Tải bản đầy đủ (.docx) (40 trang)

Thiết kế, sàng lọc một số dẫn xuất flavonoid và đánh giá hoạt tính gây độc lên dòng tế bào hela dựa vào các tính toán hóa lượng tử tt

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (519.59 KB, 40 trang )

BỘ GIÁO DỤC VÀ ĐÀO TẠO
ĐẠI HỌC HUẾ
TRƯỜNG ĐẠI HỌC KHOA HỌC

BÙI THỊ PHƯƠNG THÚY

THIẾT KẾ, SÀNG LỌC MỘT SỐ DẪN XUẤT FLAVONOID VÀ
ĐÁNH GIÁ HOẠT TÍNH GÂY ĐỘC LÊN DÒNG TẾ BÀO HELA
DỰA VÀO CÁC TÍNH TOÁN HÓA LƯỢNG TỬ

Chuyên ngành: Hóa lý thuyết và hóa lý
Mã số: 62.44.01.19
TÓM TẮT LUẬN ÁN TIẾN SĨ HÓA LÝ THUYẾT VÀ HÓA LÝ

HUẾ, NĂM 2018


Công trình được hoàn thành tại Khoa Hóa học, trường Đại học Khoa
học, Đại học Huế.

Người hướng dẫn khoa học:

1. PGS.TS. PHẠM VĂN TẤT
2. PGS.TS. TRẦN DƯƠNG

Phản biện 1:
Phản biện 2:
Phản biện 3:

Luận án sẽ được bảo vệ trước Hội đồng cấp Đại học Huế chấm luận án
tiến sĩ họp tại . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


vào hồi giờ ngày tháng năm

Có thể tìm hiểu luận án tại thư viện: ..................................


MỞ ĐẦU
Các phương pháp phòng và trị bệnh ung thư hiện nay như phẫu thuật, xạ
trị, hóa trị. Tuy nhiên các phương pháp này vẫn có những tác dụng phụ
nhất định đối với bệnh nhân. Nhu cầu về dược chất kháng ung thư có
khả năng phòng và trị bệnh đang rất lớn nhưng khả năng đáp ứng còn
hạn chế. Các nhà khoa học, dược học đã và đang quan tâm nghiên cứu,
tìm kiếm các loại dược chất mới. Trong đó nhóm flavonoid nói chung
flavone, isoflavone nói riêng là nhóm dược chất có nhiều trong thực vật
với hoạt tính kháng oxi hóa, kháng ung thư, kháng viêm, … hiệu quả.
Các nghiên cứu thực nghiệm trên thế giới và Việt Nam đã cung cấp một
cơ sở dữ liệu quý giá về nguồn dược chất trong tự nhiên, nhưng các
nghiên cứu thực nghiệm thuần túy còn nhiều hạn chế để tạo ra hợp chất
có hoạt tính kháng ung thư hiệu quả, nhanh chóng, kinh tế. Các nghiên
cứu lý thuyết trên thế giới nói chung, trong nước nói riêng về nhóm
flavone và isoflavone có hoạt tính kháng ung thư cổ tử cung còn khá
khiêm tốn. Nghiên cứu mối quan hệ cấu trúc – hoạt tính nhằm thiết kế
các dẫn xuất flavone, isoflavone mới có hoạt tính được cải thiện; các
nghiên cứu lý thuyết là rất cần thiết để thúc đẩy và làm tiền đề cho các
nghiên cứu thực nghiệm, nhằm tìm kiếm các dược chất kháng ung thư
hiệu quả.
Trong nghiên cứu này, chúng tôi sử dụng các thông tin mô tả cấu trúc
điện tích nguyên tử, độ dịch chuyển hóa học, tính chất hóa lý, tham số
2D và 3D của phân tử kết hợp các kỹ thuật phân tích hồi quy, mạng nơ
ron, phân tích thành phần chính, giải thuật di truyền, bình phương cực
tiểu riêng phần để xây dựng các mối quan hệ định lượng cấu trúc - hoạt

tính (QSAR). Các flavonoid được xây dựng và tối ưu hóa bằng các
phương pháp cơ học phân tử MM+. Các tham số mô tả phân tử 2D, 3D
được sử dụng để xây dựng các mô hình đa biến như hồi quy tuyến tính
đa biến (MLR), phân tích thành phần chính (PCR), bình phương cực
tiểu riêng phần (PLS) và mạng nơ ron nhân tạo (ANN). Xây dựng các
mô hình QSAR nhằm xác định những yếu tố tham số mô tả phân tử ảnh
hưởng đến tác dụng kháng ung thư cổ tử cung từ đó xác định hướng
thiết kế phân tử mang lại hoạt tính cao hơn. Trong nghiên này cũng đã
tiến hành chiết tách và phân lập flavonoid từ gừng gió, đậu nành, tía tô,
xa kê, actiso, một vài kỹ thuật phân tích hóa lý cũng được sử dụng để
xác định cấu trúc phân tử các dẫn xuất flavonoid. Các phân tử flavonoid
đã phân lập sẽ được dự báo hoạt tính, và sử dụng làm chất mẫu để thiết
kế hợp chất mới có hoạt tính cao hơn.
1


Từ các cơ sở trên, chúng tôi nghiên cứu đề tài “Thiết kế, sàng lọc một
số dẫn xuất flavonoid và đánh giá hoạt tính gây độc lên dòng tế bào
Hela dựa vào các tính toán hóa lượng tử”.
Mục tiêu của luận án: Tính toán các tham số cấu trúc phân tử; Xây
dựng các mô hình QSAR; Phân lập và tinh chế một số flavonoid; Dự
đoán tính sinh học của các hợp chất mới.
Ý nghĩa khoa học của luận án:
Việc mô phỏng kết hợp giữa phương pháp lý thuyết với phương pháp
thực nghiệm trong nghiên cứu tìm kiếm hợp chất có hoạt tính kháng
ung thư có nguồn gốc thiên nhiên là một hướng nghiên cứu đáng chú ý
đang được quan tâm và phát triển mạnh mẽ trong thời gian gần đây.
Phương pháp tiếp cận hiện đại, khoa học, mang lại hiệu quả về thời
gian, công sức, tiền bạc trong nghiên cứu thực nghiệm. Kết quả nghiên
cứu đáng tin cậy và có nhiều ứng dụng quan trọng cho các nghiên cứu

lý thuyết cũng như nghiên cứu thực nghiệm.
Đóng góp mới:
Công trình này, chúng tôi đã xác định được cấu trúc và thử hoạt tính
pGI50 in vitro đối với 6 hợp chất flavonoid phân lập từ lá tía tô, lá xa kê,
lá actiso, hạt đậu nành và củ gừng gió. Đã tính toán và sàng lọc được
các tham số mô tả cấu trúc phân tử như tham số điện tích, tham số độ
dịch chuyển hóa học, tham số 2D, 3D ảnh hưởng chính đến hoạt tính
kháng ung thư của các dẫn xuất flavonoid. Đã xây dựng thành công các
mô hình QSAR. Đã dự đoán hoạt tính kháng ung thư và tính chất hóa lý
của các hợp chất mới được thiết kế từ các chất mẫu và hợp chất tự
nhiên. Hoạt tính kháng ung thư của các hợp chất mới tốt hơn hoạt tính
kháng ung thư của chất mẫu, hợp chất phân lập từ gừng gió, đậu nành,
tía tô, xa kê, actiso.
CHƯƠNG 1. TỔNG QUAN TÀI LIỆU
Phần tổng quan giới thiệu về bệnh ung thư cổ tử cung, các hợp chất
flavonoid, mối liên hệ giữa cấu trúc và hoạt tính, tính toán các tham số
cấu trúc, các mô hình QSAR, các dẫn xuất flavonoid, phân lập và tinh
chế flavonoid, ứng dụng hóa học tính toán lượng tử trong nghiên cứa
các dẫn xuất flavonoid.
CHƯƠNG 2. NỘI DUNG & PHƯƠNG PHÁP NGHIÊN CỨU
2.1. SƠ ĐỒ NGHIÊN CỨU
2.2. CƠ SỞ DỮ LIỆU, NGUYÊN LIỆU VÀ PHƯƠNG PHÁP
2.2.1. Xây dựng cơ sở dữ liệu thông tin phân tử
2


2.2.2. Nguyên liệu và phương pháp
2.2.2.1. Phần mềm ứng dụng
2.2.2.2. Hóa chất, thiết bi
2.2.2.3. Nguyên liệu

2.3. NGHIÊN CỨU LÝ THUYẾT
2.3.1. Phương pháp tính toán thông tin cấu trúc
2.3.1.1. Cơ học phân tử
2.3.1.2. Hóa lượng tử
2.3.1.3. Các tham số cấu trúc
2.3.2. Xây dựng các mô hình QSAR
2.4. SÀNG LỌC, PHÂN LẬP FLAVONOID TỰ NHIÊN
2.4.1. Phân lập các hợp chất flavonoid
2.4.2. Xác đinh cấu trúc hóa học các hợp chất flavonoid
2.4.2.1. Phương pháp phổ cộng hưởng từ hạt nhân
2.4.2.2. Đo nhiễu xạ tia X đơn tinh thể
2.4.3. Kỹ thuật thử hoạt tính in vitro
2.4.3.1. Nguyên tắc phương pháp Sulforhodamine B
2.4.3.2. Nuôi cấy tế bào
2.4.3.3. Nhuộm SRB
2.4.3.4. Xử lý kết quả
2.4.3.5. Xác đinh GI50
2.5. THIẾT KẾ VÀ DỰ BÁO HOẠT TÍNH CỦA FLAVONOID
CHƯƠNG 3. KẾT QUẢ VÀ THẢO LUẬN
3.1. NGHIÊN CỨU LÝ THUYẾT
3.1.1. Phương pháp tính toán thông tin cấu trúc
3.1.1.1. Cơ học phân tử
3.1.1.2. Hóa lượng tử
3.1.2. Tham số cấu trúc
3.1.2.1. Tham số điện tích
3.1.2.2. Phổ 13C-NMR, 15O-NMR và độ dich chuyển hóa học
3.1.2.3. Tham số hóa lý
3.1.2.4. Tham số hình học 2D, 3D
3.2. XÂY DỰNG MÔ HÌNH QSAR
3.2.1. Khảo sát các biến số mô hình

3.2.2. Xây dựng các mô hình QESAR
3.2.2.1. Mô hình tuyến tính QESARMLR
Quan hệ định lượng cấu trúc điện tử - họa tính (QESAR) của 26 dẫn
xuất flavone và isoflavone với hoạt tính kháng ung thư được xây dựng
3


bằng kỹ thuật phân tích hồi quy đa biến sử dụng các thuật toán chọn lựa
biến. Năm tham số mô tả điện tích của các nguyên tử O 1, O11, C3, C4, C6
và C7 được chọn lựa sử dụng kỹ thuật thêm dần và loại bỏ dần từng
tường hợp để xây dựng mô hình QESAR NMR. Mô hình QESARMLR tốt
nhất với 6 biến số có các giá trị hồi quy gồm R 2train = 0,9382, R2adj =
0,9186, SE = 0,0887, R2pred = 0,9030 và MARE,% = 1,7510%. Mô hình
QESARlinear được đánh giá bằng kỹ thuật đánh giá chéo. Mô hình
QESARMLR với k = 6
pGI50 = 6,7116 – 42,3105O1 – 8,1592O11 + +3,0139C3 – 19,0370C4 +
6,6117C6 + 4,6038C7
(3.2)
Bảng 3.9 Các mô hình tuyến tính QESARMLR và giá trị thống kê
k
2
3
4
5
6
7
8
9
10


Hình 3.4 Giá trị đóng góp trung bình toàn cục GMPmxk
3.2.2.2. Mô hình mạng thần kinh QESARANN
Mô hình QESARANN có kiến trúc mạng I(6)-HL(2)-O(1) với R2fitness là
0.95642 được xây dựng từ các tham số điện tích từ mô hình
QESARANN.
3.2.2.3. Kiểm tra khả năng dự đoán
Hoạt tính kháng ưng thư của flavone và isoflavone dự đoán từ mô hình
QESARNMR và QESARANN với giá trị MARE, % tương ứng là 1,7510%
và 1,1670%, Bảng 3.12.
4


Bảng 3.12 pGI50 của nhóm kiểm tra dự đoán từ mô hình
QESARMLR, QESA RANN

Hợp chất

1b
2b
3b
4b
5b
6b

3.2.3. Xây dựng các mô hình QSDAR
3.2.3.1. Mô hình tuyến tính QSDARMLR
Bảng 3.13 Các mô hình QSDAR và các giá trị thống kê
k
2
3

4
5
6
7
8
9
10

Mô hình QSDARMLR được thành lập bằng cách thay đổi độ dịch chuyển
hóa họcτi của oxy và cac bon.
Chọn lựa độ dịch chuyển hóa học τi bằng thuật toán thêm dần và loại bỏ
dần từng trường hợp kết hợp với thuật toán di truyền (GA).
Quá trình mô hình hóa được thực hiện bằng cách theo dõi các giá trị
thống kê SE, R2adj, R2test và F-stat với mức độ tin cậy α là 0,05. Tất cả
các mô hình QSDARMLR được đánh giá bằng kỹ thuật đánh giá chéo loại
bỏ dần từng trường hợp. Các mô hình QSDAR MLR tốt nhất với k = 5, 6,
7 cho ở bảng Bảng 3.14. Giá trị R2fitness và SE của các mô hình
QSDARMLR (với số biến số k từ 2 đến 9) cho ở Bảng 3.13.
Mô hình QSDARMLR tốt nhất (với k bằng 7) với các biến số τi của các
nguyên tố O1, O11, C2, C3, C6, C7 và C2’ với các giá trị R2fitness là 0,9057
và sai số SE là 0.1213 QSDAR MLR. Các nguyên tử này cũng đóng góp


quan trọng nhất đối với các hoạt tính kháng ung thư của các chất dẫn
xuất flavone và isoflavone.
5


Bảng 3.14 Giá trị thống kê, các hệ số và phần trăm đóng góp của các độ
dịch chuyển hóa học τi trong các mô hình QSDARMLR


Biến số xi

R

2

R

2

luyện
adj

SE
R

2

thử

Hằng số
O1
O11
C2
C3
C4
C6
C7
C2'


Ba mô hình QSDARMLR (với k từ 5 đến 7) là các nguyên tử O 1, O11, C2,
C3, C4, C6, C7 và C2’ trong Bảng 3.14 được chọn để tính toán tỷ lệ phần
trăm đóng góp của các nguyên từ đối với hoạt tính kháng ung thư.
Các giá trị phần trăm đóng góp MPmxk,%, và GMPmxk%, cũng như các
giá trị thống kê trong mô hình QSDAR MLR (với k từ 5 đến 7) cũng được
chỉ ra trong Bảng 3.14. Các giá trị độ dịch chuyển hóa học của cac bon
à oxy trong phân tử flavone và isoflavone sắp xếp theo giá trị GMPmxk,
% as C4 > C7 > O11 > C6 > C3 > O1 > C2 > C2’. Các vị trị O1, C2, C3 và C4
là các vị trí quan trọng trong khung phân tử. Bởi vì đây là các oxy và
cac bon của nhóm cacbonyl C4 = O11 và O1 với cặp electron tự do.
Trong trườn hợp này electron π của liên kết C2 = C3 và C4 = O11 tạo
thành hệ liên hợp. Nhóm cacbonyl C4 = O11 thực hiện các phản ứng oxy
hóa khử. Nghiên cứu này phù hợp với các nghiên cứu thực nghiệm. Hơn
nữa, các vị trí C6, C7 và C3 cũng cho thấy rằng các vị trí quan trọng đã
khảo sát và nghiên cứu bằng các nhóm thế gắn vào các nguyên tử C 3, C6
và C7 để thiết kế các dẫn xuất mới. Như vậy, để thiết các các dẫn xuất
mới với hoạt tính pGI50 cao bằng cách gắn các nhóm thế mới vào các vị
trí C3, C6 và C7 trong phân tử flavone và isoflavone.
3.2.3.2. Mô hình mạng thần kinh QSDARANN
Mô hình mạng thần kinh QSDARANN được xây dựng bằng mạng thần
kinh trên phần mềm INForm đã được khảo sát kiến trúc mạng. Kiến
trúc I(7)-HL(2)-O(1) bao gồm lớp nhập I(7) với yếu tố đầu vào đã được
chọn là O1, O11, C2, C3, C6, C7 và C2’ là các biến số trong mô hình tuyến


6


tính QSDARMLR với k = 7 và một lớp xuất O(1) với yếu tố đầu ra

(pGI50) như là biến mục tiêu, cấu trúc một lớp ẩn HL(2) với hai nút.
Giải thuật lan truyền ngược, sai số 0,001 được sử dụng để luyện kiểu
mạng thần kinh này. Các tham số để luyện mạng nơ ron là tốc độ học
0,7; momen = 0,7; vòng lặp 10000 và sai số MSE = 0,0305764. Hàm
truyền sigmoid được sử dụng cho mỗi nơ ron của lớp nhập và lớp xuất.
Sau khi luyện mô hình thần kinh QSDARANN, R2thử = 0,800; giá trị R2luyện
đạt được 0,924 cao hơn giá trị R2luyện = 0,906 đối với mô hình tuyến tính
QSDARMLR.
3.2.3.3. Kiểm tra khả năng dự đoán
Bảng 3.15 Hoạt tính pGI50,tt của các dẫn xuất kiểm tra và các giá trị
ARE,% từ các mô hình QSDARMLR (với k = 7) và QSDARANN với kiến
trúc I(7)-HL(2)-O(1)
Hợp chấtpGI50tn

a1
a2
a3
a4
a5
a6

Sau khi sử dụng các mô hình QSDARMLR và QSDARANN để dự đoán
hoạt tính kháng ung thư của các dẫn xuất kiểm tra, độ lệch khoảng dự
đoán là có thể chấp nhận. Các mô hình QSDAR MLR và QSDARANN thỏa
mãn các đòi hỏi thực tế để dự đoán hoạt tính kháng ung thư pGI 50 của
các dẫn xuất mới. Một lần nữa chúng tôi khẳng định khả năng dự đoán
của các mô hình quan hệ cấu trúc hoạt tính là đáng tin cậy.
3.2.4. Xây dựng mô hình QSSRMLR
3.2.4.1. Nguyên tắc xây dựng
3.2.4.2. Tính toán các tham số hóa lý

3.2.4.3. Xây dựng mô hình
Mô hình tuyến tính QSSR MLR cũng được nghiên cứu, phát triển từ các
kỹ thuật hồi quy tuyến tính. Mô hình quan hệ cấu trúc - cấu trúc (QSSR)
là mối quan hệ giữa những hợp chất (y) và các hợp chất có cấu trúc
tương tự (x). Các mô hình QSSRMLR được xây dựng bằng phương pháp


hồi quy tuyến tính. Kỹ thuật hồi quy đa biến tuyến tính được sử dụng để
xây dựng mối quan hệ tuyến tính giữa các hợp chất có cấu trúc tương
tự. Những mối quan hệ tuyến tính này được xây dựng bằng cách
7


sử dụng các bộ mô tả điện tích nguyên tử của các chất dự đoán và các
chất mục tiêu. Tất cả các bộ mô tả điện tích nguyên tử bao gồm các
nguyên tử tính O1, C2, C3, C4, C5, C6, C7, C8, C9, C10, O11, C1', C2', C3', C4',
C5', C6'. Các mô hình tuyến tính QSSRMLR với các giá trị thống kê rất tốt
R2luyện = 0,999 và R2thử = 0,999:
Fla-A1 = 0,00015+1,018 (Fla-A5)-0,513 (Fla-A21)+0,497 (Fla-A22) FlaA2 = -0,00020+1,260 (Fla-A6) + 0,871 (Fla-A14)-1,134 (Fla-A24) Fla-A3
= 0,00002+0,935 (Fla-A7) + 0,582 (Fla-A16) -0,517 (Fla-A28) isoFlaA4=-0,000002+0,980(isoFla-A8)-0,233(isoFla-A18)+0,252(isoFla-A19)
Fla-A5 = -0,00015+0,982 (Fla-A1) +0,499 (Fla-A21) -0,483 (Fla-A22)
Fla-A6 =0,00019+0,682 (Fla-A2)-0,587 (Fla-A14)+0,907 (Fla-A24)
Fla-A7 = -0,00003+1,037 (Fla-A3)+-0,041 (Fla-A16)+0,004 (Fla-A27)
isoFla-A8=0,0000051+1,006(isoFla-A4)+0,253(isoFla-A18)0,259(isoFla-A19)
Fla-A9 = 0,000004+0,047 (Fla-A5) +1,025 (Fla-A11) -0,072 (Fla-A23)
Fla-A10 = 0,00012+0,977 (Fla-A9) -1,055 (Fla-A21) +1,079 (Fla-A22)
3.2.4.4. Kiểm tra khả năng dự đoán
Mô hình hồi quy tuyến tính nhận được
từ các dẫn xuất flavone và isoflavone
này có thể ứng dụng để dự đoán tính

chất hóa lý cũng như hoạt tính kháng
ung thư của các flavone và isoflavone có
cấu trúc tương tự. Phân tích ANOVA
một yếu tố cũng chỉ ra rằng kết quả dự
Hình 3.6. Quan hệ giữa đoán tính chất hóa lý và hoạt tính kháng tính
chất hóa lý dự đoán ung thư của các dẫn xuất flavone và
và dữ liệu thực nghiệm
isoflavone từ mô hình
QSSRMLR thì không khác các giá trị tính chất hóa lý tham khảo, giá trị
hoạt tính kháng ung thư xác định từ thực nghiệm với (F tt = 0,0010 <
F0,05 = 3,9423).
3.2.5. Xây dựng mô hình QSARMLR (3.16) và QSARANN(1)
3.2.5.1. Dữ liệu
3.2.5.2. Xây dựng mô hình QSARMLR (3.16)

8


Bảng 3.18 Các mô hình QSARMLR (k từ 2 đến 10) với các giá trị R2,
R2pred và MSE
k
2

Tham số mô tả phân tử 2D, 3D trong các mô hình
xvc3, Dipole

3

xvp3, xvpc4, Dipole


4

xvp6, xvpc4, Dipole, LogP

5

xp8, Dipole, Volume, knotpv, LogP

6

xp8, xvp8, Dipole, knotpv, SHBa, LogP

7

xp8, xvp8, Dipole, Hmaxpos, knotpv, SHBa, LogP

8

xp6, SaaCH, k2, nvx, knotp, knotpv, SHBa, LogP

9

xp8, ABSQ, SsOH, Hmaxpos, phia, knotp, knotpv, SHBa, Lo

10

xp8, ABSQ, SsOH, Hmaxpos, nvx, phia, knotp, knotpv, SHB

Bảng 3.19. Các giá trị thống kê và giá trị phần trăm đóng góp MPmxk,%
và GMPmxk,% đối với các tham số mô tả phân tử 2D3, D trong các mô

hình QSARMLR (với k là 8, 9, 10).

R2
R2 pred
SE
Hệ số
k2
xp6
xp8
nvx
knotp
knotpv
SHBa
Hmaxpos
SaaCH
ABSQ
SsOH
phia
logP

Sự biến thiên các giá trị R2, R2pred và SE trong các mô hình QSARMLR
với các tham số mô tả 2D và 3D, tương ứng chỉ ra trong Bảng 3.18.
Để xây dựng các mô hình QSAR MLR, các tham số mô tả 2D và 3D được
chọn lựa bằng kĩ thuật hồi quy từng bước. Các tham số mô tả 2D, 3D
được chọn dựa trên cơ sở các giá trị thống kê R2, SE và F-stat.


Các mô hình được đánh giá chéo bằng kĩ thuật loại bỏ dần từng trường
hợp (LOO) để xác định giá trị R2pred. 9 mô hình phù hợp nhất được chỉ
9



ra trong Bảng 3.18. Các giá trị phần trăm đóng góp trung bình MPmxk,
%, GMPmxk, % và các giá trị thống kê khác đối với các mô hình (với k
là 8, 9 và 10), được đưa ra trong Bảng 3.19. Sự xắp xếp mức độ ảnh
hưởng quan trọng của các tham số 2D, 3D trong các mô hình QSAR MLR
theo thứ tự là GMPmxk,%: SaaCH < SsOH < SHBa < xp6 < Hmaxpos <
logP < k2 < knotp < xp8 < knotpv < phia < nvx < ABSQ. Các tham số
mô tả ABSQ, nvx, phia, knotpv, xp8, knotp, k2 và LogP được xem là
các tham số mô tả quan trọng nhất trong mỗi phân tử. Mô hình
QSARMLR (3.16) như sau:
pGI50 = 3,044 + 4,473×xp8 -5,982×ABSQ + 0,359×SsOH 1,203×Hmaxpos + 3,067×phia -2,673×knotp + 15,540×knotpv +
0,019×SHBa + 0,839×LogP
(3.16)
2
2
2
Với n = 34; R = 0,955; R Adj= 0,932; R Pred = 0,745; SE = 0,107; F =
42,182.
3.2.5.3. Xây dựng mô hình QSARANN(1)
Mô hình QSARANN(1) được xây dựng bằng kỹ thuật neuro-fuzzy với
thuật toán di truyền sử dụng phần mềm INForm. Mô hình mạng thần
kinh nhân tạo có kiến trúc mạng I(9)-HL(5)-O(1) được xây dựng. Kiến
trúc mạng này bao gồm lớp input I(9) với 9 nơ ron tương ứng với 9 biến
độc lập xp8, ABSQ, SsOH, Hmaxpos, phia, knotp, knotpv, SHBa và
LogP; lớp ẩn HL(5) với 5 nơ ron và lớp output O(1) với 1 nơ ron là hoạt
tính sinh học pGI50. Thuật toán lan truyền ngược được ứng dụng để
luyện mạng thần kinh. Hàm truyền cho mỗi nơ ron là đường tiếp tuyến
Hypecbol; mỗi tham số luyện mạng khác nhau được sử dụng cho quá
trình luyện mạng với tốc độ huấn luyện (moment) là 0.7 và tốc độc học

là 0.01; sai số tổng cộng là 0,0003017, sai số dự đoán là 0,00001 với
300000 vòng lặp. Sau khi luyện mạng mô hình mạng thần kinh thu
được có kiến trúc I(9)-HL(5)-O(1), với giá trị thống kê R2train là 0,8963
và R2pred là 0,8883.
3.2.5.4. Khả năng dự đoán của mô hình QSARMLR (3.16) và
QSARANN(1)
Sau khi sử dụng các mô hình QSARMLR (3.16) và QSARANN(1) để dự
đoán hoạt tính sinh học pGI50 của sáu hợp chất trong nhóm kiểm tra chỉ
ra khả năng dự đoán chính xác của các mô hình QSAR với các sai số
nằm trong khoảng tin cậy của phép đo thực nghiệm. Tuy nhiên, các mô
hình QSARMLR (3.16) và QSARANN(1) đều có khả năng dự báo tốt đối với
hoạt tính sinh học của các hợp chất mới.

10


Bảng 3.20 Hoạt tính sinh học pGI50 của nhóm kiểm tra từ các mô hình
QSARMLR (3.16) và QSARANN(1)

Hợp chất

Fla-1
Fla-11
Fla-24
Fla-25
Fla-26
Fla-30

3.2.6. Xây dựng mô hình QSARMLR (3.17), QSARPCR; QSARPCA-ANN
3.2.6.1. Dữ liệu

3.2.6.2. Xây dựng mô hình QSARMLR (3.17), QSARPCR
Bảng 3.21 Các mô hình QSARMLR (k từ 2 đến 10) với các giá trị R2,
R2pred và MSE
k
2

Tham số m
a 1, a 2

3

a1, a2, a3

4

a1, a2, a3,

5

a1, a2, a3, a

6

a1, a4, a5,

7

a1, a2, a3, a

8


a1, a2, a3, a

9

a1, a2, a3, a

10

a1, a2, a3,

Đối với các mô hình QSARMLR, mức độ quan trọng của mô tả phân tử
2D và 3D được sắp xếp theo các giá trị GMPmxk,%: MaxQp > ABSQ >
ka2 > MaxNeg > LogP > ka3 > SdssC > SdO > Ovality > ABSQon. Mô
hình QSARMLR (3.17) với k = 6:
pGI50 = 8,509 + 2,8540MaxQp + 0,0247SdO + 0,2192LogP 3,6969Ovality + 0,2969SdssC + 0,3635ka3 (3.17)
Sáu biến số MaxQp, SdO, ka3, LogP, Ovality and SdssC được chọn để
xây dựng mô hình QSARPCR (3.18).
pGI50 = 5,48356 + 0,38027×PC1 - 0,11868×PC2 + 0,34789×PC3 +
0,06995×PC4 + 0,21850×PC5 + 0,35057×PC6 (3.18)


11


Bảng 3.22 Các giá trị thống kê và phần trăm đóng góp MPmxk,%,
GMPmxk,% của các tham số mô tả phân tử 2D, 3D trong các mô hình
QSARMLR (với k = 5, 6, 7)
Biến số


m
R

2

R

2

adj

SE
R2pred
Hệ số
ABSQ
ABSQon
MaxQp
MaxNeg
SdO
ka2
LogP
Ovality
SdssC
ka3

3.2.6.3. Xây dựng mô hình QSARPCA-ANN
Mô hình QSARPCA-ANN được xây dựng bằng kỹ thuật neurofuzzy với
thuật toán di truyền bằng chương trình INForm. Kiến trúc mạng nơ-ron
nhân tạo I(6) -HL(9) - O(1) đã được xây dựng. Mô hình QSAR PCA-ANN
bao gồm lớp đầu vào I(6) với 6 nơ ron là các biến độc lập PC 1, PC2,

PC3, PC4, PC5 và PC6 tương ứng với các tham số MaxQp, SdO, ka3,
LogP, Ovality và SdssC; lớp ẩn HL(9) với 9 nơ ron thần kinh và lớp đầu
ra O (1) với 1 nơ ron là hoạt tính sinh học pGI 50. Thuật toán lan truyền
ngược được sử dụng để luyện mạng nơ ron. Hàm truyền trên mỗi nơ ron
được sử dụng là hàm truyền sigmoid; các thông số khác được sử dụng
để huấn luyện mạng thần kinh này bao gồm tỷ lệ luyện là 0,7 và tốc độ
học 0,7; sai số MSE = 0,003447 với số vòng lặp là 5000. Sau khi luyện
mạng nơ ron I(6) - HL(9)- O(1), giá trị R2 là 0,897298 và R2pred là
0,88718.
3.2.6.4. Khả năng dự đoán của các mô hình
Các hoạt tính dự báo từ các mô hình QSAR được so sánh với các hoạt
tính thực nghiệm và so sánh với nhau bằng cách sử dụng giá trị trung
bình sai số tương đối MARE%. Các giá trị MARE,% cho thấy rằng khả


12


năng dự báo của mô hình QSARMLR (3.17) thấp hơn cả hai mô hình
QSARPCR và QSARPCA-ANN, như trong Bảng 3.23.
Bảng 3.23 Hoạt tính sinh học pGI50 của nhóm kiểm tra từ các mô hình
QSARMLR (3.17) (M1), QSARPCR (M2) và QSARPCA-ANN (M3)
Hợp chất
Flav-8
Flav-22
Flav-32
Flav-74
Flav-80

Do giá trị MARE,% mô hình QSARPCR (3.18) là cao nhất. Sau khi sử

dụng các mô hình QSARMLR (3.17), QSARPCR(3.18) và QSARPCA-ANN để
dự đoán các hoạt tính sinh học pGI 50 của sáu hợp chất trong nhóm thử
nghiệm khả năng dự đoán chính xác của một mô hình QSAR được thể
hiện bởi các sai số có thể chấp nhận được trong khoảng tin cậy của phép
đo thực nghiệm. Do đó, các mô hình QSAR MLR (3.17), QSARPCR (3.18)
và QSARPCA-ANN có khả năng dự đoán tính sinh học của các chất mới.
3.2.7. Xây dựng mô hình QSARMLR (3.19), QSARPLS (3.20) và
QSARANN(2)
3.2.7.1. Dữ liệu
3.2.7.2. Xây dựng mô hình QSARMLR (3.19) và QSARPLS (3.20)
Bảng 3.24 Các mô hình QSARMLR với các giá trị R2 , SE và R2pred
tương ứng
k
2
3
4
5
6
7
8
9
10


hình QSARMLR (3.19) với k = 6 với giá trị R2 là 0,938 và giá trị
2
R pred cao nhất là 0,903.
pGI50 = 6,7116 − 42,3105 O1 − 8,1592O11 + 3,0139 C3 −19,0370 C4 +
6,6117 C6 + 4,6038C7
13



Bảng 3.25 Các giá trị thống kê và phần trăm đóng góp MPmxk,%,
GMPmxk,% của điện tích nguyên tử trong các mô hình QSARMLR

Biến

R

2

R

2

adj

SE
R

2

pred

Hằng số
O1
O11
C2
C3
C4

C5
C6
C7
C8
C9
C2'
C3'
C6'

Đối với 3 mô hình QSARMLR với k = 5 – 7 biến số, vị trí các nguyên tử
quan trọng sắp xếp theo các giá trị GMPmxk,%: C4 > O1 > O11 > C9 > C2
> C6 > C3. Các nguyên tử C4, O1, O11 là các các vị trí quan trọng nhất
trong các phân tử, Bảng 3.25.
3.2.7.3. Xây dựng mô hình QSARANN(2)
Kiến trúc mạng nơ ron nhân tạo bao gồm ba lớp I(6)-HL(4)-O(1); Lớp
đầu vào I(6) bao gồm sáu nơ ron là các tham số O 1, O11, C3, C4, C6 và
C7; Nơ ron lớp đầu ra O(1) là hoạt tính sinh học pGI 50; Lớp ẩn HL(4)
bao gồm bốn nơ ron. Mạng thần kinh đa lớp sử dụng thuật toán lan
truyền ngược để luyện mạng. Hàm truyền sigmoid trên mỗi nút của
mạng; Các thông số mạng thần kinh bao gồm tỷ lệ luyện 0,7 và tốc độ
học 0,7; sai số MSE = 0,000816 với 10,000 vòng lặp. Sau khi luyện
mạng thần kinh, giá trị R2 là 0,993 và R2pred là 0,971 trong khi đối với
mô hình QSARMLR (3.19), giá trị R2 là 0,938 và R2pred là 0,903.
3.2.7.4. Dự đoán hoạt tính sinh học của các hợp chất mới
Khả năng dự báo của mô hình QSARMLR (3.19), thấp hơn các mô hình
QSARPLS và QSARANN (2) tương ứng như trong Bảng 3.26. Mô hình
14


QSARANN (2) có sai số với giá trị MARE % là 1,161 nhỏ hơn MARE,%

của cả hai mô hình QSAR MLR (3.19) và QSARPLS. Vì vậy, khả năng dự
báo của mô hình QSARANN (2) tốt hơn so với mô hình QSAR MLR (3.19)
và QSARPLS.
Bảng 3.26 Hoạt tính pGI50 trong nhóm kiểm tra dự đoán từ các mô hình
QSARMLR (3.19) (M1), QSARPLS (M2) và QSARANN(2) (M3)

Hợp chất

Fla 2
Fla 9
Fla 12
Fla 15
Fla 16
Isofla 32

Sau khi sử dụng các mô hình QSARMLR (3.19), QSARPLS, QSARANN(2) để
dự đoán các hoạt tính sinh học pGI 50 của 6 hợp chất trong nhóm thử
nghiệm, sai số của dự đoán nằm trong khoảng sai số cho phép của các
phép đo thực nghiệm. Do đó, các mô hình QSAR MLR (3.19), QSARPLS
và QSARANN(2) thích hợp để dự đoán các hoạt tính sinh học của các chất
mới.
3.3. SÀNG LỌC, PHÂN LẬP FLAVONOID TỰ NHIÊN
3.3.1. Phân lập cynaroside từ actiso
Cynaroside phân lập từ lá actiso, cấu trúc cynaroside xác định bằng
phương pháp phổ NMR, Hình 3.8.

Hình 3.8 Cấu trúc phân tử cynaroside, C12H20O11
3.3.2. Phân lập quercetin từ xa kê
Quercetin phân lập từ lá xa kê, cấu trúc quercetin xác định bằng phương
pháp phổ NMR, Hình 3.9.



15


Hình 3.9 Cấu trúc phân tử quercetin, C15H10O7
3.3.3. Phân lập luteolin từ tía tô
Luteolin phân lập từ lá tía tô, cấu trúc luteolin xác định bằng phương
pháp phổ NMR, Hình 3.10.

Hình 3.10 Cấu trúc luteolin, C15H10O6
3.3.4. Phân lập daidzin từ đậu nành
3.3.4.1. Xác đinh cấu trúc daidzin bằng phương pháp NMR
Daidzin phân lập từ hạt đậu nành, cấu trúc daidzin xác định bằng
phương pháp phổ NMR, Hình 3.11.

Hình 3.11 Cấu trúc phân tử của daidzin, C21H20O9
3.3.4.2. Xác đinh cấu trúc phân tử daidzin bằng phương pháp
đo nhiễu xạ tia X
Daidzin phân lập từ hạt đậu nành, cấu trúc daidzin xác định bằng
phương pháp đo nhiễu xạ tia X đơn tinh thể, Hình 3.12.
16


×