Tải bản đầy đủ (.pdf) (790 trang)

Nanoscience the science of the small in physics engineering chemistry biology and medicine

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (19.44 MB, 790 trang )


Nanoscience



Hans-Eckhardt Schaefer

Nanoscience
The Science of the Small in Physics,
Engineering, Chemistry, Biology
and Medicine

123


Prof. Dr. Hans-Eckhardt Schaefer
Universität Stuttgart
Fak. Mathematik und Physik
Institut für Theoretische und
Angewandte Physik
Pfaffenwaldring 57
70569 Stuttgart
Germany


ISBN 978-3-642-10558-6
e-ISBN 978-3-642-10559-3
DOI 10.1007/978-3-642-10559-3
Springer Heidelberg Dordrecht London New York
Library of Congress Control Number: 2010928839
© Springer-Verlag Berlin Heidelberg 2010


This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
Cover design: eStudio Calamar S.L.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)


For Bettina



Preface

Nanoscience is an interdisciplinary field of science which has its early beginnings
in the 1980s. At small dimensions of a few nanometers (billionths of a meter) new
physical properties emerge, often due to quantum mechanical effects. During the
last decades, additionally novel microscopical techniques have been developed in
order to observe, measure, and manipulate objects at the nanoscale. It rapidly turned
out that nanosized features not only play a role in physics and materials sciences
but also are most relevant in chemistry, biology, and medicine, giving rise to new
fenestrations between these disciplines and wide application prospects.
The early precursors to this book on Nanoscience date back to the 1990s when
the author initiated a course on Nanoscience and Nanotechnology at Stuttgart

University, Germany, based on his early studies of nanostructured solids which
were performed due to most stimulating discussions in the early 1980s with Herbert
Gleiter and the late Arno Holz, at that time at Saarbrücken University.
Together with the growing interdisciplinarity of the field, the author’s research
and teaching activities in nanoscience were extended at Stuttgart University and
at research laboratories in South America, Japan, China, and Russia. During these
research and teaching activities it became clear that a comprehensive yet concise
text which comprises the current literature on nanoscience from physics to materials science, chemistry, biology, and medicine would be highly desirable. Such a
textbook or monograph should be a valuable source of information for students and
teachers in academia and for scientists and engineers in industry who are involved
in the many different fields of nanoscience.
In the present book, the state of the art of nanoscience is presented, emphasizing in addition to the width and interdisciplinarity of the field the rapid progress in
experimental techniques and theoretical studies. The text which focuses to the fundamental aspects of the field in 12 chapters is supported by more than 600 figures
and a bibliography of nearly 2000 references which may be useful for more detailed
studies and for looking at historical developments and which cover with their own
references the wealth of the literature. A number of textbooks and review articles
are quoted as introductory literature to the various fields.
The book starts in Chap. 1 with some general comments, physical principles,
and a number of nanoscale measuring methods with the subsequent Chap. 2 on
microscopy techniques for investigating nanostructures. Chapter 3 is devoted to
vii


viii

Preface

the synthesis of nanosystems whereas Chap. 4 surveys dimensionality effects with
Chap. 5 focusing to carbon nanostructures and Chap. 6 to bulk nanocrystalline
materials. In the Chaps. 7 and 8 the topics of nanomechanics, nanophotonics,

nanofluidics, and nanomagnetism are raised before in Chap. 9 nanotechnology for
computers and data storage devices are overviewed. The text is concluded with
Chap. 10 on nanochemistry and Chap. 11 on nanobiology with finally an extended
section on nanomedicine in Chap. 12.
These 12 chapters are closely linked and intertwined as demonstrated by many
cross-references between the chapters. Although a particular chapter is dedicated,
e.g., to synthesis (Chap. 3), some synthesis aspects reappear in other chapters. The
same is true for nanomagnetism. In addition to the particular chapter on this topic
(Chap. 8), nanomagnetic features appear in the introductory chapter, in the chapters
on nanocrystalline materials (Chap. 6), on nanotechnology for computers and data
storage (Chap. 9), on nanobiology (Chap. 11), or nanomedicine (Chap. 12). The
Subject Index may additionally help the reader to find the appropriate information
in his field of interest quickly.
The wide application prospects of nanoscience are discussed in the various
chapters. The importance of risk assessment strategies and toxicity studies in
nanotechnology is emphasized in Sect. 12.11.
Stuttgart, Germany
December 7, 2009

Hans-Eckhardt Schaefer


Acknowledgments

The author is indebted to highly competent colleagues for critically reading single chapters of the present book: W. Sprengel, Graz Technical University, Austria;
B. Fultz, California Institute of Technology, Pasadena, USA; H. Strunk, Stuttgart
University, Germany; L. Ley, Erlangen University, Germany; H. Krenn, Graz
University, Austria; R. Würschum, Graz Technical University, Austria; H. Schaefer,
retired from Nycomed GmbH, Konstanz, Germany; and R. Ghosh, Stuttgart
University, Germany.

The financial support of the author’s research projects by Deutsche
Forschungsgemeinschaft, by the European Union, Alexander von Humboldt
Foundation, Deutscher Akademischer Austauschdienst, Baden-Württemberg
Stiftung, and NATO is highly appreciated.
Parts of the book have been designed during research and teaching periods of
the author abroad, kindly hosted by P. Vargas, Universidad Técnica Federico Santa
Maria, Valparaiso, Chile; by K. Lu, Institute of Metal Research, Chinese Academy
of Sciences, Shenyang, China; by Y. Shirai, Kyoto University; by T. Kakeshita
and H. Araki, Osaka University, Japan; and by A. A. Rempel, Institute of Solid
State Chemistry, Russian Academy of Sciences, Ekaterinburg, Russia. Continuous
support by C. Ascheron, Springer Verlag, Heidelberg, Germany, is gratefully
acknowledged.
The efficient help by S. Heldele, M. Jakob, P. C. Li, Y. Rong, and H. Schatz
and the financial support by H. Strunk, Stuttgart University, Germany, were crucial
for the technical preparation of the manuscript. Thanks are due to S. Blümlein,
P. Brommer, U. Mergenthaler, J. Roth, and H. R. Trebin, Stuttgart University,
Germany, for most valuable technical and organizational help.
Furthermore, thanks are due to many publishing houses, scientific societies,
governments, companies, and individuals for kindly granting the copyright permissions for a large number of figures: Advanced Study Center St. Petersburg,
Agentur-Focus, American Association for the Advancement of Sciences (AAAS),
American Association of Cancer Research, American Association of Physics
Teachers, American Cancer Society, American Chemical Society, American Dental
Association, American Institute of Physics, American Physical Society, American

ix


x

Acknowledgments


Scientific Publishers, Annual Reviews, Baden-Württemberg Stiftung, Biophysical
Society, Cambridge University Press, Chinese Society of Metals, Congress
of Neurological Surgeons, Elsevier, European Molecular Biology Association,
Gerhard Glück, German Academy of Sciences Leopoldina, German Federal
Ministry of Education and Research, Institute of Electrical and Electronic Engineers
(IEEE), Institute of Physics, Intel Corp., Japanese Society of Applied Physics,
Karlsruhe Institute of Technology, Korean Chemical Society, Lippincott Williams
and Wilkins, Massachusetts Medical Society, Materials Research Society, MaxPlanck Society, National Academy of Sciences of the USA, Nature Publishing
Group, Oldenbourg Publ., Optical Society of America, Orthopaedic Research
Society, Photonik, Radiological Society of North America, Royal Society of
Chemistry, SAGE, Scientific American, Sigma-Aldrich, Space Channel, Spektrum
der Wissenschaft, Society of Nuclear Medicine, Springer Publ., Taylor and Francis,
Techscience Press, VDI Technologiezentrum, Wiley Interscience, Wiley-VCH,
World Federation of Ultrasound in Medicine and Biology, and World Scientific.


Contents

1 Introduction and Some Physical Principles . . . . . . . . . . . . . .
1.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2
Thermal Properties of Nanostructures . . . . . . . . . . . . .
1.2.1
Violation of the Second Law
of Thermodynamics for Small Systems
and Short Timescales . . . . . . . . . . . . . . . . .
1.2.2
Surface Energy . . . . . . . . . . . . . . . . . . . . .

1.2.3
Thermal Conductance . . . . . . . . . . . . . . . . .
1.2.4
Melting of Nanoparticles . . . . . . . . . . . . . . .
1.2.5
Lattice Parameter . . . . . . . . . . . . . . . . . . .
1.2.6
Phase Transitions . . . . . . . . . . . . . . . . . . .
1.3
Electronic Properties . . . . . . . . . . . . . . . . . . . . . .
1.3.1
Electron States in Dependence of Size
and Dimensionality . . . . . . . . . . . . . . . . . .
1.3.2
The Electron Density of States D(E) . . . . . . . . .
1.3.3
Luttinger Liquid Behavior of Electrons in 1D Metals .
1.3.4
Superconductivity . . . . . . . . . . . . . . . . . . .
1.4
Giant Magnetoresistance (GMR) and Spintronics . . . . . . .
1.4.1
Giant Magnetoresistance (GMR)
and Tunneling Magnetoresistance (TMR) . . . . . .
1.4.2
Spintronics in Semiconductors . . . . . . . . . . . .
1.4.3
Spin Hall Effect . . . . . . . . . . . . . . . . . . . .
1.5
Self-Assembly . . . . . . . . . . . . . . . . . . . . . . . . . .

1.5.1
Self-Assembly of Ni Nanoclusters on Rh
(111) via Friedel Oscillations . . . . . . . . . . . . .
1.5.2
Self-Assembly of Fe Nanoparticles by Strain Patterns
1.5.3
Chiral Kagomé Lattice from Molecular Bricks . . . .
1.5.4
Self-Assembled Monolayers (SAMs) . . . . . . . . .
1.5.5
Magnetic Assembly of Colloidal Superstructures . . .
1.5.6
Self-Assembly via DNA or Proteins . . . . . . . . . .
1.6
Casimir Forces . . . . . . . . . . . . . . . . . . . . . . . . .
1.7
Nanoscale Measuring Techniques . . . . . . . . . . . . . . . .
1.7.1
Displacement Sensing . . . . . . . . . . . . . . . . .

1
1
7

7
8
9
11
12
13

14
14
16
17
17
19
21
23
26
27
28
29
29
30
31
33
33
35
35
xi


xii

Contents

1.7.2
1.7.3
1.7.4


Mass Sensing . . . . . . . . . . . . . . . . . . .
Sensing of Weak Magnetic Fields at the Nanoscale
Nuclear Magnetic Resonance Imaging (MRI)
at the Nanoscale . . . . . . . . . . . . . . . . . .
1.7.5
Probing Superconductivity at the Nanoscale
by Scanning Tunneling Microscopy (STM) . . . .
1.7.6
Raman Spectroscopy on the Nanometric Scale . .
1.7.7
“Nanosized Voltmeter” for Mapping
of Electric Fields in Cells . . . . . . . . . . . . .
1.7.8
Detection of Calcium at the Nanometer Scale . . .
1.8
Summary . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Microscopy – Nanoscopy . . . . . . . . . . . . . . . . . . . . . .
2.1
Scanning Tunneling Microscopy (STM) . . . . . . . . . .
2.1.1
Scanning Units, Electronics, Software . . . . . . .
2.1.2 Constant Current Imaging (CCI) . . . . . . . . .
2.1.3 Constant-Height Imaging (CHI) . . . . . . . . .
2.1.4
Synchrotron Radiation Assisted STM
(SRSTM) for Nanoscale Chemical Imaging . . . .
2.1.5
Studying Bulk Properties and Volume Atomic
Defects by STM . . . . . . . . . . . . . . . . . .

2.1.6
Radiofrequency STM . . . . . . . . . . . . . . .
2.2
Atomic Force Microscopy (AFM) . . . . . . . . . . . . .
2.2.1
Topographic Imaging by AFM in Contact Mode .
2.2.2
Frictional Force Microscopy . . . . . . . . . . . .
2.2.3
Non-contact Force Microscopy . . . . . . . . . .
2.2.4
Chemical Identification of Individual Surface
Atoms by AFM . . . . . . . . . . . . . . . . . .
2.2.5
AFM in Bionanotechnology . . . . . . . . . . . .
2.3
Scanning Near-Field Optical Microscopy (SNOM) . . . .
2.3.1
Scanning Near-Field Optical Microscopy
(SNOM) . . . . . . . . . . . . . . . . . . . . . .
2.3.2
Near-Field Scanning Interferometric
Apertureless Microscopy (SIAM) . . . . . . . . .
2.3.3
Mapping Vector Fields in Nanoscale
Near-Field Imaging . . . . . . . . . . . . . . . .
2.3.4
Terahertz Near-Field Nanoscopy of Mobile
Carriers in Semiconductor Nanodevices . . . . . .
2.4

Far-Field Optical Microscopy Beyond the Diffraction Limit
2.4.1
Stimulated Emission Depletion (STED)
Optical Microscopy . . . . . . . . . . . . . . . .
2.4.2
Stochastic Optical Reconstruction Microscopy
(2D-STORM) . . . . . . . . . . . . . . . . . . .
2.4.3
Three-Dimensional Far-Field Optical
Nanoimaging of Cells . . . . . . . . . . . . . . .

. .
. .

35
36

. .

37

. .
. .

39
40

.
.
.

.

.
.
.
.

40
41
43
44

.
.
.
.
.

.
.
.
.
.

49
49
50
51
53


. .

54

.
.
.
.
.
.

.
.
.
.
.
.

54
56
56
57
59
59

. .
. .
. .

60

61
61

. .

63

. .

64

. .

65

. .
. .

66
67

. .

68

. .

69

. .


70


Contents

xiii

2.4.4

Video-Rate Far-Field Nanooptical
Observation of Synaptic Vesicle Movement . . .
2.5
Magnetic Scanning Probe Techniques . . . . . . . . . .
2.5.1
Magnetic Force Microscopy (MFM) . . . . . .
2.5.2
Spin-Polarized Scanning Tunneling
Microscopy (SP-STM) . . . . . . . . . . . . .
2.6
Progress in Electron Microscopy . . . . . . . . . . . . .
2.6.1
Aberration-Corrected Electron Microscopy . . .
2.6.2
TEM Nanotomography and Holography . . . .
2.6.3
Cryoelectron Microscopy and Tomography . . .
2.7
X-Ray Microscopy . . . . . . . . . . . . . . . . . . . .
2.7.1

Lens-Based X-Ray Microscopy . . . . . . . . .
2.7.2
X-Ray Nanotomography . . . . . . . . . . . . .
2.7.3
Lens-Less Coherent X-Ray Diffraction Imaging
2.7.4
Upcoming X-Ray Free-Electron Lasers
(XFEL) and Single Biomolecule Imaging . . . .
2.8
Three-Dimensional Atom Probes (3DAPs) . . . . . . . .
2.9
Summary . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . .
. . .
. . .

73
74
74

.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

75
76
76
81
81
84
85
87

89

.
.
.
.

.
.
.
.

.
.
.
.

89
91
95
95

3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1
Nanocrystals and Clusters . . . . . . . . . . . . . . . . . .
3.1.1
From Supersaturated Vapors . . . . . . . . . . . .
3.1.2
Particle Synthesis by Chemical Routes . . . . . .
3.1.3

Semiconductor Nanocrystals (Quantum Dots) . .
3.1.4
Doping of Nanocrystals . . . . . . . . . . . . . .
3.1.5
Magnetic Nanoparticles . . . . . . . . . . . . . .
3.2
Superlattices of Nanocrystals in Two (2D) and Three
(3D) Dimensions . . . . . . . . . . . . . . . . . . . . . .
3.2.1
Free-Standing Nanoparticle Superlattice Sheets . .
3.2.2
3D Superlattices of Binary Nanoparticles . . . . .
3.3
Nanowires and Nanofibers . . . . . . . . . . . . . . . . .
3.3.1
Vapor–Liquid–Solid (VLS) Growth of Nanowires
3.3.2
Pine Tree Nanowires with Eshelby Twist . . . . .
3.3.3 Ultrathin Nanowires . . . . . . . . . . . . . . . .
3.3.4
Electrospinning of Nanofibers . . . . . . . . . . .
3.3.5
Bio-Quantum-Wires . . . . . . . . . . . . . . . .
3.3.6
Formation of Arsenic Sulfide Nanotubes by
the Bacterium Shewanella sp. Strain HN-41 . . .
3.4
Nanolayers and Multilayered Systems . . . . . . . . . . .
3.4.1
Layered Oxide Heterostructures by Molecular

Beam Epitaxy (MBE) . . . . . . . . . . . . . . .
3.4.2
Atomic Layer Deposition (ALD) . . . . . . . . .
3.5
Shape Control of Nanoparticles . . . . . . . . . . . . . . .
3.6
Nanostructures with Complex Shapes . . . . . . . . . . .

.
.
.
.
.
.
.

.
.
.
.
.
.
.

99
99
99
101
104
104

105

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

107
107
109
111
113
116
117
120

121

. .
. .

122
123

.
.
.
.

127
128
132
134

.
.
.
.


xiv

Contents

3.7


Nanostructures by Ball Milling or Strong
Plastic Deformation . . . . . . . . . . . . . . . . . . . . . .
3.8
Carbon Nanostructures . . . . . . . . . . . . . . . . . . . .
3.8.1
Fullerenes . . . . . . . . . . . . . . . . . . . . . .
3.8.2
Single-Walled Carbon Nanotubes (SWNTs) –
Synthesis and Characterization . . . . . . . . . . .
3.8.3
Graphene . . . . . . . . . . . . . . . . . . . . . . .
3.9
Nanoporous Materials . . . . . . . . . . . . . . . . . . . . .
3.9.1
Zeolites and Mesoporous Metal Oxides . . . . . . .
3.9.2
Nanostructured Germanium . . . . . . . . . . . . .
3.9.3
Nanoporous Metals . . . . . . . . . . . . . . . . .
3.9.4
Single Nanopores – Potentials for DNA Sequencing
3.10
Lithography . . . . . . . . . . . . . . . . . . . . . . . . . .
3.10.1 UV Optical Lithography . . . . . . . . . . . . . . .
3.10.2 Electron Beam Lithography . . . . . . . . . . . . .
3.10.3 Proton-Beam Writing . . . . . . . . . . . . . . . .
3.10.4 Nanoimprint Lithography (NIL) . . . . . . . . . . .
3.10.5 Dip-Pen Nanolithography (DPN) . . . . . . . . . .
3.10.6 Block Copolymer Lithography . . . . . . . . . . .
3.10.7 Protein Nanolithography . . . . . . . . . . . . . . .

3.10.8 Fabrication of Nanostructures in Supercritical Fluids
3.10.9 Two-Photon Lithography for Microfabrication . . .
3.11
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Nanocrystals – Nanowires – Nanolayers . . . . . . . . . . . . .
4.1
Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1
Synthesis of Nanocrystals . . . . . . . . . . . . .
4.1.2
Metal Nanocrystallites – Structure and Properties .
4.1.3
Semiconductor Quantum Dots . . . . . . . . . . .
4.1.4
Colorful Nanoparticles . . . . . . . . . . . . . . .
4.1.5
Double Quantum Dots for Operating
Single-Electron Spins as Qubits for Quantum
Computing . . . . . . . . . . . . . . . . . . . . .
4.1.6
Quantum Dot Data Storage Devices . . . . . . . .
4.2
Nanowires and Metamaterials . . . . . . . . . . . . . . . .
4.2.1
Metallic Nanowires . . . . . . . . . . . . . . . .
4.2.2
Negative-Index Materials (Metamaterials)
with Nanostructures . . . . . . . . . . . . . . . .
4.2.3

Semiconductor Nanowires . . . . . . . . . . . . .
4.2.4
Molecular Nanowires . . . . . . . . . . . . . . .
4.2.5
Conduction Through Individual Rows
of Atoms and Single-Atom Contacts . . . . . . .
4.3
Nanolayers and Multilayers . . . . . . . . . . . . . . . . .
4.3.1
2D Quantum Wells . . . . . . . . . . . . . . . . .

.
.
.

136
137
137

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

139
143
145
145
150
150
152
154
155
157
157
158
158
159
162
163
164
165
165

.

.
.
.
.
.

.
.
.
.
.
.

169
169
169
172
174
178

.
.
.
.

.
.
.
.


181
183
183
183

. .
. .
. .

184
186
192

. .
. .
. .

193
195
195


Contents

xv

4.3.2
4.3.3
4.3.4
4.3.5

4.3.6

2D Quantum Wells in High Magnetic Fields .
The Integral Quantum Hall Effect (IQHE) . .
The Fractional Quantum Hall Effect (FQHE) .
2D Electron Gases (2DEG) at Oxide Interfaces
Multilayer EUV and X-Ray Mirrors
with High Reflectivity . . . . . . . . . . . . .
4.4
Summary . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.

.

196
196
198
199

. . . .
. . . .
. . . .

201
205
205

5 Carbon Nanostructures – Tubes, Graphene, Fullerenes,
Wave-Particle Duality . . . . . . . . . . . . . . . . . . . . . . . . .
5.1
Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1.1
Synthesis of Carbon Nanotubes . . . . . . . . . . . .
5.1.2
Structure of Carbon Nanotubes . . . . . . . . . . . .
5.1.3
Electronic Properties of Carbon Nanotubes . . . . . .
5.1.4
Heteronanocontacts Between Carbon
Nanotubes and Metals . . . . . . . . . . . . . . . . .
5.1.5
Optoelectronic Properties of Carbon Nanotubes . . .

5.1.6
Thermal Properties of Carbon Nanotubes . . . . . . .
5.1.7
Mechanical Properties of Carbon Nanotubes . . . . .
5.1.8
Carbon Nanotubes as Nanoprobes and
Nanotweezers in Physics, Chemistry, and Biology . .
5.1.9
Other Tubular 1D Carbon Nanostructures . . . . . . .
5.1.10 Filling and Functionalizing Carbon Nanotubes . . . .
5.1.11 Nanotubes from Materials Other than Pure Carbon . .
5.1.12 Application of Carbon Nanotubes . . . . . . . . . . .
5.2
Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1
Imaging of Graphene, Defects, and Atomic Dynamics
5.2.2
Electronic Structure of Graphene, Massless
Relativistic Dirac Fermions, and Chirality . . . . . .
5.2.3
Quantum Hall Effect . . . . . . . . . . . . . . . . . .
5.2.4
Anomalous QHE in Bilayer Graphene . . . . . . . .
5.2.5
Absence of Localization . . . . . . . . . . . . . . . .
5.2.6
From Graphene to Graphane . . . . . . . . . . . . . .
5.2.7
Graphene Devices . . . . . . . . . . . . . . . . . . .
5.3

Fullerenes, Large Carbon Molecules, and Hollow
Cages of Other Materials . . . . . . . . . . . . . . . . . . . .
5.3.1
Fullerenes . . . . . . . . . . . . . . . . . . . . . . .
5.3.2
Fullerene Compounds . . . . . . . . . . . . . . . . .
5.3.3
Superheating and Supercooling of Metals
Encapsulated in Fullerene-Like Shells . . . . . . . . .
5.3.4
Large Carbon Molecules . . . . . . . . . . . . . . . .
5.3.5
Hollow Cages of Other Materials . . . . . . . . . . .
5.4
Fullerenes and the Wave-Particle Duality . . . . . . . . . . . .
5.5
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

209
209
209
212
214
219
219
220
220
224
227

230
235
236
245
246
248
250
251
252
252
252
253
253
254
255
257
258
259
261
262


xvi

6 Nanocrystalline Materials . . . . . . . . . . . . . . . . . . .
6.1
Molecular Dynamics Simulation of the Structure
of Grain Boundaries and of the Plastic Deformation
of Nanocrystalline Materials . . . . . . . . . . . . . .
6.2

Grain Boundary Structure . . . . . . . . . . . . . . . .
6.3
Plasticity and Hall–Petch Behavior of Nanocrystalline
Materials . . . . . . . . . . . . . . . . . . . . . . . .
6.4
Plasticity Studies by Nanoindentation . . . . . . . . .
6.5
Ultrastrength Nanomaterials . . . . . . . . . . . . . .
6.6
Enhancement of Both Strength and Ductility . . . . . .
6.7
Superplasticity . . . . . . . . . . . . . . . . . . . . . .
6.8
Fatigue . . . . . . . . . . . . . . . . . . . . . . . . . .
6.9
Nanocomposites . . . . . . . . . . . . . . . . . . . . .
6.9.1
Metallic Nanocomposites . . . . . . . . . . .
6.9.2
Ceramic/Metal Nanocomposites with
Diamond-Like Hardening . . . . . . . . . . .
6.9.3
Oxide/Dye/Polymer Nanocomposites –
Optical Properties . . . . . . . . . . . . . . .
6.9.4
Polymer Nanocomposites . . . . . . . . . . .
6.10
Nanocrystalline Ceramics . . . . . . . . . . . . . . . .
6.10.1 Low Thermal Expansion NanocrystalliteGlass Ceramics . . . . . . . . . . . . . . . . .
6.11

Atomic Diffusion in Nanocrystalline Materials . . . . .
6.12
Surface-Controlled Actuation and Manipulation
of the Properties of Nanostructures . . . . . . . . . . .
6.12.1 Charge-Induced Reversible Strain
in Nanocrystalline Metals . . . . . . . . . . .
6.12.2 Artificial Muscles Made of Carbon Nanotubes
6.12.3 Electric Field-Controlled Magnetism
in Nanostructured Metals . . . . . . . . . . .
6.12.4 Surface Chemistry-Driven Actuation
in Nanoporous Gold . . . . . . . . . . . . . .
6.13
Summary . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 Nanomechanics – Nanophotonics – Nanofluidics . . . . . . .
7.1
Nanoelectromechanical Systems (NEMS) . . . . . . .
7.1.1
High-Frequency Resonators . . . . . . . . . .
7.1.2
Nanoelectromechanical Switches . . . . . . .
7.2
Putting Mechanics into Quantum Mechanics – Cooling
by Laser Irradiation . . . . . . . . . . . . . . . . . . .
7.3
Nanoadhesion: From Geckos to Materials . . . . . . .
7.3.1
Materials with Bioinspired Adhesion . . . . .
7.3.2
Climbing Robots and Spiderman Suit . . . . .


Contents

. . . .

267

. . . .
. . . .

267
268

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.


271
276
279
282
285
288
290
290

. . . .

292

. . . .
. . . .
. . . .

293
294
300

. . . .
. . . .

301
303

. . . .


306

. . . .
. . . .

307
308

. . . .

308

. . . .
. . . .
. . . .

310
310
310

.
.
.
.

.
.
.
.


.
.
.
.

.
.
.
.

315
315
316
316

.
.
.
.

.
.
.
.

.
.
.
.


.
.
.
.

319
323
324
324

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.


Contents


Single-Photon and Entangled-Photon Sources
and Photon Detectors, Based on Quantum Dots . . . . . . . .
7.4.1
Single-Photon Sources . . . . . . . . . . . . . . . . .
7.4.2
Entangled-Photon Sources . . . . . . . . . . . . . . .
7.4.3
Single-Photon Detection . . . . . . . . . . . . . . . .
7.5
Quantum Dot Lasers . . . . . . . . . . . . . . . . . . . . . .
7.6
Plasmonics . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.6.1
Plasmon-Controlled Synthesis of Metallic
Nanoparticles . . . . . . . . . . . . . . . . . . . . .
7.6.2
Extinction Behavior of Nanoparticles and Arrays . . .
7.6.3
Plasmonic Nanocavities . . . . . . . . . . . . . . . .
7.6.4
Surface-Enhanced Raman Spectroscopy
(SERS) and Fluorescence . . . . . . . . . . . . . . .
7.6.5
Receiver–Transmitter Nanoantenna Pairs . . . . . . .
7.6.6
Electro-optical Nanotraps for Neutral Atoms . . . . .
7.6.7
Unifying Nanophotonics and Nanomechanics . . . . .
7.6.8

Integration of Optical Manipulation and Nanofluidics
7.6.9
Single-Photon Transistor . . . . . . . . . . . . . . . .
7.6.10 Application Prospects of Plasmonics . . . . . . . . .
7.7
2D-Confinement of Fluids, Wetting, and Spreading . . . . . .
7.7.1
Phase Transitions Induced by
Nanoconfinement of Liquid Water . . . . . . . . . . .
7.7.2
Fluid Flow and Wetting . . . . . . . . . . . . . . . .
7.7.3
Superhydrophobic Surfaces . . . . . . . . . . . . . .
7.7.4
Liquid Spreading Under Nanoscale Confinement . . .
7.8
Fast Transport of Liquids and Gases Through Carbon
Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.8.1
Limits of Continuum Hydrodynamics
at the Nanoscale . . . . . . . . . . . . . . . . . . . .
7.8.2
Water Transport in CNTs . . . . . . . . . . . . . . .
7.8.3
Gas Transport in CNTs . . . . . . . . . . . . . . . .
7.9
Nanodroplets . . . . . . . . . . . . . . . . . . . . . . . . . .
7.9.1
Dynamics of Nanoscopic Water in Micelles . . . . . .
7.9.2

Nanoscale Double Emulsions . . . . . . . . . . . . .
7.9.3
Zeptoliter Liquid Alloy Droplets
and Surface-Induced Crystallization . . . . . . . . . .
7.9.4
Superfluid Helium Nanodroplets . . . . . . . . . . .
7.10
Nanobubbles . . . . . . . . . . . . . . . . . . . . . . . . . .
7.10.1 Stable Surface Nanobubbles . . . . . . . . . . . . . .
7.10.2 Polygonal Nanopatterning of Stable Microbubbles . .
7.10.3 Bubbles for Tracking the Trajectory of an
Individual Electron Immersed in Liquid Helium . . .
7.11
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xvii

7.4

325
325
327
328
329
331
334
335
337
338

341
341
342
342
343
343
346
347
348
348
349
351
351
351
353
353
353
354
354
356
358
358
358
359
360
361


xviii


Contents

8 Nanomagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.1
Magnetic Imaging . . . . . . . . . . . . . . . . . . . . . .
8.1.1
Magnetic Force Microscopy (MFM) and
Magnetic Exchange Force Microscopy (MEx FM)
8.1.2
Spin-Polarized Scanning Tunneling
Microscopy (SP-STM) and Manipulation . . . .
8.1.3
Electron Microscopy . . . . . . . . . . . . . . . .
8.1.4
X-Ray Magnetic Circular Dichroism (XMCD) . .
8.2
Size and Dimensionality Effects in Nanomagnetism –
Single Atoms, Clusters (0D), Wires (1D), Films (2D) . . .
8.2.1
Single Atoms . . . . . . . . . . . . . . . . . . . .
8.2.2
Finite-Size Atomic Clusters . . . . . . . . . . . .
8.2.3
Ferromagnetic Nanowires . . . . . . . . . . . . .
8.2.4
Magnetic Films (2D) . . . . . . . . . . . . . . . .
8.2.5
Curie Temperature TC in Dependence of Size,
Dimensionality, and Charging . . . . . . . . . . .
8.3

Soft-Magnetic Materials . . . . . . . . . . . . . . . . . .
8.4
Nanostructured Hard Magnets . . . . . . . . . . . . . . .
8.5
Antiferromagnetic and Complex Magnetic Nanostructures
8.5.1
Spin Structure of Antiferromagnetic Domain Walls
8.5.2
Antiferromagnetic Monatomic Chains . . . . . .
8.5.3
Antiferromagnetic Nanoparticles . . . . . . . . .
8.5.4
Complex Magnetic Structure of an Iron
Monolayer on Ir (111) . . . . . . . . . . . . . . .
8.6
Ferromagnetic Nanorings . . . . . . . . . . . . . . . . . .
8.7
Current-Induced Domain Wall Motion in Magnetic
Nanostructures . . . . . . . . . . . . . . . . . . . . . . .
8.8
Single Molecule Magnets . . . . . . . . . . . . . . . . . .
8.9
Multiferroic Nanostructures . . . . . . . . . . . . . . . . .
8.10
Magnetically Tunable Photonic Crystals
of Superparamagnetic Colloids . . . . . . . . . . . . . . .
8.11
Nanomagnets in Bacteria . . . . . . . . . . . . . . . . . .
8.11.1 In Vivo Doping of Magnetosomes . . . . . . . . .
8.11.2 Magnetosomes for Highly Sensitive

Biomarker Detection . . . . . . . . . . . . . . . .
8.12
Summary . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9 Nanotechnology for Computers, Memories, and Hard Disks
9.1
Transistors and Integrated Circuits . . . . . . . . . . .
9.2
Extreme Ultraviolet (EUV) Lithography – The Future
Technology of Chip Fabrication . . . . . . . . . . . .
9.3
Flash Memory . . . . . . . . . . . . . . . . . . . . . .
9.4
Emerging Solid State Memory Technologies . . . . . .
9.4.1
Phase-Change Memory Technology . . . . . .

. .
. .

365
365

. .

366

. .
. .
. .


370
376
381

.
.
.
.
.

.
.
.
.
.

383
384
386
388
393

.
.
.
.
.
.
.


.
.
.
.
.
.
.

396
397
399
401
403
403
403

. .
. .

407
407

. .
. .
. .

410
412
412


. .
. .
. .

416
417
418

. .
. .
. .

419
420
420

. . . .
. . . .

425
426

.
.
.
.

431
434

436
437

.
.
.
.

.
.
.
.

.
.
.
.


Contents

xix

9.4.2
9.4.3
9.4.4
9.4.5

Magnetoresistive Random-Access Memories (MRAM)
Ferroelectric Random-Access Memories (FeRAM) . .

Resistance Random Access Memories (ReRAMs) . .
Carbon-Nanotube (CNT)-Based Data Storage
Devices (NRAM) . . . . . . . . . . . . . . . . . . .
9.4.6
Magnetic Domain Wall Racetrack Memories (RM) . .
9.4.7
Single-Molecule Magnets . . . . . . . . . . . . . . .
9.4.8
10 Terabit/Inch2 Block Copolymer (BCP)
Storage Media . . . . . . . . . . . . . . . . . . . . .
9.5
Magnetic Hard Disks and Write/Read Heads . . . . . . . . . .
9.5.1
Extensions to Hard Disk Magnetic Recording . . . . .
9.5.2
Magnetic Write Head and Read Back Head . . . . . .
9.6
Optical Hard Disks . . . . . . . . . . . . . . . . . . . . . . .
9.6.1
Principles and Materials Considerations . . . . . . . .
9.6.2
Magneto-Optical Recording . . . . . . . . . . . . . .
9.6.3
Multilayer Recording . . . . . . . . . . . . . . . . .
9.6.4
Holographic Data Storage . . . . . . . . . . . . . . .
9.7
High-k Dielectrics for Replacing SiO2 Insulation
in Memory and Logic Devices . . . . . . . . . . . . . . . . .
9.8

Low-k Materials as Interlayer Dielectrics (ILD) . . . . . . . .
9.9
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10

Nanochemistry – From Supramolecular Chemistry
to Chemistry on the Nanoscale, Catalysis, Renewable
Energy, Batteries, and Environmental Protection . . . . . . . . .
10.1
Supramolecular Chemistry . . . . . . . . . . . . . . . . . .
10.1.1 Architecture in Supramolecular Chemistry . . . . .
10.1.2 Supramolecular Materials . . . . . . . . . . . . . .
10.1.3 Molecular Recognition, Reactivity, Catalysis,
and Transport . . . . . . . . . . . . . . . . . . . .
10.1.4 Molecular Photonics and Electronics . . . . . . . .
10.1.5 Molecular Recognition and Self-Organization . . .
10.1.6 DNA Self-Assembled Nanostructures . . . . . . . .
10.1.7 Supramolecular DNA Polyhedra . . . . . . . . . .
10.2 Large Inorganic Hollow Clusters . . . . . . . . . . . . . . .
10.2.1 Nano-hedgehogs Shaped from Molybdenum
Oxide Building Blocks . . . . . . . . . . . . . . . .
10.2.2 Vesicle-Like Structures with a Diameter of 90 nm .
10.2.3 Nitride–Phosphate Clathrate . . . . . . . . . . . . .
10.3
Chemistry on the Nanoscale . . . . . . . . . . . . . . . . .
10.3.1 Nano Test Tubes . . . . . . . . . . . . . . . . . . .
10.3.2 Dynamics in Water Nanodroplets . . . . . . . . . .
10.3.3 Targeted Delivery and Reaction of Single Molecules


441
446
447
448
450
452
452
454
456
457
462
463
466
467
468
470
471
474
474

.
.
.
.

477
477
478
480


.
.
.
.
.
.

484
486
489
493
493
495

.
.
.
.
.
.
.

495
495
497
498
498
499
500



xx

Contents

10.4

Catalysis . . . . . . . . . . . . . . . . . . . . . . . .
10.4.1 Au Nanocrystals . . . . . . . . . . . . . . .
10.4.2 Pt Nanocatalysts . . . . . . . . . . . . . . .
10.4.3 Pd Nanocatalysts . . . . . . . . . . . . . . .
10.4.4 MoS2 Nanocatalysts as Model Catalysts
for Hydrodesulfurization (HDS) . . . . . .
10.4.5 In Situ Phase Analysis of a Catalyst . . . . .
10.5 Renewable Energy . . . . . . . . . . . . . . . . . .
10.6
Solar Energy – Photovoltaics . . . . . . . . . . . . .
10.6.1 Nitrogen-Doped Nanocrystalline TiO2 Films
Sensitized by CdSe Quantum Dots . . . . .
10.6.2 Polymer-Based Solar Cells . . . . . . . . .
10.6.3 Silicon Nanostructures . . . . . . . . . . . .
10.7
Solar Energy – Thermal Conversion . . . . . . . . .
10.8
Antireflection (AR) Coating . . . . . . . . . . . . .
10.9
Conversion of Mechanical Energy into Electricity . .
10.10 Hydrogen Storage and Fuel Cells . . . . . . . . . . .
10.11 Lithium Ion Batteries and Supercapacitors . . . . . .
10.11.1 Carbon Nanotube Cathodes . . . . . . . . .

10.11.2 Tin-Based Anodes . . . . . . . . . . . . . .
10.11.3 LiFePO4 Cathodes . . . . . . . . . . . . . .
10.11.4 Supercapacitors . . . . . . . . . . . . . . .
10.12 Environmental Nanotechnology . . . . . . . . . . .
10.13 Summary . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . .
11

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.

.
.

502
502
505
506

.
.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

.
.

.
.

507
509
510
510

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

511
512

512
514
515
516
516
519
519
519
520
522
522
524
524

Biology on the Nanoscale . . . . . . . . . . . . . . . . . . . . . . .
11.1
The Cell – Nanosized Components, Mechanics, and Diseases
11.1.1 Cell Structure . . . . . . . . . . . . . . . . . . . .
11.1.2 Mechanics, Motion, and Deformation of Cells . . .
11.1.3 Cell Adhesion . . . . . . . . . . . . . . . . . . . .
11.1.4 Disease-Induced Alterations of the
Mechanical Properties of Single Living Cells . . . .
11.1.5 Control of Cell Functions by the Size
of Nanoparticles Alone . . . . . . . . . . . . . . .
11.2
Nanoparticles for Bioanalysis . . . . . . . . . . . . . . . . .
11.2.1 Various Materials of Nanoparticles . . . . . . . . .
11.2.2 Surface Functionalization of Nanoparticles . . . . .
11.2.3 Examples for Labeling Biosystems by Nanoparticles
11.2.4 In Vivo and Deep Tissue Imaging . . . . . . . . . .

11.2.5 Nanoparticle-DNA Interaction . . . . . . . . . . . .
11.2.6 Nanoparticle-Protein Interaction . . . . . . . . . . .
11.2.7 Biodistribution of Nanoparticles . . . . . . . . . . .
11.3
Nanomechanics of DNA, Proteins, and Cells . . . . . . . . .
11.3.1 DNA Elasticity . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.

527
528
529
532
533

.

534

.
.
.
.
.
.
.

.
.
.
.

536
537
537
540
540
543
546
552
556
557
557


Contents

12

xxi

11.3.2 From Elasticity to Enzymology . . . . . . . . . . .
11.3.3 Unzipping of DNA . . . . . . . . . . . . . . . . . .
11.3.4 Protein Mechanics . . . . . . . . . . . . . . . . . .
11.4
Molecular Motors and Machines . . . . . . . . . . . . . . .
11.4.1 Myosin . . . . . . . . . . . . . . . . . . . . . . . .

11.4.2 Kinesin . . . . . . . . . . . . . . . . . . . . . . . .
11.4.3 Motor–Cargo Linkage and Regulation . . . . . . .
11.4.4 Diseases . . . . . . . . . . . . . . . . . . . . . . .
11.4.5 ATP Synthase (ATPase) . . . . . . . . . . . . . . .
11.5
Membrane Channels . . . . . . . . . . . . . . . . . . . . .
11.5.1 The K+ Channel . . . . . . . . . . . . . . . . . . .
11.5.2 The Ca2+ Channel . . . . . . . . . . . . . . . . . .
11.5.3 The Chloride (Cl− ) Channel . . . . . . . . . . . . .
11.5.4 The Aquaporin Water Channel . . . . . . . . . . .
11.5.5 Protein Channels . . . . . . . . . . . . . . . . . . .
11.5.6 Pentameric Ligand-Gated Ion Channels . . . . . . .
11.5.7 Nuclear Pores . . . . . . . . . . . . . . . . . . . .
11.6 Biomimetics . . . . . . . . . . . . . . . . . . . . . . . . . .
11.6.1 Energy Conversion . . . . . . . . . . . . . . . . . .
11.6.2 Sensing . . . . . . . . . . . . . . . . . . . . . . . .
11.6.3 Signaling . . . . . . . . . . . . . . . . . . . . . . .
11.6.4 Molecular Motors . . . . . . . . . . . . . . . . . .
11.6.5 Materials . . . . . . . . . . . . . . . . . . . . . . .
11.6.6 Artificial Cells – Prospects for Biotechnology . . .
11.7
Bone and Teeth . . . . . . . . . . . . . . . . . . . . . . . .
11.7.1 Bone . . . . . . . . . . . . . . . . . . . . . . . . .
11.7.2 Tooth Structure and Restoration . . . . . . . . . . .
11.8
Photonic Bionanostructures – Colors of Butterflies
and Beetles . . . . . . . . . . . . . . . . . . . . . . . . . .
11.8.1 Structures . . . . . . . . . . . . . . . . . . . . . .
11.8.2 Formation Processes of Photonic Bionanostructures
11.9

Lotus Leaf Effect – Hydrophobicity and Self-Cleaning . . .
11.10 Food Nanostructures . . . . . . . . . . . . . . . . . . . . .
11.11 Cosmetics . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.11.1 Skin Care . . . . . . . . . . . . . . . . . . . . . . .
11.11.2 Encapsulating a Fragrance in Nanocapsules . . . . .
11.11.3 PbS Nanocrystals in Ancient Hair Dyeing . . . . . .
11.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

557
559
560
563
564
567
568
569
569
571
571
573
575
575
576
579
579
580
580
582
583
583
585

590
593
594
596

.
.
.
.
.
.
.
.
.
.
.

597
598
601
601
604
605
606
608
609
610
610

Nanomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . .

12.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . .
12.2
Diagnostic Imaging and Molecular Detection Techniques
12.2.1 Magnetic Resonance Imaging (MRI) . . . . . .
12.2.2 CT Contrast Enhancement . . . . . . . . . . . .

.
.
.
.
.

615
615
618
618
630

.
.
.
.
.

.
.
.
.
.



xxii

Contents

12.3

12.4

12.5

12.6

12.7

12.2.3 Contrast-Enhanced Ultrasound Techniques . . . .
12.2.4 Positron Emission Tomography (PET) . . . . . .
12.2.5 Raman Spectroscopy Imaging . . . . . . . . . . .
12.2.6 Photoacoustic Tomography . . . . . . . . . . . .
12.2.7 Biomolecular Detection for Medical Diagnostics .
Nanoarrays and Nanofluidics for Diagnosis and Therapy .
12.3.1 Lab-on-a-Chip . . . . . . . . . . . . . . . . . . .
12.3.2 Microarrays and Nanoarrays . . . . . . . . . . . .
12.3.3 Microfluidics and Nanofluidics . . . . . . . . . .
12.3.4 Integration of Nanodevices in Medical Diagnostics
12.3.5 Implanted Chips . . . . . . . . . . . . . . . . . .
Targeted Drug Delivery by Nanoparticles . . . . . . . . .
12.4.1 Porous Silica Nanoparticles for Targeting
Cancer Cells . . . . . . . . . . . . . . . . . . . .

12.4.2 Gene Therapy and Drug Delivery for
Cancer Treatment . . . . . . . . . . . . . . . . .
12.4.3 Liposomes and Micelles as Nanocarriers for
Diagnosis and Drug Delivery . . . . . . . . . . .
12.4.4 Drug Delivery by Magnetic Nanoparticles . . . .
12.4.5 Nanoshells for Thermal Drug Delivery . . . . . .
12.4.6 Photodynamic Therapy . . . . . . . . . . . . . .
Brain Cancer Diagnosis and Therapy with Nanoplatforms .
12.5.1 General Comments . . . . . . . . . . . . . . . . .
12.5.2 MRI Contrast Enhancement with Magnetic
Nanoparticles . . . . . . . . . . . . . . . . . . .
12.5.3 Nanoparticles for Chemotherapy . . . . . . . . .
12.5.4 Targeted Multifunctional Polyacrylamide
(PAA) Nanoparticles for Photodynamic
Therapy (PDT) and Magnetic Resonance
Imaging (MRI) . . . . . . . . . . . . . . . . . . .
Hyperthermia Treatment of Tumors by Using Targeted
Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . .
12.6.1 Alternating Magnetic Fields for Heating
Magnetic Nanoparticles . . . . . . . . . . . . . .
12.6.2 Radiofrequency Heating of Carbon Nanotubes . .
12.6.3 Light-Induced Heating of Nanoshells . . . . . . .
Nanoplatforms in Other Diseases and Medical Fields . . .
12.7.1 Heart Diseases . . . . . . . . . . . . . . . . . . .
12.7.2 Diabetes . . . . . . . . . . . . . . . . . . . . . .
12.7.3 Lung Therapy – Targeted Delivery of
Magnetic Nanoparticles and Drug Delivery . . . .
12.7.4 Alzheimer’s Disease (AD) . . . . . . . . . . . . .
12.7.5 Ophthalmology . . . . . . . . . . . . . . . . . .
12.7.6 Viral and Bacterial Diseases . . . . . . . . . . . .


.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

632
635
637

637
637
650
651
652
653
656
656
658

. .

659

. .

662

.
.
.
.
.
.

.
.
.
.
.

.

667
670
672
672
672
674

. .
. .

674
675

. .

676

. .

678

.
.
.
.
.
.


.
.
.
.
.
.

679
682
684
686
686
688

.
.
.
.

.
.
.
.

689
691
696
701



Contents

12.8

Nanobiomaterials for Artificial Tissues . . . . . . . . . . .
12.8.1 Enhancement of Osteoblast Function by
Carbon Nanotubes on Titanium Implants . . . . .
12.8.2 Nanostructured Bioceramics for Bone Restoration
12.8.3 Fibrous Nanobiomaterials as Bone Tissue
Engineering Scaffolds . . . . . . . . . . . . . . .
12.8.4 Tissue Engineering of Skin . . . . . . . . . . . .
12.8.5 Angiogenesis . . . . . . . . . . . . . . . . . . . .
12.8.6 Promoting Neuron Adhesion and Growth . . . . .
12.8.7 Spinal Cord In Vitro Surrogate . . . . . . . . . .
12.8.8 Efforts for Synthesizing Chromosomes . . . . . .
12.9
Nanosurgery – Present Efforts and Future Prospects . . . .
12.9.1 Femtosecond Laser Surgery . . . . . . . . . . . .
12.9.2 Sentinel Lymph Node Surgery Making
Use of Quantum Dots . . . . . . . . . . . . . . .
12.9.3 Progress Toward Nanoneurosurgery . . . . . . . .
12.9.4 Future Directions in Neurosurgery . . . . . . . .
12.10 Nanodentistry . . . . . . . . . . . . . . . . . . . . . . . .
12.10.1 Nanocomposites in Dental Restoration . . . . . .
12.10.2 Nanoleakage of Adhesive Interfaces . . . . . . . .
12.10.3 Nanostructured Bioceramics for Maxillofacial
Applications . . . . . . . . . . . . . . . . . . . .
12.10.4 Release of Ca–PO4 from Nanocomposites
for Remineralization of Tooth Lesions and
Inhibition of Caries . . . . . . . . . . . . . . . .

12.10.5 Growing Replacement Bioteeth . . . . . . . . . .
12.11 Risk Assessment Strategies and Toxicity Considerations . .
12.11.1 Risk Assessment and Biohazard Detection . . . .
12.11.2 Cytotoxicity Studies on Carbon, Metal, Metal
Oxide, and Semiconductor-Based Nanoparticles .
12.12 Summary . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

xxiii

. .

704

. .
. .

705
706

.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

707
708
708
708
710
712
712
712

.
.
.
.
.
.

.
.
.
.
.
.


713
713
714
717
718
719

. .

720

.
.
.
.

.
.
.
.

721
722
723
724

. .
. .
. .


725
728
728

Name Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

737

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

753


Chapter 1

Introduction and Some Physical Principles

1.1 Introduction
Nanoscience, a field of science which has emerged during the last three decades,
nowadays comprises many different [1.1] fields and starts to play an important role
as key technology in application and business.
The term nano, derived from the Greek word nanos which means dwarf, designates a billionth fraction of a unit, e.g., of a meter. Thus the science of nanostructures
is often defined as dealing with objects on a size scale of 1–100 nm.
Nanostructures may be compared [1.2] to a human hair which is ∼50,000 nm
thick whereas the diameters of nanostructures are ∼0.3 nm for a water molecule,
1.2 nm for a single-wall carbon nanotube, and 20 nm for a small transistor. DNA
molecules are 2.5 nm wide, proteins about 10 nm, and an ATPase biochemical motor
about 10 nm. This is the ultimate manufacturing length scale at present with building
blocks of atoms, molecules, and supramolecules as well as integration along several

length scales. In addition, living systems work at the nanoscale.
The investigation of nanostructures and the development of nanoscience started
around 1980 when the scanning tunneling microscope (STM) was invented [1.3] and
the concept of nanostructured solids was suggested [1.4]. More than 20 years earlier
R. Feynman had emphasized that “. . . there is plenty of room at the bottom . . . in
the science of ultra-small structures” [1.5] (see Fig. 1.1).
Clearly, nanostructures were available much earlier. Albert Einstein calculated in
his doctoral dissertation from the experimental diffusion data of sugar in water the
size of a single sugar molecule to about 1 nm (see [1.7]). Michael Faraday remarked
during a lecture on the optical properties of gold in 1857 that “. . . a mere variation
in the size of the (nano) particles gave rise to a variety of resultant colors” [1.8]. In
fact, nanostructures already existed in the early solar nebula or in the presolar dust
(4.5 billion years ago) as deduced from the detection of nanosized C60 molecules in
the Allende meteorite [1.9].
From its early infancy the field of nanoscience has more and more grown up
(see Fig. 1.2) and enjoys worldwide scientific popularity and importance. For the
characterization of this research field the notations “Nanostructured Science” or
“Nanotechnology” were coined by K.E. Drexler [1.11].

H.-E. Schaefer, Nanoscience, DOI 10.1007/978-3-642-10559-3_1,
C Springer-Verlag Berlin Heidelberg 2010

1


×