Tải bản đầy đủ (.doc) (22 trang)

Đề thi thử đặc sắc 2018 có lời giải (đề số 15)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (433.23 KB, 22 trang )

Đề thi thử đặc sắc 2018 có lời giải (Đề số 15)
Câu 1: Một phòng học có 15 bộ bàn ghế, xếp chỗ ngồi cho 30 học sinh, mỗi bàn
ghế 2 học sinh. Tìm xác suất để hai học sinh A, B chỉ định trước ngồi cùng một
bàn.
A.

1
90

B.

1
29

C.

96
270725

D.

Câu 2: Hệ số của x 5 trong khai triển x  1  2x   x 2  1  3x 
5

A. 61204

B. 3160

10

C. 3320



13536
270725

là:
D. 61268

Câu 3: Có bao nhiêu phép tịnh tiến biến đồ thị của hàm số y  s inx thành chính
nó?
A. 0

B. 1

C. 2

D. Vô số





2
Câu 4: Giá trị nhỏ nhất của hàm số y  ln x  2x  1  x trên đoạn  2; 4 là:

A. 2ln 2  3

B. 2 ln 2  4

D. 3


C. 2





Câu 5: Tìm giá trị lớn nhất của hàm số f  x   sin  sin x .
A. 1

B.

1
4

C.

1
2

D. 0

Câu 6: Cho hàm số y  f  x  liên tục, đồng biến trên đoạn  a; b  . Khẳng định nào
sau đây đúng?
A. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên khoảng  a; b 
B. Hàm số đã cho có cực trị trên đoạn  a; b 
C. Hàm số đã cho có giá trị lớn nhất, giá trị nhỏ nhất trên đoạn  a; b 
D. Phương trình f  x   0 có nghiệm duy nhất thuộc đoạn  a; b 
Câu 7: Trong một hình đa diện lồi, mỗi cạnh là cạnh chung của tất cả bao nhiêu
mặt?
A. 5


B. 3

C. 4

D. 2

Câu 8: Cho hàm số y  f  x  có bảng biến thiên như hình vẽ bên. Khẳng định nào
sau đây đúng?

x

�

y'
�
y

0

2
0
3

�


1

�


1

A. Hàm số có hai điểm cực trị
định

B. Hàm số nghịch biến trên mỗi khoảng xác

C. Hàm số có một điểm cực trị

D. Giá trị lớn nhất

của hàm số là 3
Câu 9: Tìm m để hàm số y  x 3  2x 2  mx  1 đồng biến trên �.
A. m  

4
3

B. m �

4
3

C. m �

4
3

D. m  


4
3

Đặt mua bộ 300 đề thi thử THPTQG năm 2018 file word môn Toán có lời giải
chi tiết hay nhất soạn tin “Email của tôi là……….Tôi muốn đặt bộ đề 2018
môn Toán” gửi đến số 096.39.81.569


x 2 cos xdx và u  x 2 ,dv  cos x dx . Khẳng định nào sau
Câu 10: Cho tích phân I  �
0

đây đúng?
2
A. I  x s inx


0



 2�
x sin xdx

2
B. I  x s inx


0


0

C. I  x s inx
2


0



�
x sin xdx
0



�
x sin xdx

D. I  x s inx
2


0

0




 2�
x sin xdx
0

Câu 11: Tìm tất cả các đường tiệm cận của đồ thị hàm số y 
A. y  1 và x  3
Câu

12:

A. a  b  0

B. y  0, y  1 và x  3 C. y  0, x  1 và x  3 D. y  0 và x  3

Cho

f  x  dx   a x  b  e


x  x 2  4 là
x 2  4x  3

hàm
x

y  f  x

số

thỏa


mãn

f '  x    x  1 e x



 c với a, b, c là các hằng số. Khi đó:
B. a  b  3

C. a  b  2

D. a  b  1

Câu 13: Số giao điểm của đồ thị hàm số y  x 3  3x 2  3x  1 và y  x 2  x  1 là:
A. 3

B. 1

Câu 14: Cho hàm số y  f  x  

C. 0

D. 2

ax  b
có đồ thị như hình vẽ bên. Tất cả các giá trị
cx  d

của m để phương trình f  x   m có 2 nghiệm phân biệt là:



A. m �2 và m �1

B. 0  m  1 và m  1 C. m  2 và m  1

D. 0  m  1

Câu 15: Cho hàm số y  f  x  xác định, liên tục trên đoạn  1;3 và có đổ thị như
hình vẽ bên. Tiếp tuyến của đổ thị hàm số tại điểm x  2 có hệ số góc bằng?

A. 1

B. 1

C. 0

D. 2

Đặt mua bộ 300 đề thi thử THPTQG năm 2018 file word môn Toán có lời giải
chi tiết hay nhất soạn tin “Email của tôi là……….Tôi muốn đặt bộ đề 2018
môn Toán” gửi đến số 096.39.81.569
Câu 16: Ông B có một khu vườn giới hạn bởi một đường parabol và một đường
thẳng. Nếu đặt trong hệ tọa độ Oxỵ như hình vẽ bên thì parabol có phương trình

y  x 2 và đường thẳng là y  25 . Ông B dự định dùng một mảnh vườn nhỏ được
chia từ khu vườn bởi một đường thẳng đi qua O và điểm M trên parabol để trồng
một loại hoa. Hãy giúp ông B xác định điểm M bằng cách tính độ dài OM để diện
tích mảnh vườn nhỏ bằng


9
.
2


B. OM  15

A. OM  2 5

C. OM  10

D. OM  3 10

Câu 17: Cho hàm số y  f  x  có đổ thị như hình vẽ bên. Biết rằng f  x  là một
trong bốn hàm số được đưa ra trong các phương án A, B, C, D dưới đây. Tìm f  x 

A. f  x   e

x

�3 �
B. f  x   � �
� �

x

e

C. f  x   ln x


D. f  x   x 

Câu 18: Cho hai số thực dương x, y bất kỳ. Khẳng định nào sau đây đúng?
A. log 2

x 2 2 log 2 x

y
log 2 y











2
B. log 2 x y  2 log 2 x  log 2 y



2
C. log 2 x  y  2log 2 x.log 2 y

2
D. log 2 x y  log 2 x  2 log 2 y


Đặt mua bộ 300 đề thi thử THPTQG năm 2018 file word môn Toán có lời giải
chi tiết hay nhất soạn tin “Email của tôi là……….Tôi muốn đặt bộ đề 2018
môn Toán” gửi đến số 096.39.81.569
Câu 19: Nghiệm của bất phương trình log 2  x  1  log 1

2

A. 1  x �0

B. 1 �x �0

x  1 �0 là:

C. 1 �x �1





2
x
2
4
Câu 20: Phương trình 1  a  a  ...  a   1  a  1  a 1  a

D. x �0




với 0  a �1 có bao


cph�
t h�
nh b�
i Dethithpt.com]
nhiêu nghiệm? [��
A. 0

B. 1

C. 2

D. 3


x
Câu 21: Tất cả các giá trị của m để phương trình e  m  x  1 có nghiệm duy

nhất là:
A. m  1

B. m  0, m �1

2
Câu 22: Tính giá trị S  1  2 log

A. S  10082.2017 2


2

C. m  0, m  1

D. m  1

2  32 log 3 2 2  4 2 log 4 2 2  ...  2017 2 log 2017 2 2.

B. S  1007 2.2017 2

C. S  10092.2017 2

D. S  1010 2.2017 2

Câu 23: Cho tứ diện ABCD có AB  4a, CD  6a, các cạnh còn lại đều bằng a 22.
Tính bán kính của mặt cầu ngoại tiếp tứ diện ABCD .
A.

5a
2

B. 3a

C.

a 85
3

D.


a 79
3

Câu 24: Một người thợ có một khối đá hình trụ. Kẻ hai đường kính MN, PQ của
hai đáy sao cho MN  PQ . Người thợ đó cắt khối đá theo các mặt cắt đi qua 3
trong 4 điểm M, N, P, Q để thu được khối đá có hình tứ diện MNPQ . Biết rằng

MN  60 cm và thể tích khối tứ diện MNPQ bằng 30dm 3 . Tìm thể tích của lượng đá
bị cắt bỏ (làm tròn kết quả đến 1 chữ số thập phân).
A. 101,3dm 3

B. 141,3dm 3

C. 121,3dm3

D. 111, 4dm3

Câu 25: Cho hình nón đỉnh S. Xét hình chóp S.ABC có đáy ABC là tam giác ngoại
tiếp đường tròn đáy của hình nón và có

AB  BC  10a, AC  12a góc tạo bởi hai

mặt phẳng  SAB  và  ABC  bằng 45o . Tính thể tích khối nón đã cho.
A. 9a 3

B. 27 a 3

C. 3a 3

D. 12a 3


Câu 26: Cho z là một số phức tùy ý khác 0. Khẳng định nào sau đây sai?
A.

z
là số ảo
z

B. z  z là số ảo

C. z.z là số thực

D. z  z là số thực

2
Câu 27: Biết rằng phương trình z  bz  c  0  b, c �� có một nghiệm phức là

z1  1  2i .
Khi đó:
A. b  c  2

B. b  c  3

C. b  c  0

D. b  c  7

Đặt mua bộ 300 đề thi thử THPTQG năm 2018 file word môn Toán có lời giải
chi tiết hay nhất soạn tin “Email của tôi là……….Tôi muốn đặt bộ đề 2018
môn Toán” gửi đến số 096.39.81.569

Câu 28: Gọi M và N lấn lượt là điểm biểu diễn của các số phức z1 , z 2 như hình vẽ
bên. Khi đó khẳng định nào sau đây sai?


A. z1  z 2  MN

B. z1  OM

C. z 2  ON

D. z1  z 2  MN

Câu 29: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng

�x  1  kt
x 1 y  2 z  3

yt
. Tìm giá trị của k để d1 cắt d 2 .
d1 :


và d 2 : �
1
2
1
�z  1  2t

A. k  0
Câu


:

30:

B. k  1
Trong

không

gian

D. k  

C. k  1
vỏi

hệ

tọa

độ

Oxỵz,

cho

1
2


đường

thẳng

x 1 y  2 z

 . Tìm tọa độ điểm H là hình chiếu vuông góc của điểm
2
1
2

A  2; 3;1 lên 
A. H  3; 1; 2 

B. H  1; 2;0 

C. H  3; 4; 4 

D. H  1; 3; 2 

Câu 31: Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số
m để phương trình x 2  y 2  z 2  4x  2my  6z  13  0 là phương trình của mặt cầu.
A. m  0

B. m �0

D. m  0

C. m ��


Câu 32: Trong không gian với hệ tọa độ Oxỵz, cho hai mặt phẳng

 P :

2x  ay  3z  5  0 và

 Q  : 4x  y   a  4  z  l  0.

Tìm a để

 P

và  Q  vuông

góc với nhau.
A. a  1

B. a  0

C. a  1

D. a 

1
3

Câu 33: Trong không gian với hệ tọa độ Oxyz, cho điểm A  1; 2; 3  và mặt
phẳng  P  : 2x  2y  z  9  0 . Đường thẳng d đi qua A và có véctơ chỉ phương

r

u   3; 4; 4  cắt  P  tại B. Điểm M thay đổi trong  P  sao cho M luôn nhìn đoạn AB
dưới góc 90o . Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các
điểm sau?
A. H  2; 1;3

B. I  1; 2;3

C. K  3;0;15 

D. J  3; 2;7 


Câu

34:

Trong

không

 P  : 2x  2y  z  6  0.

gian

với

hệ

tọa


độ

Oxyz,

cho

mặt

phẳng

Tìm tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M

đến  P  bằng 3 .
A. M  0;0; 21

B. M  0;0;3

C. M  0;0;3  , M  0;0; 15 

D. M  0;0; 15 

Câu 35: Cho hình chóp S.ABC có SC  2a và SC   ABC  . Đáy ABC là tam giác
vuông cân tại B và có AB  a l2. Mặt phẳng    đi qua C và vuông góc với SA,

 

cắt

SA,


SB

lẩn

lượt

tại

D,

E.

Tính

thể

tích

khối

chóp

S.CDE.

[��

cph�
t h�
nh b�
i Dethithpt.com]

A.

4a 3
9

B.

2a 3
3

C.

2a 3
9

D.

a3
3

Câu 36: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có A A '  a 3. Gọi I là giao
điểm của AB’ và A’B. Cho biết khoảng cách từ I đến mặt phẳng

 BCC ' B' bằng

a 3
. Tính thể tích khối lăng trụ ABC.A’B’C’ .
2
A. 3a 3


B. a 3

C.

3a 3
4

D.

a3
4

2



2
Câu 37: Cho I  x 4  x dx và t  4  x 2 .Khẳng định nào sau đây sai?
1

A. I  3

t2
B. I 
2

3

3


C. I 

t dt

2

0

0

t3
D. I 
3

3

0

Câu 38: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là
tam giác đểu cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy.
Tính thể tích khối chóp S.ABCD biết rằng mặt phẳng  SBC  tạo với mặt phảng đáy
một góc 30o .
A.

3a 3
2

B. 2 3a 3

C.


2 3a 3
3

D.

4 3a 3
3


Câu

d:

39:

Trong

không

gian

với

hệ

tọa

Oxyz , cho đường thẳng


độ

x 1 y z  2


và hai điểm A  1;3;1 , B  0; 2; 1 . Tìm tọa độ điểm C thuộc d
2
1
1


cph�
t h�
nh b�
i Dethithpt.com]
sao cho diện tích của tam giác ABC nhỏ nhất. [��
A. C  1;0; 2 

B. C  1;1;1

C. C  3; 1;3 

D. C  5; 2; 4 

Câu 40: Khẳng định nào sau đây là đúng?
A.

tan xdx   ln cos x  C



B.

cot xdx   ln sin x  C


x
x
dx  2cos  C
2
2

D.

cos dx  2sin  C

2
2



C. sin

x

x

Câu 41: Cho các số thực x, y thỏa mãn x 2  2xy  3y 2  4. Giá trị lớn nhất của biểu
thức P  log 2  x  y 

2


A. max P  3log 2 2

là:
B. max P  log 2 12

C. max P  12

D. max P  16

Câu 42: Bạn A có một cốc thủy tinh hình trụ, đường kính trong lòng đáy cốc là

6cm , chiểu cao trong lòng cốc là 10 cm đang đựng một lượng nước. Bạn A nghiêng
cốc nước, vừa lúc khi nước chạm miệng cốc thì ở đáy mực nước trùng với đường


cph�
t h�
nh b�
i Dethithpt.com]
kính đáy. Tính thể tích lượng nước trong cốc. [��

B. 15 cm 3

A. 60 cm3

D. 60 cm 3

C. 70 cm3


Câu 43: Thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi các
đường

y  2  x , y  x, y  0 xung quanh trục Ox được tính theo công thức nào sau đây?
1

A. V  

2

x 2 dx
 2  x  dx  �

0

1



C. V   xdx  
0

1

2

�2  xdx
1

2


B. V  

 2  x  dx

0

1



2
D. V   x dx  
0

2

 2  x  dx

1


Câu 44: Cho đồ thị hàm số y  f  x  có đồ thị đạo hàm như hình vẽ. Số điểm cực

 

3
trị của đồ thị hàm số y  f x là:

A. 0


B. 1

D. 3

C. 2

Câu 45: Phương trình sin 2 3xcos2x+sin 2 x  0 có bao nhiêu nghiệm thuộc  0; 2017  .
A. 2016

B. 1003

C. 1284

D. 1283





*
Câu 46: Cho hàm số f  n   a n  1  b n  2  c n  3 n �� với a, b, c là hằng số

thỏa mãn a  b  c  0. Khẳng định nào sau đây đúng?

f  n   1
A. xlim
� �

f  n 1

B. xlim
� �

f  n  0
C. xlim
� �

f  n  2
D. xlim
� �

Câu 47: Cho tam giác ABC có độ dài các cạnh là a, b, c theo thứ tự lập thành
một cấp số cộng. Biết tan
A. 4

A
C x
tan   x, y �� , giá trị x  y là:
2
2 y

B. 1

D. 3

C. 2

Câu 48: Cho các số phức z, w khác 0 và thỏa mãn z  w  2 z  w . Phẩn thực
của số phức u 


1
4

A. a 

z
là:
w
B. a  1

C. a 

1
8

D. a  

1
8

Câu 49: Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có


cph�
t h�
nh b�
i Dethithpt.com]
5 chữ số khác nhau và chia hết cho 15. [��
A. 222


B. 240

C. 200

Câu 50: Tổng các nghiệm của phương trình 1  log 2

có dạng
A. 9

D. 120

 x  1

3

 log 2   x 3  3x 2  3x 

a c
 b b  a, b, c �� . Giá trị a  b  c là:
b
B. 10

C. 11

D. 12


Đáp án
1-B
11-D

21-C
31-B
41-B

2-C
12-A
22-C
32-C
42-A

3-D
13-D
23-C
33-B
43-D

4-C
14-B
24-D
34-B
44-C

5-A
15-C
25-A
35-C
45-D

6-C
16-D

26-A
36-A
46-C

7-D
17-A
27-B
37-B
47-A

8-C
18-B
28-D
38-B
48-C

9-B
19-A
29-A
39-B
49-A

10-A
20-B
30-D
40-A
50-D

LỜI GIẢI CHI TIẾT
Câu 1: Đáp án B

Số phẩn tử không gian mẫu là   30!
Gọi A là biến cố “Hai học sinh A, B ngồi cạnh nhau”.
Chọn 1 bàn để xếp hai học sinh A, B có 15 cách.
Xếp A, B ngổi vào bàn được chọn có 2! cách.
Xếp 28 học sinh còn lại có 28! cách.
Vậy A  15.2.28!. Do đó P  A  

15.2.28! 1
 .
30!
29

Câu 2: Đáp án C
Hệ số của x 5 trong khai triển x  1  2x  là  2  .C54
5

Hệ số của x 5 trong khai triển x 2  1  3x 

4

10

3 3
là 3 .C10

Vậy hệ số của x 5 trong khai triển x  1  2x   x 2  1  3x 
5

10


3
là  2  .C54  33.C10
 3320
4

Câu 3: Đáp án D
Có vô số phép tịnh tiến theo véc tơ k2 với k ��.
Câu 4: Đáp án C

y  ln  x 2  2x  1  x xác định và liên tục trên đoạn  2; 4 .

x
y' 

2

 2x  1 '

x  2x  1
2

1 

2  x  1

 x  1

2

1 


2  x 1 3  x

x 1
x 1

y  2
Ta có: y '  0 � x  3, y  2   2, y  4   ln 9  4, y  3   ln 4  3 � min
 2;4
Chú ý: Có thể sử dụng chức năng table của MTCT.
Câu 5: Đáp án A
TXĐ: D  �
Ta có: f  x  2   f  x  với mọi x ��nên hàm số này tuần hoàn.


� �
�2 �

Đặt t   s inx suy ra t � 0;  do đó max f  x   max sin  t   sin � � 1
0 ��
t 
x��

Câu 6: Đáp án C

f  x   f  b  , min f  x   f  a 
Hàm số đồng biến trên đoạn  a; b  thì xmax
x� a;b 
� a;b 
Câu 7: Đáp án D

Trong một hình đa diện lồi, mỗi cạnh là cạnh chung của hai mặt.
Câu 8: Đáp án C
A sai vì hàm số chỉ đạt cực trị tại x  2 .
B sai vì trên  0; 2  hàm số đồng biến.
C đúng vì hàm số chỉ đạt cực trị tại x  2

 �nên hàm số không có giá trị lớn nhất.
D sai vì xlim
��
Câu 9: Đáp án B
Ta có: y '  3x 2  4x  m.

۳��
y ' 0,���
x 
�  'y '
Hàm số đồng biến trên ��
Câu 10: Đáp án A
Ta có: u  x 2 � du  2xdx, dv  cos xdx � v  s inx
2
Suy ra: I  x s inx


0



 2�
x sin xdx.
0


Câu 11: Đáp án D
TXĐ: D   �; 2  � 2;3  � 3; �

x 1

.
x 3


2
Xét pt x  4x  3  0 � �

lim

x �3

x  x2  4
 �� x  3 là tiệm cận đứng.
x 2  4x  3

4
x x 4
x2  0
lim 2
 lim
x �� x  4x  3
x � � � 4
3 �
x�

1  2 �
� x x �
2

1 1

x  x2  4
4
 lim
0
2
x �� x  4x  3
x � �
2
2
x

4x

3
x

x

4


lim

� y  0 là tiệm cận ngang.






0

4 3m 0

m

4
.
3


Câu 12: Đáp án A
Ta sử dụng kết quả

g  x  .de


x

 g  x  .e x  �
e x .d  g  x    g  x  .e x  �
e x .g '  x  dx

��
 g '  x   g  x   ex dx  g  x  ex .

Do đó ta có f  x   f '  x  dx 



 x  1 e dx  x.e .

x

x

a 1

��
f  x  dx  �
.
 x  1  1 e x dx   x 1 e x � �
b  1

Do đó a  b  0.
Câu 13: Đáp án D
Ta có phương trình hoành độ giao điểm:

x0

2
x 3  3x 2  3x  1  x 2  x  1 � x 3  4x 2  4x  0 � x  x  2   0 � �
.
x2

Câu 14: Đáp án B

Đồ thị hàm số y  f  x  có được bằng cách giữ nguyên đồ thị
hàm số y  f  x  ở trên trục hoành và lấy phần phía dưới trục
hoành đối xứng qua trục hoành. Đồ thị có được như hình vẽ bên.
Số nghiệm của phương trình f  x   m là số giao điểm của đồ thị


cph�
t h�
nh b�
i Dethithpt.com]
hàm số y  f  x  và đường thẳng y  m . [��
Khi đó, phương trình f  x   m có 2 nghiệm phân biệt khi và chỉ khi 0  m  1 và

m  1.
Câu 15: Đáp án C
Tại x  2 là điểm cực trị nên tiếp tuyến song song với trục hoành
do đó hệ số góc bằng 0 .
Câu 16: Đáp án D
OM là đường thẳng qua gốc tọa độ  0;0  nên có dạng

y  ax  a �0  .
Diện tích mảnh vườn cần tính là:
a

a

�a x 2 x 3 � a 3
a3 9
S�
a

x

x
dx





 � 2 3 � 6 6  2 � a  3.

�0
0
2

Suy ra tọa độ điểm M  3;9  nên OM  32  92  3 10 .


Câu 17: Đáp án A
e

Với f  x   ln x và f  x   x  thì điều kiện x  0 nên loại C và D.
x

3
� �

��
Với f  x   � �thì f  x  là hàm nghịch biến nên loại B.
Câu 18: Đáp án B






2
2
Ta có: log 2 x y  log 2 x  log 2 y  2log 2 x  log 2 y.

Câu 19: Đáp án A
Điều kiện: x  1  0 � x  1.

log 2  x �

1 ���
log 1 
x 1 0

log 2  x 1 log 2 x 1 0

log 2

2

�log
��
x���
1 0 � x 1 1
2 


x 1 1

x

x 1
x 1

0

0

Kết hợp với điều kiện suy ra 1  x �0.
Câu 20: Đáp án B
Phương trình biến đổi thành

1  a x 1
  1  a   1  a 2   1  a 4  � 1  a x 1  1  a 8 � x  7.
1 a

Câu 21: Đáp án C
Điều kiện: m  x  1  0
Với x  1 phương trình tương đương e 1  0 vô lí nên x  1 không là nghiệm.
Với x �1. Ta có: e x  m  x  1 �

ex
 m � f  x  g  m
x 1

 x  1 e  e  xe x
ex

f
'
x

Xét hàm số: f  x  
. Ta có:  
2
2
 x  1
 x  1
x 1
x

x

Cho f '  x   0 � x  0.
Bảng biến thiên:

x

�

f ' x 
f  x

1
-

-


+

�

0

�

�

0

�
1


Dựa vào bảng biến thiên để phương trình có nghiệm duy nhất khi hàm số g  m 
cắt f  x  tại đúng một điểm � m  0 �m  1.
Câu 22: Đáp án C
3
3
3
3
Ta có: Sn  1  2  3  ...  n .

Cho n  10 thấy S  13  23  33  ...  103  3025  121 .102 

4

n 2  n  1

2

2


cph�
t h�
nh b�
i Dethithpt.com]
Với n  2007 ta thấy đáp án C đúng. [��
Câu 23: Đáp án C
Gọi M, N lần lượt là trung điểm của AB và CD.
Ta có: AB  MD, AB  MC � AB   MCD 
Tương tự: CD  BN, CD  AN � CD   ANB 

�  MCD  ,  NAB  là mặt phẳng trung trực của AB và CD.
Gọi I là điểm thuộc MN.
Do I �MN � I � MCD  � IA  IB
Do I �MN � I � NAB  � IC  ID
Nếu I là tâm mặt cầu ngoại tiếp tứ diện ABCD thì ID  IB
Xét AMN vuông tại M: MD  AD 2  AM 2  3 2a
Xét MND vuông tại M: MN  MD 2  ND 2  3a
Đặt MI  x, NI  3a  x  0  x  3a 
Ta có: R 2  BI 2  x 2  4a 2
Mà R 2  ID 2   3a  x   9a 2
2

� x 2  4a 2   3a  x   9a 2 � x 
2


7a
a 85
�R 
3
3

Câu 24: Đáp án D
Ta dễ dàng chứng minh được  O ' MN  vuông góc với PQ.
Do

đó

thể

tích

khối

1
1
VMNPQ  .SMNO .PQ  .O O '.MN.PQ
3
6

tứ

diện

MNPQ


là:


1
6

2
3
Trong đó d  MN, PQ   O O '  h � .60 .h.1  30.10 � h  50cm.


cph�
t h�
nh b�
i Dethithpt.com]
Vậy thể tích của lượng đá bị cắt bỏ bằng: [��
2

V  Vt  VMNPQ  R 2 .h  30 

 �60 �
.
.50  30 �111, 4 dm 3 .
3 � �
10 �2 �

Câu 25: Đáp án A
Nửa chu vi tam giác ABC:

10a  10a  12a

 16a
2

Diện tích tam giác ABC là:

S  p  p  a   p  b  p  c
 16a  16a  10a   16a  10a   16a  12a   48a 2
Mà SABC

SABC 48a 2
 pr � r 

 3a, với r là bán kính của
p
16a

đường tròn đáy nội tiếp tam giác ABC.
Lại có tan SIO 

SO
� SO  IO.tan 45o  IO  3a
IO
1
3

1
3

2
3

Thể tích khối nón là: Vnon  SO..r  .3a.  3a   9a
2

Câu 26: Đáp án A





2
2
Đặt z   a  bi  a  b  0 � z  a  bi.
2
z
a  bi 

z
a

bi
a 2  b2
2ab
Ta có: 
không là số ảo.
 2

 2
i. Suy ra
2
2

2
2
z
a b a b
z a  bi a  b

Câu 27: Đáp án B
Phương trình z 2  bz  c  0 có một nghiệm phức là z1  1  2i

3  b  c  0
b  2


2
�  1  2i   b  1  2i   c  0 � 3  4i  b  2bi  c  0 � �
��
4  2b  0
c5


� b  c  3.
Câu 28: Đáp án D
Ta có: z1  z 2  MN là khẳng định sai.
Vì giả sử: z1  a  bi, z 2  c  di;a, b, c,d ��

� M  a; b  ; N  c, d  � MN 

 c a

2


  d  b

Và z1  z 2   a  c    b  d  i � z1  z 2 

2

 a  c

2

  b  d  �MN
2


Câu 29: Đáp án A


M �d1 � M  1  m; 2  2m : 3  m 

M �d 2  *


Giả sử M  d1 �d 2 � �


1  m  1  kt  1

2  2m  t  2 
.

Mà M �d 2  * � �

3  m  1  2t  3

m0

thay vào (1) được k  0 .
�t  2

Từ (2) và (3) � �

Câu 30: Đáp án D
Ta có H � nên H  1  2t; 2  t; 2t  .

uuur uur

Vì H là hình chiếu vuông góc của A lên đường thẳng  nên AH.u   0.

uuur

uur

Vì AH   3  2t;1  t; 2t  1 , u    2; 1; 2  nên 2  2t  3   t  1  2  2t  1  0 � t  1
Vậy H  1; 3; 2  .
Câu 31: Đáp án B
Để phương trình x 2  y 2  z 2  4x  2my  6z  13  0 là phương trình của mặt cầu thì

4 
m 2 �32 ۹ 13 0
Câu 32: Đáp án C


r

m2

0

r



m

0.



Ta có: n  P    2;a;3  , n  Q   4; 1;0  a  4  .

r

r

Để  P  và  Q  vuông góc với nhau thì n  P  .n  Q   0 � 8  a  3a  12  0 � a  1
Câu 33: Đáp án B

�x  1  3t

y  2  4t , t ��
Phương trình đường thẳng d là: �

�z  3  4t

B �d � B  1  3t; 2  4t; 3  4t 


Mà B � P  � 18t  18  0 � t  1 � B  2; 2;1
Do MAB vuông tại M � MB  AB2  MA 2


cph�
t h�
nh b�
i Dethithpt.com]
Để MB lớn nhất =>MA nhỏ nhất [��
Gọi H là hình chiếu vuông góc của A lên mặt phẳng (P)
Xét AHM vuông tại H  AM
Để MA nhỏ nhất �M

H


cph�
t h�
nh b�
i Dethithpt.com]
AH [��

MB là giao tuyến của mặt phẳng  P  với mặt phẳng

   (    là mặt phẳng chứa d và vuông góc với mặt phẳng  P  )

r
r r
r
r r

n  �
n


4;5;
2

u
n
P , ud �
MB  �




�P , u  � 9  1;0; 2 
�x  2  t

y  2
Vậy phương trình đường thẳng MB: �
.Thấy ngay điểm I  1; 2;3 thỏa

z  1  2t

mãn.

Câu 34: Đáp án B
Vì M thuộc tia Oz nên M  0;0; z M  với z M  0 .
Vì khoảng cách từ M đến mặt phẳng  P  bằng 3 nên ta có
Vì z M  0 nên M  0;0;3 .
Câu 35: Đáp án
Ta có:

VS.CDE SD SE
SD SE

.
� VS.CDE 
. .VS.CAB
VS.CAB SA SB
SA SB

1
1
1
1
2a 3
VS.CAB  .SC. .BA.BC  .2a. .2a 2 
3
2
3
2
3
Xét SAC ta có:

SC2  SD.SA �


SD SC 2
4a 2
1



2
2
2
SA SA
4a  4a
2

Ta có: AB   SBC  � AB  CE � CE   SAB  � CE  SB
Tương tự xét SBC ta có:

SC2  SE.SB �

SE SC2
4a 2
2



2
2
2
SB SB
4a  2a

3

Vậy suy ra VS.CE F 

1 2 2a 3 2a 3
. .

2 3 3
9

z 3
zM  6

 3 � �M
.
z


15
3
�M


Câu 36: Đáp án A
Gọi E là trung điểm BC, M là trung điểm của BE, M là trung điểm của AB.
Ta có IM / /  BCC ' B'  nên:

d  I,  BCC ' B '    d  M,  BCC ' B '    MN 

a 3

2

Gọi b là cạnh của tam giác đều ABC .Ta có: EA  2MN  a 3
Mà AE 

b 3
 a 3 � b  2a
2

Diện tích mặt đáy là: SABC 

 2a 

2

4

3

 a2 3

Thể tích hình lăng trụ là: V  SABC .A A '  a 2 3.a 3  3a 2 .
Câu 37: Đáp án B
Đặt t  4  x 2 � t 2  4  x 2 � 2tdt  2xdx hay tdt   xdx.
Đổi cận: khi x  1 � t  3; x  2 � t  0.
0

3

3


t3
Khi đó I  �
t.   t  dt  �
t dt 
3
0
3



2

0

3 3
 3.
3

Câu 38: Đáp án B
Gọi I, J lần lượt là trung điểm của AD, BC � SI 

2a 3
 a 3 (SI là đường cao của
2


cph�
t h�
nh b�

i Dethithpt.com]
tam giác đều SAD) [��
Ta

có:


 SAD  � ABCD 

� SI   ABCD 

SI  AD,SI � SAD 


=> JI là hình chiếu vuông góc của JC lên  ABCD 
Khi đó

�  30
SBC  ,  ABCD    �
JS, JI   SJI
 �

SJI vuông tại I

o


� 
tan SJI


SI
SI
a 3
� IJ 

 3a

IJ
tan 30o
tan SJI

1
1
1
VS.ABCD  .SABCD .SI  .AD.I J.SI  .2a.3a.a 3  2a 3 3 (đơn vị thể tích).
3
3
3
Câu 39: Đáp án B
Ta có: C �d � C  1  2t;  t; 2  t 

uuur
uuur
AB   1; 1; 2  , AC   2t;  t  3; t  1
uuur uuur


AB,
� AC �  3t  7;3t  1; 3t  3 
1 uuur uuur

1
1
2
2
2
SABC  �
AB, AC �

 3t  7    3t  1   3t  3  27t 2  54t  59


2
2
2
Ta có: SABC 

1
27t 2  54t  59 �2 2 � 27t 2  54t  59  0 � t  1 � C  1;1;1
2

Câu 40: Đáp án A
Ta kiểm tra lần lượt từng đáp án, nếu gặp đáp án đúng thì dừng.

s inx

1

tan xdx  � dx   � d  cos x    ln cos x  C => đáp án A đúng.

cos x

cos x
cos x

1

cotxdx  � dx  � d  s inx   ln sin x  C => đáp án B sai.

s inx
s inx
x

x �x �

x

x

x �x �

x

sin dx  2 �
sin d � � 2cos  C => đáp án C sai.

2
2 �2 �
2
cos dx  2 �
cos d � � 2sin  C => đáp án D sai.


2
2 �2 �
2
Câu 41: Đáp án B
Từ x 2  2xy  3y 2  4. Suy ra:
Nếu y  0 thì x  �
2�P2
Nếu y �0. Ta có:
2

P  log 2  x  y  � 4.  x  y   4.2 P �
2

Đặt t 

2

�x �
4 �  1�
�y �

4 x  y
4.2P
 2

2
4
x  2xy  3y 2 �x �
x
�y � 2 y  3

��
2

x
4t 2  8t  4
, t ��� 2P  2
� 2P  t 2  2t  3  4t 2  8t  4
y
t  2t  3

�  2P  4  t 2   2P  8  t  3.2P  4  0 . ( Xét P �4 )




Để phương trình có nghiệm:  ' �0 � 2P  4
P
�
��2.

 2�


2

24.2P

0 2P 12

0


  2
2

P

 4   3.2p  4  �0

P log 2 12.

Vậy giá trị lớn nhất của P là log 2 12.
Câu 42: Đáp án A
Xét thiết diện cắt cốc thủy tinh vuông góc với đường kính tại vị


cph�
t h�
nh b�
i Dethithpt.com]
trí bất kì có (tam giác màu đen): [��
S x  

1
1
R 2  x 2 . R 2  x 2 .tan  � S  x    R 2  x 2  tan 
2
2
1
2


Thể tích hình cái nêm là: V  2. tan 

R

R


2

0

2
 x 2  dx  R 3 tan 
3

Thể tích khối nước tạo thành khi ngyên cốc có hình dạng cái nêm nên

Vkn 

2 3
2
h
R tan  � Vkn  R 3 .  60 cm 3.
3
3
R

Câu 43: Đáp án D
Gọi H1 là hình phẳng giới hạn bởi các đường y  x, y  0, x  1 �
1


x 2 dx
Thể tích khi quay hình H1 quanh trục Ox là: V1   �
0

Gọi H 2 là hình phẳng giới hạn bởi các đường y  2  x, y  0, x  1 �
2

Thể tích khi quay hình H 2 quanh trục Ox là: V2  

 2  x  dx

1

1

2

V  V1  V2  �
x dx   �
 2  x  dx
2

0

1

Câu 44: Đáp án C

 


2
3
Ta có: y '  3x f ' x


x0

0� �
x 1 .

x34




x3  4
x34
3
f
'
x

0


.
Dựa vào đồ thị đạo hàm ta thấy  
�3


x

0
x

0



 

3
Do đó khi vẽ bảng biến thiên của y  f x

hàm của nó đổi dấu nên có 2 điểm cực trị.



3
chỉ có 2 điểm x  0, x  4



làm đạo


Câu 45: Đáp án D






3
2
Ta có: sin 3x  3sin x  4sin x  3  4sin x sinx   1  2cos2x  s inx do đó phương trình

�  1  2cos2x  sin 2 xcos2x+sin 2 x  0 � sin 2 x �
0
 1  2cos2x  cos2x  1�


2

2

�  4cos3 2x  4cos 2 2x  cos2x  1 sin 2 x  0

sin x  0


�  1  cos2x   1  4cos 2 x  sin 2 x  0 � �
�x k
cos2x  1
2

Vì k



2

2.2017
� 0; 2017  � 0  k  2017 �  k 
� 0.636  k  1284 do đó có 1283
2
2



nghiệm.
Câu 46: Đáp án C
Ta có: a  b  c  0 � a   b  c suy ra

f  n  b



 

n  2  n 1  c



n 3 n2 

b
2c

.
n  2  n 1
n  3  n 1




b
2c


� 0
n  3  n 1 �
� n  2  n 1

Do đó: lim f  n   lim �
Câu 47: Đáp án A
Ta có:

a  c  2b � sin A  sin C  2sin B
AC
AC
B
B
AC
AC
� 2sin
cos
 4sin .cos  4sin
.cos
2
2
2
2

2
2
AC
AC
A
C
A
C
A
C
A
C
� cos
 2cos
� cos cos  sin sin  2cos cos  2sin sin
2
2
2
2
2
2
2
2
2
2
A
C
A
C
A

C
A
C 1
� 3sin sin  cos cos � 3 tan tan  1 � tan tan 
2
2
2
2
2
2
2
2 3
Câu 48: Đáp án C

�z 1
� 1
�w  2

�u 
� � 2  *
Ta có: z  w  2 z  w � �
�z  w  1 �u  1  1


� w
1
�2
a  b2 

4

Giả sử u  a  bi,  a, b �� . Khi đó  * � �
 ** .
2
2

 a  1  b  1

Từ  ** � 2a  1  1 
Câu 49: Đáp án A

1
1
�a .
4
8


Gọi số cần tìm là abcde . Số mà chia hết cho 15 thì phải chia hết cho 3 và 5 .
Trường hợp 1. Số cần tìm có dạng abcd0 , để chia hết cho 3 thì a, b, c, d phải
thuộc

các

tập

sau

A1   1, 2,3, 6 , A 2   1, 2, 4,5 A3   1,3,5, 6 A 4   2, 3, 4, 6 , A 5   3, 4,5, 6 . Do đó trong

cph�

t h�
nh b�
i Dethithpt.com]
trường hợp này có 5.4!  120 số. [��
Trường hợp 2. Số cần tìm có dạng abcd5 , để chia hết 3 thì a, b, c, d , e phải thuộc
các

tập

sau

B1   0,1, 2, 4,5  , B2   0,1,3,5, 6 , B3   0,3, 4,5, 6 , B 4   1, 2,3, 4,5 , B5   1, 2, 4,5, 6
Nếu a, b, c,d thuộc B1 , B2 , B3 , thì có 3.3.3.2  54 số
a, b, c, d thuộc B4 , B5 thì có 2.4!  48 .
Tổng lại có 120  54  48  222 số.
Câu 50: Đáp án D
Phương trình biến đổi thành:

2

 x  1

3

  x 3  3x 2  3x � 4  x 3  3x 2  3x  1  x 6  9x 4  9x 2  6x 5  6x 4  18x 3

� x 6  6x 5  3x 4  14x 3  3x 2  12x  4  0
2

2


� 1
5 �� 1
5�
� x 22 2 x 22 2 �
x


x


��
� 2 2 �� 2 2 �
� 0

��









x  22 2

1
5



x  22 2
x 


2
2
��
(thử lại) � � 1
5
5
� 1
x 

x 
� 2 2

2 2

x  22 2





×