Rubber, Poly(2,3-dimethylbutadiene). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chloroprene Rubber, Poly(2-chloro-1,3-butadiene). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Special Polymers from Dienes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cyclopolymerization of Conjugated Dienes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Copolymers of Dienes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.11.1 GR-S Rubber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.11.2 GR-N Rubber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.12 Polystyrene and Polystyrene-Like Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.12.1 Preparation of Polystyrene by Free-Radical Mechanism . . . . . . . . . . . . . . . . . . .
6.12.2 Polystyrene Prepared by Ionic Chain-Growth Polymerization . . . . . . . . . . . . .
6.12.3 Polymers from Substituted Styrenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.13 Copolymers of Styrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.13.1 High-Impact Polystyrene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.13.2 ABS Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.13.3 Copolymers of Styrene with Maleic Anhydride . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.14 Polymers of Acrylic and Methacrylic Esters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.14.1 Polymerizations of Acrylic and Methacrylic Esters . . . . . . . . . . . . . . . . . . . . . . . .
6.14.2 Acrylic Elastomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.14.3 Thermoplastic and Thermoset Acrylic Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.15 Acrylonitrile and Methacrylonitrile Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.16 Polyacrylamide, Poly(acrylic acid), and Poly(methacrylic acid) . . . . . . . . . . . . . . . . . . . .
6.17 Halogen-Bearing Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17.1 Polytetrafluoroethylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17.2 Polychlorotrifluoroethylene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17.3 Poly(vinylidine fluoride). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17.4 Poly(vinyl fluoride) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17.5 Copolymers of Fluoroolefins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17.6 Miscellaneous Fluorine Containing Chain-Growth Polymers . . . . . . . . . . . . . .
6.17.7 Poly(vinyl chloride) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.17.8 Poly(vinylidine chloride) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.18 Poly(vinyl acetate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.19 Poly(vinyl alcohol) and Poly(vinyl acetal)s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

358

358
360
360
361
361
363
364
364
365
367
370
370
371
372
372
373
375
376
379
381
382
382
383
383
383
384
385
386
389
390

391
393
396

Step-Growth Polymerization and Step-Growth Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1
Mechanism and Kinetics of Step-Growth Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.1 Reactions of Functional Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.2 Kinetic Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.3 Ring Formation in Step-Growth Polymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.1.4 Techniques of Polymer Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2
Polyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.1 Linear Saturated Polyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.2 Linear Unsaturated Polyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.3 Network Polyesters for Surface Coatings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.4 Polycarbonates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2.5 Polyesters from Lactones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3
Polyamides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.1 Nylons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.2 Fatty Polyamides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

403
403
403
405
410
412
412

412
424
425
427
428
430
430
441

7


xii

Contents

7.4
7.5
7.6

7.7
7.8
7.9

7.10

7.11

7.12


7.13

7.14

7.15
7.16
7.17

7.3.3
Special Reactions for Formation of Polyamides . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3.4
Aromatic Polyamides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Aromatic Polyamide-Imides and Aromatic Polyester-Imides . . . . . . . . . . . . . . . . . . . . . . .
Polyimides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polyethers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6.1
Poly(phenylene oxide)s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6.2
Phenoxy Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polyacetals and Polyketals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Poly(p-xylylene)s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sulfur-Containing Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9.1
Polysulfones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9.2
Polythiols and Polymercaptans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polyurethanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10.1 Preparations of Polyfunctional Isocyanates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10.2 Commercial Polyisocyanates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10.3 Chemical Reactions of the Isocyanates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.10.4 The Effect of Catalysts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10.5 Polyurethane Fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10.6 Polyurethane Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10.7 Polyurethane Foams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Epoxy Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.11.1 Preparation of Commercial Epoxy Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.11.2 The Cross-linking Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.11.3 Cycloaliphatic Epoxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phenol-Formaldehyde Resins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.12.1 Resols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.12.2 Novolacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.12.3 Ammonia-Catalyzed Phenolic Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.12.4 Typical Commercial Preparations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Amino Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.13.1 Urea-Formaldehyde Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.13.2 Melamine-Formaldehyde Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Silicone Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.14.1 Polysiloxanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.14.2 Silicone Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.14.3 Polysiloxane Coating Resins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.14.4 Fluorosilicone Elastomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.14.5 Polyarylsiloxanes (Also See Sect. 7.17.4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Polysilanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phosphonitrile Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-Performance Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.17.1 Fluorine Containing Aromatic Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.17.2 Polyphenylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.17.3 Diels–Alder Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.17.4 Silicon-Containing Aromatic Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.17.5 Direct Condensation Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.17.6 Oligomers with Terminal Functional Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.17.7 Cardo Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.17.8 Double-Stranded Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.17.9 Poly(arylene ether)s and Poly(arylene ether ketone)s. . . . . . . . . . . . . . . . . . . . . . .

441
443
447
450
456
456
459
459
461
463
463
465
468
469
469
470
471
472
473
474
474
475
476
482
483

483
487
490
491
492
492
493
494
494
496
498
498
499
499
500
502
502
504
505
511
512
514
517
517
520


Contents

xiii


7.18

Dendrimers and Polyrotaxanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.18.1 Dendrimers and Hyperbranched Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.18.2 Polyrotaxanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.19 Thermodynamics of Step-Growth Polymerization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

521
522
523
524
525
529

8

Naturally Occurring Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1
Naturally Occurring Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2
Polysaccharides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.1
Hemicelluloses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.2
Starch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.3
Cellulose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.2.4
Miscellaneous Polysaccharides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.3
Lignin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.4
Polyisoprene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5
Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5.1
a-Amino Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5.2
Structures and Chemistry of Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.5.3
Synthetic Methods for the Preparation of Polypeptides . . . . . . . . . . . . . . . . . . . .
8.5.4
Chemical Modification of Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6
Nucleic Acids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6.1
DNA and RNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.6.2
Synthetic Methods for the Preparation of Nucleic Acids . . . . . . . . . . . . . . . . . . .
8.7
Polyalkanoates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

537
537
537

537
538
539
545
546
547
547
548
548
554
556
557
559
560
561
562
563

9

Organic Reactions of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1
Reactivity of Macromolecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.1
Diffusion-Controlled Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.2
Paired Group and Neighboring Group Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.3
Effect of Molecular Size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.4

Effects of Changes in Solubility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.5
Effects of Crystallinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.6
Reactions That Favor Large Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2
Addition Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.1
Halogenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.2
Hydrogenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.3
Addition of Carbenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.4
Electrophilic Additions of Aldehydes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.5
Polar Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3
Rearrangement Reactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.1
Isomerization Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.2
Cyclizations and Intramolecular Rearrangements. . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4
Substitution Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.1
Substitution Reactions of Saturated Polymeric Hydrocarbons. . . . . . . . . . . . . .
9.4.2
Substitution Reactions of Halogen-Bearing Polymers . . . . . . . . . . . . . . . . . . . . . .
9.4.3

Substitution Reactions of Polymers with Aromatic Rings . . . . . . . . . . . . . . . . . .
9.4.4
Reactions of Acrylic, Methacrylic, and Related Polymers . . . . . . . . . . . . . . . . .

567
567
569
569
570
570
571
571
572
572
574
575
576
577
584
584
586
590
590
592
597
606


xiv


Contents

9.5

9.6

9.7

9.8

9.9

9.4.5
Substitution Reactions of Poly(vinyl alcohol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.4.6
Miscellaneous Exchange Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cross-linking Reactions of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.1
Vulcanization of Elastomers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.5.2
Cross-linking of Polymers with the Aid of Peroxides . . . . . . . . . . . . . . . . . . . . . . .
9.5.3
Miscellaneous Cross-linking Reactions of Polymers . . . . . . . . . . . . . . . . . . . . . . . .
Graft Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.1
Free-Radical Grafting by Chain-Transferring Process . . . . . . . . . . . . . . . . . . . . . . .
9.6.2
Free-Radical Grafting Reactions to Polymers with Double Bonds . . . . . . . . . .
9.6.3
Preparation of Graft Copolymers with the Aid of Macromonomers . . . . . . . .

9.6.4
Initiations of Polymerizations from the Backbone of Polymers . . . . . . . . . . . . .
9.6.5
Photochemical Syntheses of Graft Copolymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.6.6
Graft Copolymer Formation with the Aid of High-Energy Radiation . . . . . . .
9.6.7
Preparation of Graft Copolymers with Ionic
Chain-Growth and Step-Growth Polymerization Reactions . . . . . . . . . . . . . . . . .
9.6.8
Miscellaneous Graft Copolymerizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.1
Block Copolyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.2
Block Copolyamides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.3
Polyurethane-Polyamide Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.4
Polyamide-Polyester Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.5
Polyurethane Ionomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.6
Block Copolymers of Poly(a-Olefin)s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.7
Simultaneous Use of Free Radical and Ionic
Chain-Growth Polymerizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.8
Preparation of Block Copolymers by Homogeneous
Ionic Copolymerization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.7.9
Special Reactions for Preparation of Block Copolymers . . . . . . . . . . . . . . . . . . . .
9.7.10 Miscellaneous Block Copolymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.11 Mechanochemical Techniques for Formation of Block Copolymers . . . . . . . .
Processes in Polymer Degradation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.8.1
Thermal Degradation of Common Chain-Growth Polymers . . . . . . . . . . . . . . . .
9.8.2
Thermal Degradation of Polyolefins and of Polymers from
Conjugated Dienes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.8.3
Thermal Degradation of Polystyrene and Polystyrene-Like Polymers . . . . . .
9.8.4
Thermal Degradation of Methacrylic and Acrylic Polymers . . . . . . . . . . . . . . . .
9.8.5
Thermal Degradation of Chlorocarbon and Fluorocarbon Polymers . . . . . . . .
9.8.6
Thermal Degradation of Poly(Vinyl Acetate). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Degradation of Common Step-Growth Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.1
Thermal Degradation of Polyoxides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.2
Thermal Degradation of Polyesters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.3
Thermal Degradation of Polyamides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.4
Thermal Degradation of Epoxy Resins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.5
Thermal Degradation of Polyimides, Polyoxidiazoles,
and Polyquinoxalines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.9.6
Thermal Degradation of Aromatic Polysulfones . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.7
Thermal Degradation of Polyethers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.8
Thermal Degradation of Cellulosic Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.9
Hydrolytic Degradation of Polymers at Elevated Temperatures. . . . . . . . . . . . .
9.9.10 Oxidative Degradation of Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

610
612
614
614
616
617
617
617
619
620
622
625
626
627
630
631
631
632
633
633

633
634
635
637
639
642
643
643
643
644
646
647
649
652
652
652
653
656
658
659
661
661
661
662
663


Contents

xv


9.9.11 Oxidation of Chain-Growth Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.12 Oxidation of Step-Growth Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.13 Photo-Degradation of Macromolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.14 Photo-Oxidative Degradations of Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.9.15 Degradation of Polymeric Materials by Ionizing Radiation . . . . . . . . . . . . . .
Review Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

663
666
668
674
677
677
682

Polymeric Materials for Special Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1 Polymer Supports for Reagents, Catalysts, and Drug Release. . . . . . . . . . . . . . . . . . . . . .
10.1.1 Support Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1.2 Special Gels for Drug Release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.1.3 Utilization of Support Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Electricity-Conducting Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 Photonic Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.1 The Nature of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.2 Quantum-Mechanical Description of Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.3 Interaction of Light with Organic Molecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.4 Energy Transfer Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.5 The Electron Transfer Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3.6 The Charge Transfer Processes in Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10.3.7 The Antenna Effect in Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 Photosensitizers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5 Photocross-Linkable Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5.1 Polymers That Photocross-link by Formation of Cyclobutane Rings . . . . .
10.5.2 Polymers with Functional Chalcone Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5.3 Polymers with Functional Groups Similar to Cinnamates . . . . . . . . . . . . . . . . .
10.5.4 Polymers with Pendant Furan Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5.5 Polymers with Pendant Maleimide Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5.6 Polymers with Pendant Abietate and Dibenzazepine Groups. . . . . . . . . . . . . .
10.5.7 Polymers That Cross-link by Dimerization of Nitrenes
and by Other Combinations of Free-Radicals
to Form Covalent Bonds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5.8 Polymers with Pendant Azide Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.5.9 Polymers Designed to Cross-link Upon Irradiation
with Laser Beams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6 Photo-Responsive Polymers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6.1 Polymers for Harvesting the Sun’s Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6.2 Photo-Isomerization of Polymeric Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6.3 Changes in Viscosity and Solubility of Polymeric Solutions . . . . . . . . . . . . . .
10.6.4 Application to Optical Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.6.5 Liquid Crystalline Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7 Photo-Conducting Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.1 Photoconductive Polymers Based on Carbazole . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.7.2 Photo-Conducting Polymers That Are Not Based on Carbazole . . . . . . . . . .
10.8 Polymer-Based Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Review Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

695
695

696
704
705
710
717
717
719
719
726
729
729
732
732
735
736
743
744
745
746
746

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

791

10

748
748
750

750
751
755
759
760
762
767
768
771
775
782
784


Chapter 1

Introduction and Nomenclature

1.1

Brief Historical Introduction

The initial proof of the existence of very large organic molecules was supplied by Raoult [1] and van’t
Hoff [2], who carried out cryoscopic molecular weight determinations on rubber, starch, and cellulose
nitrate. By the methods developed by Raoult and by van’t Hoff and by the formulation of solution
laws, molecular weights of 10,000–40,000 were demonstrated. Unfortunately, chemists of that day
failed to appreciate this evidence and refused to accept it. The main reason for such a response was the
inability to distinguish macromolecules from colloidal substances that could be obtained in low
molecular weights. The opinion of the majority of that day was that “Raoul’s solution does not apply
to materials in colloidal state.”

During the period 1890–1910, the idea of molecular complexes was generally accepted [3]. It was
used to explain polymeric structures in terms of physical aggregates of small molecules. In fact,
molecular association was considered polymerization. Thus rubber, for example, was assumed to be
composed of short sequences of isoprene units, either as chains or as cyclic structures. The structure
of isoprene itself was known, because it was isolated from natural rubber, in 1860. What added to
the general confusion was the fact that no one was able to show the existence of end groups in the
macromolecules studied. This enhanced the idea that rubber is a ring-like structure, a dimethyl
cycloocatadiene. Large numbers of such rings were assumed to be held together by associations,
giving rise to colloidal materials. This can be illustrated as follows:

x

Early synthetic polymeric products were usually discarded as being oils or tars (“gooks”), and
considered as useless. To be fair to the chemists of that period, however, one should not forget that in
spite of the general attitude of the time, the structures of some polymers, like polyethylene glycol
(n ¼ 6), for instance,
HO

O
O

n

OH

A. Ravve, Principles of Polymer Chemistry, DOI 10.1007/978-1-4614-2212-9_1,
1st and 2nd editions: # Kluwer Academic/Plenum Publishers 1995, 2000,
3rd edition: # Springer Science+Business Media, LLC 2012

1



2

1 Introduction and Nomenclature

was correctly assigned in 1860, and the concept of extending the structure to very large molecular
weights by continued condensation was understood [4–6].
At approximately the same time, poly(methacrylic acid), which we now know to be a linear molecule

COOH

COOH

COOH

was prepared in 1880 [7]. But, here too, a cyclic structure was assigned which was believed to be
attached to other cyclic structures by “partial valences,” thereby forming gels. What is more
noteworthy is that Emil Fischer and his coworkers studied many natural polymers, such as rubber,
starch, polypeptides, cellulose, and lignin. His work probably entitles him to be called the spiritual
father of polymer chemistry. During that period, Willst€atter worked on the synthesis of
polysaccharides, and studied lignin and enzymes [8].
One should also acknowledge the fact that in spite of ignorance of structure, many inventors
developed ways to convert cellulose into cellulose acetate and then to use the products to form fibers,
films, and coatings. Cellulose was also converted to cellulose nitrate and was used to prepare
explosives and other products. At the turn of the century, Baekeland formed a hard resin by
condensing phenol with formaldehyde [9],
The evolvement of our present-day understanding of polymeric structures occurred in the early
1920s. Thus, Staudinger et al. firmly established the existence of macromolecules [10–15]. Others, by
X-ray analyses and careful use of molecular weight determinations, confirmed his findings [16]. In

1929, a series of outstanding investigations were carried out by Carothers on other polymeric
materials. This resulted in much of today’s knowledge and understanding [17].
˚,
Now, we know that a typical molecule such as polyethylene can have a contour length of 25,000 A
˚
but a diameter of only 4.9 A. Such a molecule can be compared in dimensions to a long, snarled
clothesline, 75 ft long and 1 in. in diameter. Furthermore, work with naturally occurring
macromolecules, such as nucleic acids, for instance, revealed even more startling dimensions.
When molecules of virus dinucleic acids were tritium-labeled (whose nuclear emission is less than
1 mm) and then autoradiographs prepared, these showed molecules that were about 50 mm long [18].
Such length would signify a molecular weight of 100 million. Similar work carried out on dinucleic
acids of bacteria revealed molecular weights of approximately 200 million.
The above figures are, of course, extremes in molecular dimensions. Typical synthetic polymers
will range in molecular weights anywhere from ten to several hundred thousand, although synthetic
polymers in molecular weight ranges of several million are well known and some are used commercially. Interestingly enough, many of these polymers are prepared through the use of organic reactions
that have been known for a long time. Also, new reactions and catalysts are still being discovered and
applied to polymer syntheses. It is probably safe to predict that this situation will undoubtedly
continue into the distant future.

1.2

Definitions

The word polymer is commonly understood to mean a large molecule composed of repeating units, or
mers (from the Greek word meros—part), connected by covalent bonds. Such units may be connected
in a variety of ways. The simplest is a linear polymer, or a polymer in which the units are connected to


1.2 Definitions


3

each other in a linear sequence, like beads on a string. Many examples of such linear polymers are
possible, as, for instance, linear polyethylene:

n

repeat unit

The terminal units in such molecules must be different from the internal ones to satisfy valence
requirements. Polyethylene, like all other polymers, can be written to show the number of repeat
units, –[–CH2–CH2–]nÀ, by using a number or a letter, like in this case n. It represents the
average quantity of mers present in the polymer and is called the degree of polymerization or
DP, or the average number of repeat units in the polymeric chain. Thus the average molecular
weight of polystyrene with a DP of 100 is 104 Â 100 or 10,400. (There are actually several ways
of expressing the average molecular weights of polymers. This is discussed further in this
chapter).
An alternative to a linear polymer is a branched one. The branches can be long or short. Lowdensity polyethylene, for instance, can have both short and long branches. Linear and branched
molecules are shown in Fig. 1.1a, b. Branched polymers can also be star- or comb-shaped (Fig. 1.1c,
d). In addition to the above, polymer molecules can also be double-stranded. Such polymers are
called ladder polymers (Fig. 1.1e). It is also possible for polymers to have semi-ladder structures
(Fig. 1.1f).
When branches of different polymers become interconnected, network structures form. Planar
networks resemble the structure of graphite. Three-dimensional networks, or space networks, however, can be compared with diamonds. A network polymer is shown in Fig. 1.1g.
The term polymer canbe applied to molecules made up from either single repeating structural
units, like in the above shown polyethylene, or from different ones. If there are two or more structural
units then the term copolymer is used. An example would be a copolymer of ethyl methacrylate and
styrene:

a


b

c

d

Fig. 1.1 Shapes
of polymer molecules.
(a) Linear polymer,
(b) branched polymer,
(c) star-shaped polymer,
(d) comb shaped polymer,
(e) ladder polymer,
(f) semiladder polymer,
and (g) network structure

e
f
g


4

1 Introduction and Nomenclature

y

x
O


n

O

methyl methacrylate styrene
unit

unit

A copolymer can also be linear or branched. Should there be regularity in the repetition of the
structural units and should this repetition alternate, then the copolymer is called an alternating
copolymer. An absence of such regularity would make it a random copolymer.
An example of an alternating copolymer can be a copolymer of styrene with maleic anhydride:
n
O

O

O

In addition to the random-sequence and an alternating one, sometimes called ordered-sequence,
there are also block copolymers. These are copolymers made up of blocks of individual polymers
joined by covalent bonds. An example can be a block copolymer of styrene and isoprene:

m

n

polystyrene block-polyisoprene block


Still another type of a copolymer is one that possesses backbones composed of one individual
polymer and the branches from another one. It is called a graft copolymer, because many such
materials were formed by grafting the branch polymers to the polymer backbone. This, however, is
not always the case and many graft copolymers were formed by polymerizing the branch copolymer
from a different polymer backbone. (The subject of block and graft copolymers is discussed in
Chap. 9) A graft copolymer of polyacrylonitrile on polyethylene can serve as an example:
CN

CN

CN

CN

In both block and graft copolymers the length of the uninterrupted sequences may vary.


1.2 Definitions

5

In 1929, Carothers [19] suggested a separation of all polymers into two classes, condensation and
addition polymers. By condensation polymers he defined those polymers that lack certain atoms from
the monomer units from which they were formed or to which they may be degraded by chemical
means. An example would be a polyester:
O

OH


+

OH

O

HO

O

O

O

O

HO
n

He also defined addition polymers as polymers with identical structures of the repeat units to the
monomers from which they are derived. According to the above definition, an example of an addition
polymer can be polystyrene that is formed by addition of styrene monomers:
n

n

monomer

polymer


Note: The definition ignores loss of double bonds. The Carothers definition fails to describe all
the polymers that can fit into the category of condensation polymers, yet form without an evolution
of a byproduct. An example is polyurethane that can form from a reaction of a glycol with a
diisocyanate:
O
nO C

N

R

N

C

O

+

n HO R'

OH

C

O
N

R


N

C

O

R' O
n

H

H

Flory proposed a superior definition [20]. It is based on the reaction mechanism involved in the
formation of the two classes of polymers. Into the first category (it includes all the condensation
polymers) falls the macromolecules that form through reactions that occur in discreet steps. They are,
therefore, called step-growth polymers. Such polymerizations require long periods of time for each
macromolecule to form, usually measured in hours. Into the second category belong all polymers that
form by chain propagating reactions. They are, therefore, called chain-growth polymers, as one
might expect. Such reactions depend upon the presence of active centers on the ends of the growing
chains. The chains grow by propagating these reactive sites through inclusion of monomers at such
sites. These inclusions are very rapid and chain-growth can take place in a fraction of a second, as the
chains successively add monomers.
The important features of step-growth polymerizations are:
1. The monomer is consumed early in the beginning of the reaction while the increase in molecular
weight occurs only slowly.
2. The growth of polymeric chains takes place by reactions between monomers, oligomers, and
polymers.



6

1 Introduction and Nomenclature

3. There is no termination step, and the end groups of the polymers are reactive throughout the
process of polymerization.
4. The same reaction mechanism functions throughout the process of polymerization.
The important features of chain-growth polymerizations are:
1.
2.
3.
4.

Chain-growth takes place by repeated additions of monomers to the growing chains at the reactive sites.
The monomer is consumed slowly and is present throughout the process of polymerization.
There are two distinct mechanisms during polymer formations. These are initiation and propagation.
In the majority of cases, there is also a termination step.

When the polymerization reaction takes place in three dimensions, after it has progressed to a
certain point, gelation occurs. This well-defined change during polymerization is known as the gel
point. At this point the reaction mixture changes from a viscous liquid to an elastic gel.
Before gelation, the polymer is soluble and fusible. After it, however, it is neither soluble nor
fusible. This is a result of restraining effects of three-dimensional space networks. Another classification of polymers is also possible. It is based on whether the material can form crosslinked or gelled
networks. The polymers that eventually reach gelation are called thermosetting. Such polymers are
also called crosslinkable polymers. Once past gelation, raising the temperature will no longer attain
plasticity as the molecules can no longer move past each other. For the same reason they can no
longer be dissolved in any solvent.
Polymers that never gel or become crosslinked are called thermoplastic. Such polymers can
always be reflowed upon application of heat. They can also be dissolved again in appropriate
solvents.

The wiggly lines in the above illustration imply that the polymer extends further in their
directions. The above illustration is one of a thermoset polymer that is formed by the step-growth
mechanism. It is also possible to form crosslinked polymers by the chain-growth mechanism. This
requires presence in the polymerization mixture of a comonomer that possesses multiple functionality. Copolymerization of styrene with a comonomer like divinyl benzene can serve as an
example:
k

+

o

An oligomer is a very low molecular weight polymer. It consists of only a small number of mers.
The definition of a telomer is that of a chain-growth polymer that is composed of molecules with end
groups consisting of different species from the monomer units. Telomers can form by either free
radical or by ionic chain-growth polymerization mechanism.


1.3 Nomenclature of Polymers

7

Telechelic polymers are macromolecules with reactive functional groups at the terminal ends of
the chains. An example of telechelic polymer is polybutadiene with carboxylic acid end groups
HOOC

n

COOH

Into a special category should be placed starburst dendrimer polymers. These molecules are

formed by growing them in three dimensions. These materials often possess radially symmetrical
star-shaped structures with successive cascades of branched polymer structures. For additional
discussions see Chap. 6.
Another group of polymers are the rotaxanes. They too are discussed in Chap. 7. The materials
consist of polymeric chains that are threaded through macrocycles:
Z
m n

Tables 1.1 and 1.2 illustrate some common chain-growth and step-growth polymers as well as
monomers used in their preparations.

1.3

Nomenclature of Polymers

The names of many polymers are based on the monomers from which they were prepared. There is,
however, frequent variation in the format. A nomenclature of polymers was recommended by IUPAC
[21–23] and is used in some publications. Strict adherence to the recommendation, however, is
mainly found in reference works. Also, problems are often encountered with complex polymeric
structures that are crosslinked or have branches. In addition some polymers derive their names from
trade names. For instance, a large family of polyamides is known as nylons. Also, when more than
one functional group is present in the structure, the material may be called according to all functional
groups in the structure. An example is a polyesteramide. A thermoset polymer prepared from two
different materials may be called by both names. For instance, a condensation product of melamine
and formaldehyde is called melamine–formaldehyde polymer.

1.3.1

Nomenclature of Chain-Growth Polymers


1. A polymer of unspecified chain length is named with a prefix poly. The prefix is then followed by
the name of the monomer. Also, it is customary to use the common names of monomers and
polymers. For instance, common names for phenylethene and polyphenylethene are styrene and
polystyrene. This, however, is not an inflexible rule. When the monomer is named by a single
word then the prefix poly is simply added like polyethylene for a polymer of ethylene or
polystyrene for a polymer of styrene. If, however, the monomer is named by two words or is
preceded by a number, like methyl methacrylate, parentheses are used. Examples are poly(methyl
methacrylate) or poly(1-hexene).
2. End groups are usually not specified in high polymers. End groups, however, can be known parts
of the structure. This can be the case with telomers. Here, the end groups are named as radicals,


8

1 Introduction and Nomenclature

Table 1.1 Illustration
of common chain-growth
polymers

Name
Polyethylene

Monomer

Polymer
n

Polyisobutylene
n


Polystyrene
n

Poly(vinyl chloride)
Cl

n
Cl

Poly(vinyl acetate)
O

n

O

O
O

Poly(methyl methacrylate)
O
O

n
O
O

Polyisoprene
n


3.

4.

5.

6.

prefixed by Greek letters, a and v. They appear before and after the name of the polymer. The
structure of a telomer, like Cl–(–CH2–)n–CCl3, is, therefore, called a-chloro-o-trichloromethyl
poly(methylene).
In naming the polymer the following steps are recommended by IUPAC: (1) identify the
constitutional repeating unit, (2) orient the constitutional repeating unit, and (3) name the
constitutional repeating unit.
Random copolymers are designated by the prefix co, as in poly(butadiene-co styrene) and poly
(vinyl chloride-co vinyl acetate). Alternating copolymers can be differentiated by substituting alt
for co, as in poly(ethylene-alt-carbon monoxide).
The prefix g describes graft copolymers and the prefix b describes block copolymers. In this
system of nomenclature, the first polymer segment corresponds to the homopolymer or copolymer
that was formed during the first stage of the synthesis. Should this be a graft copolymer then this will
represent the backbone polymer. For instance, if polystyrene is graft copolymerized with polyethylene, the product is called poly(ethylene-g-styrene). A more complex example can be poly(butadiene-co-styrene-g-acrylonitrile-co-vinylidine chloride). Similarly, examples of block copolymers
would be poly(acrylonitrile-b-methyl methacrylate) or poly(methyl methacrylate-b-acrylonitrile).
Conventional prefixes indicating cis and trans isomers are placed in front of the polymer name.
An example is cis-1,4-polybutadiene, or in trans-1,4-polyisoprene.


1.3 Nomenclature of Polymers

9


Table 1.2 Illustration of some step-growth polymers and monomers used in their preparation
Poly(ethylene terephthalate)
OH O
OH
O

O

+
HO

Poly(hexamethylene
adipate); nylon 6,6

HO

O

HOOC

O
COOH

+

H2N

n


O

O
C

C

O
H

N
N

NH2

n

H

Polycaprolactam; nylon 6

O

O
N

N

n


H
H

Poly(ethylene oxide)

O
O

Poly(lactic acid)

n

O
O
O

O

O
O

Poly(benzimidazole)
H2N

NH2

H2N
O

+


NH2

N

N
NH

NH

O

n

O

O

Poly(p-xylylene)
n

Poly(butyrolactone)

O

O

O

C


n

O

7. The nomenclature adopted by IUPAC rests upon selection of preferred constitutional repeating
units [5] from which the polymer is a multiple. The unit is named wherever possible according to
the definitive rules for nomenclature of organic chemistry [24]. For single-stranded polymers this
unit is a bivalent group. An example is a polymer with oxy(1-fluoroethylene) constitutional
repeat unit:
O
n
F

poly[oxy(1-fluoroethylene)]


10

1 Introduction and Nomenclature

The following are examples of simple constitutional repeat units:
O
n

n

polymethylene

polyoxyethylene


n

poly(1-butenylene)

8. Polymers with repeating units consisting of more than one simple bivalent radical should be
named according to the order of seniority among the types of bivalent radicals: (a) heterocyclic
rings, (b) chains containing hetero atoms, (c) carbocyclic rings, and (d) chains containing only
carbons. This is illustrated below:

O

n

n

N

poly(3,5-pyridinediylmethyleneoxy -1,4-phenylene)

poly(2,6-biphenyleneethylene)

9. Double-stranded or “ladder” polymers that have tetravalent repeat units are named similarly to
bivalent units. The relation of the four free valences is denoted by pairs of locants separated by a chain:

n

poly(1,2:1,2-ethane diylidene)

n


poly(2,3,6,7-naphthalenetetrayl-6,7-dimethylene)
10. For polymers that contain heteroatoms or acyclic subunits containing heteroatoms there is a
decreasing seniority in naming. It is in the following order, O, S, Se, Te, N, , Sb, Bi, Si, Ge, Sn,
Pb, B. Similarly, for polymers containing ring structures, the seniority if for the heterocyclic ring
to have greater seniority that heteroatoms or acyclic subunits. Similarly, heterocyclic subunits
have greater seniority than do carbocyclic ring and they in turn have greater seniority than acyclic
substructures. An example would be,

N

n

poly(2,4-pyridinediiyl-1,4-phenylene)


×