Exam
Name___________________________________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Use set notation, and list all the elements of the set.
1) {19, 20, 21, . . . , 25}
A) {19, 20, 22, 24, 25}
C) {19, 20, 21, 22, 23, 24, 25, 26}
2) 1,
1)
B) {19, 20, 21, 22, 23, 24, 25}
D) {19, 21, 23, 25}
1 1
1
, ,...,
3 9
243
2)
A) 1,
1 1 1 1
1
, ,
,
,
3 9 27 81 243
B) 1,
1 1 1
1
, ,
,
3 9 27 243
C) 1,
1 1 1
1
1
, ,
,
,
3 9 27 729 19,683
D) 1,
1 1 1 1 1
, , , ,
3 5 6 7 8
3)
3) {15, 22, 29, . . ., 64}
A) {15, 22, 29, 36, 43, 50, 57, 64}
C) {15, 22, 29, 36, 43}
B) {15, 22, 29, 37, 44, 51, 58, 65}
D) {15, 22, 28, 35, 42, 49, 56, 63}
4)
4) {82, 77, 72, . . ., 32}
A) {82, 77, 72, 66, 61, 56, 51, 46, 41, 36, 31}
B) {82, 77, 72, 62, 52, 42, 32}
C) {82, 87, 92, 97, 102, 107, 112, 117, 122, 127, 132}
D) {82, 77, 72, 67, 62, 57, 52, 47, 42, 37, 32}
5) The first four natural numbers.
A) {0, 2, 4, 6}
B) {0, 1, 2, 3, 4}
C) {1, 2, 3, 4}
D) {0, 1, 2, 3}
5)
6) The natural numbers between 3 and 5.
A) {3, 5}
B) {0, 1, 2, 3}
C) {3, 4, 5}
D) {4}
6)
Identify the set as finite or infinite.
7) {6, 7, 8, . . ., 11}
A) infinite
7)
B) finite
8) {3, 5, 7, . . .}
A) finite
9) 1,
8)
B) infinite
1 1 1
, ,
, . . .,
3 9 27
9)
A) finite
B) infinite
10) {x|x is a natural number larger than 1}
A) finite
10)
B) infinite
1
11) {x|x is a fraction between 0 and 1}
A) finite
B) infinite
11)
12) {x|x is an even natural number}
A) infinite
B) finite
12)
13) {x|x is a person alive now}
A) infinite
13)
B) finite
Insert ∈ or ∉ in the blank to make the statement is true.
{7, 8, 9, 10}
14) 10
14)
A) ∈
15) 10
B) ∉
{6, 9, 12, 10, 8}
15)
A) ∈
16) -9
B) ∉
{9, 11, 13, 15}
16)
A) ∉
17) 0
B) ∈
{7, 9, 0, 11, 10}
17)
A) ∈
18) 0
B) ∉
{4, 5, 6, 7, 8, 9}
18)
A) ∉
19) {9}
B) ∈
{9, 10, 11, 12, 13, 14}
19)
A) ∉
B) ∈
20) {10}
{8, 10, 12, 14}
20)
A) ∉
21) {0}
B) ∈
{0, 4, 5, 6, 7}
21)
A) ∈
22) 4
B) ∉
∅
22)
A) ∈
23) ∅
B) ∉
∅
23)
A) ∉
B) ∈
Tell whether the statement is true or false.
24) 6 ∈ {4, 54, 6, 7}
A) True
24)
B) False
25) 7 ∈ {-3, 8, 9, 12}
A) True
25)
B) False
2
26) 11 ∉ {0, 9, 10, 12, 14}
A) True
B) False
27) {0, 8, 11, 16} = {11, 8, 16, 0}
A) True
B) False
26)
27)
28) {1, 6, 4, 7} = {4, 1, 6}
A) True
28)
B) False
29) {x | x is a natural number greater than 1} = {1, 2, 3, . . .}
A) True
B) False
29)
30) Let A = {9, 10, 11, 12, 13, 14}, B = {11, 13, 15}, C = {9, 10, 12, 14}, D = {9, 14}, and
U = {9, 10, 11, 12, 13, 14, 15}.
30)
A⊆U
A) True
B) False
31) Let A = {8, 9, 10, 11, 12, 13}, B = {10, 12, 14}, C = {8, 9, 11, 13}, D = {8, 13}, and
U = {8, 9, 10, 11, 12, 13, 14}.
A⊆B
A) True
31)
B) False
32) Let A = {2, 3, 4, 5, 6, 7}, B = {4, 6, 8}, C = {2, 3, 5, 7}, D = {2, 7}, and U = {2, 3, 4, 5, 6, 7, 8}.
C⊆A
A) True
32)
B) False
33) Let A = {6, 7, 8, 9, 10, 11}, B = {8, 10, 12}, C = {6, 7, 9, 11}, D = {6, 11}, and U = {6, 7, 8, 9, 10, 11, 12}.
∅⊆D
A) True
33)
B) False
34) Let A = {6, 7, 8, 9, 10, 11}, B = {8, 10, 12}, C = {6, 7, 9, 11}, D = {6, 11}, and U = {6, 7, 8, 9, 10, 11, 12}.
C ⊆∅
A) True
34)
B) False
35) Let A = {2, 3, 4, 5, 6, 7}, B = {4, 6, 8}, C = {2, 3, 5, 7}, D = {2, 7}, and U = {2, 3, 4, 5, 6, 7, 8}.
{6, 8} ⊆ B
A) True
35)
B) False
36) Let A = {5, 6, 7, 8, 9, 10}, B = {7, 9, 11}, C = {5, 6, 8, 10}, D = {5, 10}, and U = {5, 6, 7, 8, 9, 10, 11}.
{0, 6, 10} ⊆ C
A) True
B) False
3
36)
37) Let A = {7, 8, 9, 10, 11, 12}, B = {9, 11, 13}, C = {7, 8, 10, 12}, D = {7, 12}, and
U = {7, 8, 9, 10, 11, 12, 13}.
B⊈C
A) True
B) False
38) Let A = {5, 6, 7, 8, 9, 10}, B = {7, 9, 11}, C = {5, 6, 8, 10}, D = {5, 10}, and U = {5, 6, 7, 8, 9, 10, 11}.
D⊈C
A) True
U⊆C
A) True
40)
A) ⊈
B) ⊆
{5, -6, 10, -8, 12, 7}
41)
A) ⊆
B) ⊈
{4, 4, 6, 7, 8, 9}
42)
A) ⊈
43) {7, 8, 9, 12}
B) ⊆
{7, 11, 9, 10, 8, 12}
43)
A) ⊆
44) {0, 2, 4, 7}
B) ⊈
{2, 4, 7, 8, 9, 10}
44)
A) ⊆
45) ∅
B) ⊈
{6, 9, 13, 0, 10, 14}
45)
A) ⊆
46) {-13, 8, -14, 0, 12}
B) ⊈
∅
46)
A) ⊆
47) ∅
39)
B) False
Insert ⊆ or ⊈ in the blank to make the statement true.
40) {9, 10, 11}
{0, 9, 10, 11, 12, 13}
42) {4, 6, 9, 11}
38)
B) False
39) Let A = {1, 2, 3, 4, 5, 6}, B = {3, 5, 7}, C = {1, 2, 4, 6}, D = {2, 6}, and U = {1, 2, 3, 4, 5, 6, 7}.
41) {8, 12}
37)
B) ⊈
∅
47)
A) ⊆
B) ⊈
Tell whether the statement is true or false.
48) {10, 13, 14, 16} ∩ {13, 14, 17, 18} = {13, 14}
A) True
48)
B) False
49) {6, 8, 9, 11} ∪ {0, 10, 8, 13, 6} = {6, 8}
A) True
49)
B) False
4
50) {5, 7, 8, 10} ∩ ∅ = {5, 7, 8, 10}
A) True
B) False
51) {8, 10, 11, 13} ∪ ∅ = {8, 10, 11, 13}
A) True
B) False
50)
51)
Use these sets to find the following. Identify any disjoint sets.
52) Let U = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, M = {5, 7, 9, 11}, N = {6, 8, 10, 12, 14},
Q = {5, 7, 9, 11, 13, 15}, and R = {5, 6, 7, 8}.
M∩R
A) ∅; M and R are disjoint sets.
C) {5, 7}
52)
B) {5, 6, 7, 8, 9, 11}
D) {5, 6, 7, 8}
53) Let U = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, M = {4, 6, 8, 10}, N = {5, 7, 9, 11, 13},
Q = {4, 6, 8, 10, 12, 14}, and R = {4, 5, 6, 7}.
M∪N
A) {4, 5, 6, 7, 8, 9, 10, 11, 13}
C) {5, 6, 7, 8, 9, 10, 11, 12, 13}
53)
B) {4, 5, 6, 7, 8, 9, 13}
D) ∅; M and N are disjoint sets.
54) Let U = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, M = {2, 4, 6, 8}, N = {3, 5, 7, 9, 11}, Q = {2, 4, 6, 8, 10, 12},
and R = {2, 3, 4, 5}.
M∩N
A) {3, 4, 5, 6, 7, 8, 9, 10, 11}
C) {4, 5, 6, 7, 11}
54)
B) ∅; M and N are disjoint sets.
D) {2, 3, 4, 5, 6, 7, 8, 9, 11}
55) Let U = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, M = {5, 7, 9, 11}, N = {6, 8, 10, 12, 14},
Q = {5, 7, 9, 11, 13, 15}, and R = {5, 6, 7, 8}.
55)
N'
A) M, or {5, 7, 9, 11}
C) Q, or {5, 7, 9, 11, 13, 15}
B) {7, 9, 11, 13, 15}
D) {6, 8, 10, 12, 14}
56) Let U = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, M = {2, 4, 6, 8}, N = {3, 5, 7, 9, 11}, Q = {2, 4, 6, 8, 10, 12},
and R = {2, 3, 4, 5}.
Q ∩R'
A) {4, 6, 8, 10, 12}
C) ∅; Q and R' are disjoint sets.
56)
B) {6, 8, 10, 12}
D) {5, 6, 7, 8, 9, 10, 11, 12}
57) Let U = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, M = {3, 5, 7, 9}, N = {4, 6, 8, 10, 12}, Q = {3, 5, 7, 9, 11, 13},
and R = {3, 4, 5, 6}.
∅∪N
A) {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}
B) N, or {4, 6, 8, 10, 12}; N and ∅ are disjoint sets.
C) {5, 7, 9, 11, 13}
D) ∅; N and ∅ are disjoint sets.
5
57)
58) Let U = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}, M = {5, 7, 9, 11}, N = {6, 8, 10, 12, 14},
Q = {5, 7, 9, 11, 13, 15}, and R = {5, 6, 7, 8}.
(N ∪ R) ∩ Q
A) ∅; N and R are disjoint sets.
C) {7}
58)
B) {5}
D) {5, 7}
59) Let U = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13}, M = {3, 5, 7, 9}, N = {4, 6, 8, 10, 12}, Q = {3, 5, 7, 9, 11, 13},
and R = {3, 4, 5, 6}.
Q' ∩ (N' ∩ U)
A) {4, 6, 8, 10, 12}
C) {4, 5, 6, 7, 8, 9}
59)
B) ∅; Q' and (N' ∩ U) are disjoint sets.
D) {3, 5, 7, 9, 11, 13}
60) Let U = {9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19}, M = {9, 11, 13, 15}, N = {10, 12, 14, 16, 18},
Q = {9, 11, 13, 15, 17, 19}, and R = {9, 10, 11, 12}.
(R ∪ N) ∩ M'
A) M, or {9, 11, 13, 15}
C) ∅; M' and (R ∪ N) are disjoint sets.
60)
B) {9, 10, 12, 14, 16, 18}
D) N, or {10, 12, 14, 16, 18}
61) Let U = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}, M = {7, 9, 11, 13}, N = {8, 10, 12, 14, 16},
Q = {7, 9, 11, 13, 15, 17}, and R = {7, 8, 9, 10}.
(U ∪ ∅) ∩ R'
A) ∅; R' and (U ∪ ∅) are disjoint sets.
C) R, or {7, 8, 9, 10}
61)
B) U, or {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17}
D) {11, 12, 13, 14, 15, 16, 17}
List all the elements of set B that belong to the indicated set.
0
62) B = 14, 7, -14, 0, , 25
1
62)
Integers
A) 14, -14, 0,
0
,
1
25
B) 14, 0,
C) 14, -14, 0
63) B = 11,
5, -17, 0,
D) 14, 0
0
,
4
16
Whole numbers
0
A) 11, 0, , 16
4
64) B = 14,
8, -14, 0,
25
63)
C) 11, -17, 0
B) 11, 0
0
,
4
D) 11, -17, 0,
4
64)
Natural numbers
A) 14, 0,
4
16
B) 14,
4
C) 14, 0
6
D) 14, 0,
0
4
65) B = 5,
7, -16, 0,
0
,
8
9,
-5
, 0.59
0
65)
Rational numbers
7,
9
B) 5, -16, 0,
C) 5, 0,
9
D)
A)
7,
0
,
8
9, 0.59
0
, 0.59
8
Evaluate the expression.
66) 3 6
66)
A) 18
B) 324
C) 729
D) 72.9
67) -3 6
A) -18
B) 729
C) -729
D) 18
68) (-4)3
A) -12
B) -64
C) 144
D) 64
69) -4 · 5 2
A) 400
B) -100
C) 100
D) -400
67)
68)
69)
70) -5(-2)3
A) -1,000
B) 40
C) 1,000
D) -40
71) 26 + 28 · 2 + 7
A) 89
B) 63
C) 115
D) 486
72) 11 + 62 - (-3) · 7
A) 26
B) 308
C) 68
D) 182
73) 81 - 8 · 3 + 4
A) 223
B) 61
C) 511
D) 80
74) 92 - 22 · 4 + 224 ÷ (-16)
A) -997
B) -10
C) -19
D) 266
75) (-2)3 - (-2)2
A) -12
B) -4
C) 12
D) 4
70)
71)
72)
73)
74)
75)
76) (9 + (-2))[7 + (4 + 8)]
A) 22
B) 26
C) 133
D) 89
77) -8[-1 + 2(-9 + 3)]
A) 44
B) 48
C) 104
D) -4
78) (9 - 82 )(-8 +
A) 73
B) -4895
C) -47
D) -55
76)
77)
81)
78)
7
79) -
3
1
- 8
4
A)
80)
-
3 7
2 8
1
2
79)
C) -
B) 0
5
4
D) -
3
4
-7 · 5 + 3 - (-1 + 6)
-7 · 8 + 2
A)
61
70
80)
B)
37
70
C)
Evaluate the expression for x = -2, y = 3, and a = -4.
81) -3x + 7y + 5a
A) 23
B) 7
59
54
D)
37
54
81)
C) -7
D) -43
82) -4a - 6y - 3x
A) 8
B) 4
C) 23
D) 19
83) (-5x - 3y)(-8a)
A) 32
B) -32
C) 140
D) -288
84) 9x2 - 4y - a
A) 28
B) 22
C) 26
D) 25
85) x3 - 7y + 3a
A) -28
B) -25
C) -41
D) -37
86)
85)
86)
3
19
B) -
1
23
C) 0
D) -
1
19
87)
x 9
+
2 y
4
3
B)
5
2
C) 0
D) 2
-(x + 5)2 - 2y
-2 - a
A) -
89)
84)
6 a
y 2
A)
88)
83)
y + 2x
y - 4a
A) -
87)
82)
3
2
88)
B)
35
2
C)
15
2
D) -
15
2
2x + 2(3 + a)2
y-1
A) 9
89)
C) - 1
B) 19
8
D) 33
Identify the property illustrated by the statement. Assume all variables represent real numbers.
90) 6 · 1 = 6
A) Distributive
B) Identity
C) Closure
D) Inverse
91) (2 + 3) + 6 = (3 + 2) + 6
A) Associative
B) Commutative
C) Distributive
D) Closure
92) 8 + 0 = 8
A) Associative
B) Closure
C) Inverse
D) Identity
93) 3(x + 8) = 3x + 24
A) Commutative
B) Distributive
C) Associative
D) Closure
94) 4 + (-4) = 0
A) Associative
B) Identity
C) Inverse
D) Closure
95) 2 + 9 = 9 + 2
A) Associative
96)
91)
92)
93)
94)
95)
B) Commutative
C) Identity
D) Inverse
1
· (a + 2) = 1, if a + 2 ≠ 0
(a + 2)
A) Identity
97) (8 · 4) · 6 = 8 · (4 · 6)
A) Commutative
98) 6(π) is a real number.
A) Closure
90)
96)
B) Inverse
C) Distributive
D) Closure
B) Associative
C) Distributive
D) Identity
97)
98)
B) Distributive
C) Identity
D) Associative
Write the expression with only positive exponents and evaluate if possible. Assume all variables represent nonzero real
numbers.
5
99) (-8y)
99)
4
A) -10y
100)
100)
B) 5y
D) -5y
C) 4y
5
(16y - 16x + 20z)
4
A) 20y + 20x + 25z
102)
D) 20y
1
y (-15)
3
A) 3y
101)
C) -9y
B) 10y
101)
B) 20y + 20x - 25z
C) 20y - 20x + 25z
D) 20y - 20x - 25z
1
10
10y +
x - 20
5
3
A) 2y +
2
x-4
3
102)
B) 2y +
2
x+4
3
C) 2y -
9
2
x-4
3
D) 2y -
2
x+4
3
Use the distributive property to rewrite a sum as a product or the product as a sum.
103) -11y + 3y
A) 8y
B) -14y
C) -8y
103)
D) 14y
104) 2 - 10b
A) -8b
B) 2(1 - 6b)
C) 2(1 - 5b)
D) 12b
105) -4(x + k)
A) -4x - 4k
B) -4xk
C) -4x + k
D) -4x + 4k
106) -(-3 - 9b)
A) 3 + 9b
B) -3 - 9b
C) 3 - 9b
D) -3 + 9b
107) -(-5y + 8k)
A) -5y + 8k
B) 5y + 8k
C) 5y - 8k
D) -5y - 8k
104)
105)
106)
107)
Decide whether the statement is true or false. If false, correct the statement so it is true.
108) 5 - 10 = 5 - 10
A) True
B) False; 5 - 10 = 10 - 5
109) 2 - 8 = 8 - 2
A) True
B) False; 2 - 8 = 2 - 8
110) -12 = - 12
A) True
B) False; -12 = -(-12) = 12
111) -3 = 3
A) True
B) False; -3 = - 3 = -3
109)
110)
111)
112) (-4)3 = - (4)3
112)
B) False; (-4)3 = 4 3
A) True
113)
-4
-4
=
5
5
113)
A) True
B) False;
114) -5 · 10 = -5 · 10
A) True
Evaluate the expression.
115) -12
A) ±12
116) 23
A) 23
108)
4
-4
=
5
-5
114)
B) False; -5 · 10 = - 5 · 10
115)
B) -12
C) 12
D) 0
116)
C) ±23
B) 0
10
D) -23
117) - 20
A) ±20
B) 0
C) -20
D) 20
118) - -2
A) 0
B) ±2
C) 2
D) -2
119) -
118)
1
7
119)
A) ±
120) - -
1
7
B)
1
7
C) -
1
7
D) 0
8
3
A) -
121) -
117)
120)
8
3
B) ±
8
3
C) 0
D)
8
3
8
7
A) 0
121)
B) -
8
7
C)
8
7
D) ±
8
7
122) Let x = -19, y = -18. Evaluate |21x|.
A) -342
B) 342
C) 399
D) -399
123) Let x = -8, y = 5. Evaluate x + y .
A) -3
B) 3
C) 13
D) -13
124) Let x = -8, y = 4. Evaluate x + y .
A) 4
B) 12
C) -4
D) -12
125) Let x = 18, y = -6. Evaluate |y - x|.
A) 12
B) 24
C) -12
D) -24
126) Let x = 2, y = 5. Evaluate 6x - 7y .
A) 47
B) -23
C) -47
D) 23
122)
123)
124)
125)
126)
127) Let x = -9, y = 13. Evaluate |9y - 2x|.
A) -99
B) 135
C) 99
D) -135
128) Let x = 9, y = -2. Evaluate 4 x + 5 y .
A) -26
B) 46
C) 26
D) -46
127)
128)
129) Let x = -18, y = 12.
Evaluate |4y - 5x| - |4y|.
A) 60
B) 36
129)
C) 84
11
D) 90
130) Let x = 6 and y = -3. Evaluate
A) -1
131) Let x = 5, y = -1. Evaluate
A)
5
22
|x| |y|
.
+
x
y
130)
B) 1
C) 2
D) 0
|x + 2| - |2y|
.
| 3y + 5x|
B)
131)
5
28
C)
9
22
D)
1
2
Determine which property of absolute value justifies the statement.
132) x ≥ 0
A) Property 1: the absolute value of a number is positive or 0.
B) Property 5: the triangle inequality
C) Property 1: the absolute value of a number is positive.
D) Property 1: the absolute value of a number is greater than 0.
132)
133) -x = x
A) Property 5: the triangle inequality
B) Property 1: the opposite of a number is equal to the absolute value of the number .
C) Property 2: the opposite of the absolute value of a number is equal to the absolute value of
the number.
D) Property 2: the absolute value of a number and its opposite are equal.
133)
134) x + y ≤ x + y
A) Property 4: the absolute value of the sum of the numbers is less than or equal to the sum of
the two numbers.
B) Property 5: the sum of the absolute values of two numbers is less than or equal to the
absolute value of their sum (the triangle inequality).
C) Property 5: the absolute value of the sum of two numbers is less than or equal to the sum of
their absolute values (the triangle inequality).
D) Property 4: the sum of two numbers is less than or equal to the absolute value of the sum of
the numbers.
134)
Find the distance between two points given their coordinates.
135) Find the distance between points P and Q on a number line, with coordinates 3 and 10,
respectively.
A) d(P, Q) = -13
B) d(P, Q) = 7
C) d(P, Q) = 13
D) d(P, Q) = -7
135)
136) Find the distance between points R and S on a number line, with coordinates -2 and 4,
respectively.
A) d(R, S) = 2
B) d(R, S) = -2
C) d(R, S) = -6
D) d(R, S) = 6
136)
137) Find the distance between points P and Q on a number line, with coordinates -10 and 3,
respectively.
A) d(P, Q) = 7
B) d(P, Q) = 13
C) d(P, Q) = -7
D) d(P, Q) = -13
137)
138) Find the distance between points R and S on a number line, with coordinates 8 and -7,
respectively.
A) d(R, S) = -15
B) d(R, S) = 1
C) d(R, S) = 15
D) d(R, S) = -1
138)
12
139) Find the distance between points P and Q on a number line, with coordinates 5 and -12,
respectively.
A) d(P, Q) = 17
B) d(P, Q) = -7
C) d(P, Q) = -17
D) d(P, Q) = 7
139)
140) Find the distance between points R and S on a number line, with coordinates -4 and -7,
respectively.
A) d(R, S) = -11
B) d(R, S) = 11
C) d(R, S) = 3
D) d(R, S) = -3
140)
Determine what signs on values of x and y would make the statement true. Assume that x and y are not 0.
141) xy < 0
A) x and y have different signs.
B) x and y must be negative.
C) x and y have the same sign.
D) x and y must be positive.
142)
x
>0
y
142)
A) x and y have the same sign.
C) x and y have different signs.
143) -
B) x and y must be negative.
D) x and y must be positive.
x
>0
y
143)
A) x and y must be positive.
C) x and y have different signs.
B) x and y must be negative.
D) x and y have the same sign.
144) x2 y < 0
A) x and y must be negative.
C) x must be negative.
145)
144)
B) x and y have different signs.
D) y must be negative.
x2
<0
y
145)
A) y must be negative.
C) x and y must be negative.
146)
141)
B) x must be negative.
D) x and y have different signs.
x3
>0
y
146)
A) x and y have different signs.
C) x and y have the same sign.
B) x and y must be positive.
D) x and y must be negative.
Solve the problem.
147) The formula C =
5
(F - 32) expresses the relationship between Fahrenheit temperature, F, and
9
147)
Celsius temperature, C. Use the formula to convert 86°F to its equivalent temperature on the
Celsius scale.
A) 97°C
B) 30°C
C) 6°C
D) 66°C
148) A stone is dropped from a tower that is 730 feet high. The formula h = 730 - 16t2 describes the
stone's height above the ground, h, in feet, t seconds after it was dropped. What is the stone's
height 1 seconds after it is released?
A) 739 ft
B) 714 ft
C) 689 ft
D) 724 ft
13
148)
149) If a rock falls from a height of 70 meters above the ground, the height H (in meters) after x seconds
can be approximated using the formula H = 70 - 4.9x2 . What is the height of the rock after 2
seconds?
A) 50.4 m
B) -26.04 m
C) 260.4 m
149)
D) 60.2 m
150) As the relative humidity increases, the temperature seems higher than it is. The formula T = 0.117x
+ 87.16 approximates the apparent temperature for an actual temperature of 95°F, where x is the
relative humidity. What is the apparent temperature (to the nearest degree) for a relative humidity
of 100%?
A) 187°F
B) 87°F
C) 1020°F
D) 99°F
150)
151) Use the formula
151)
Y
T
I
C
, where A = number of passes
Passing Rating ≈ 85.68
+ 4.31
+ 326.42
- 419.07
A
A
A
A
attempted, C= number of passes completed, Y = total number of yards gained passing, T = number
of touchdown passes, and I = number of interceptions, to approximate the passing rating for C.
Felix. Round to the nearest tenth.
Quarterback
A. Smith
B. Jones
C. Felix
A) 82.3
A
461
473
584
C
227
266
311
Y
3015
3107
4378
T
23
27
24
I
4
13
13
B) 83.6
C) 83
D) 82
152) The Blood Alcohol Concentration (BAC) of a person who has been drinking is given by the
expression
number of oz × % alcohol × .075 ÷ body weight in lb - hours of drinking × .015.
Find the BAC to the nearest thousandth for a 142-lb woman, who, in 3 hours, has drunk 3 10-oz
beers (30 oz), each having a 3.2% alcohol content.
A) -0.028
B) -0.215
C) -199.949
14
D) 0.006
152)
153) The NSC (Not So Consistent) Corporation has just completed its first year of business. The
following chart shows its monthly profit (or loss).
Month
January
February
March
April
Profit (Loss) in Dollars
-14,526
1874
-8977
-14,107
May
14,073
June
14,632
July
-13,834
August
-13,170
September
October
-4860
6630
November
-3338
December
-974
The profit was smallest in
A) June
?
.
B) December
C) January
D) February
154) The NSC Corporation has just completed its first year of business. The following chart shows its
monthly profit (or loss).
Month
Profit (Loss) in Dollars
January
-14,526
February
March
April
1874
-8977
-14,107
May
14,073
June
14,632
July
-13,834
August
-13,170
September
October
-4860
6630
November
-3338
December
-974
The absolute value of the profit or loss was smallest in
A) June
153)
B) December
?
.
C) February
15
D) January
154)
155) During a certain football game, a player gained 38 yards rushing and -54 yards returning fumbles.
Find his total yardage. Is this the same as the sum of the absolute values of the two categories?
Why or why not?
A) -16 yards; Yes, it is the same.
B) -16 yards; No, it is not the same because the sum of the absolute values is 92.
C) 92 yards; No, it is not the same because the sum of the absolute values is -16 .
D) 16; yards; No, it is not the same because the sum of the absolute values is -92.
155)
156) Find the magnitude of the difference between a windchill factor of -50 and a windchill factor of -5.
A) 45
B) -55
C) -45
D) 55
156)
157) Find the magnitude of the difference between a windchill factor of 82 and a windchill factor of -45.
A) -37
B) 37
C) 127
D) -127
157)
158) It is recommended that a woman who is pregnant should exercise such that her heart rate does not
exceed 140 beats per minute. Use absolute value notation to write an expression that describes the
difference between the heart rate achieved by each of the following pregnant women and the
recommended maximum heart rate. Then evaluate that expression.
158)
(i) Abigail: 138 beats per minute
(ii) Mathilda: 147 beats per minute
A) (i) Abigail: 138 - 140 = 2
(ii) Mathilda: 147 - 140 = 7
C) (i) Abigail: 138 + 140 = 278
(ii) Mathilda: 147 + 140 = 287
B) (i) Abigail: 140 - 138 = -2
(ii) Mathilda: 140 - 147 = -7
D) (i) Abigail: 138 - 140 = -2
(i) Mathilda: 147 - 140 = 7
Simplify the expression. Assume all variables represent nonzero real numbers.
159) (3a 3 ) · (5a 8 )
A) 15a 24
159)
B) 8 24
C) 15a 11
D) 8 11
B) 15n 6
C) 8n 5
D) 8n 6
B) 8 13
C) 4 40
D) 1640
B) x6
C) (2x)8
D) x8
B) 1213
C) 6 40
D) 6 13
164) (2a6 b8 )(-4a 7 b4 )
A) 8a 13b13
B) -8a 13b12
C) -8a 42b8
D) 8a 41b8
165) (-4x6 y)(-7x4 y5 )
A) -28x10y5
B) 28x10y6
C) -11x10y5
D) 28x24y5
160) (3n 2 ) · (5n 3 )
A) 15n 5
160)
161) 4 8 · 4 5
A) 4 13
161)
162) x4 · x2
A) (2x)6
162)
163) 6 8 · 6 5
A) 3640
163)
164)
165)
16
166) (-2t5 )(5t2 )(-3t7 )
A) 0t12
166)
B) 0t14
C) 30t15
D) 30t14
2x4 y4 4
z4
167)
A)
168) -
2x16y16
z8
167)
B)
2x16y16
z 16
C)
16x16y16
z 16
D)
5x3 0
y2
A) -1
168)
B)
y2
C) 1
625x12
D)
Decide whether the expression has been simplified correctly.
169) (ab)4 = ab4
A) Not simplified correctly
170)
16x8 y8
z8
625x12
y8
169)
B) Simplified correctly
x 5 x5
=
8
8
170)
A) Not simplified correctly
B) Simplified correctly
171) 6 0 x = 0
A) Simplified correctly
171)
B) Not simplified correctly
172) 6 0 x = 6x
A) Simplified correctly
B) Not simplified correctly
173) 6 0 x = 1
A) Not simplified correctly
B) Simplified correctly
174) 4 0 x = x
A) Not simplified correctly
B) Simplified correctly
175) x4 · x2 = x6
A) Simplified correctly
B) Not simplified correctly
176) (x4 )2 = x6
A) Simplified correctly
B) Not simplified correctly
177) x3 · x2 = x6
A) Not simplified correctly
B) Simplified correctly
178) (x4 )2 = x8
A) Not simplified correctly
B) Simplified correctly
172)
173)
174)
175)
176)
177)
178)
17
Simplify the expression. Assume all variables represent nonzero real numbers.
179) (x4 )6
A) 6x4
179)
B) 24x
C) x24
D) x10
B) 2512
C) 5 12
D) 257
B) 5t5
C) 5 5 t
D) 5 5 t5
180) (5 4 )3
180)
A) 5 7
181) (5t) 5
181)
A) 25t5
182) (x4 y8 )3
A) x12y24
182)
B) x64y512
C) x7 y11
D) x4 y24
183) (8xy)4
183)
A) 4096x4 y4
B) 32x4 y4
C) 4096xy
B) 6x3
C) -8x3
D) 8x
B) 12x
C) 64x6
D) -64x6
D) 32xy
184) (-2x)3
184)
A) -6x
185) (-2x)6
185)
A) -12x
186)
5 2
x
A)
187)
186)
5
x2
B)
25
x
C)
25
x2
D) 25x2
a4 2
b5
A)
187)
a8
b5
B)
a8
b10
C)
a 10
b8
D)
a5
b10
Write the expression with only positive exponents and evaluate if possible. Assume all variables represent nonzero real
numbers.
188) 3 0
188)
A) -1
B) 0
C) 1
D) 3
189) -8 0
A) -8
B) 1
C) 0
D) -1
190) (-2)0
A) 1
189)
190)
B) 2
C) 0
18
D) -1
191) -(-6)0
A) 6
B) -1
C) 0
D) 1
192) 5x0
A) 5
B) 0
C) 1
D) x
193) -9x0
A) 1
B) -1
C) 0
D) -9
194) (5x)0
A) 1
195) (-2x)0
A) -1
191)
192)
193)
194)
B) 0
C) 5
195)
B) 0
C) 1
Identify the expression as a polynomial or not a polynomial.
196) 15x - 3
A) Not a polynomial
197) 2x -
D) 2
196)
B) Polynomial
9
+4
x
197)
A) Polynomial
B) Not a polynomial
198) 7x5 + 4x2 - 14
A) Polynomial
B) Not a polynomial
199)
D) 5x
198)
7
4
+
-9
5
x
x3
199)
A) Polynomial
B) Not a polynomial
200) 0.6x9 - 8.2
A) Polynomial
B) Not a polynomial
200)
201) -9
201)
A) Not a polynomial
B) Polynomial
202) 7x2 y3 - 4x3 y - 3x
A) Not a polynomial
B) Polynomial
202)
Determine the degree of the polynomial.
203) 2x6 - 8x7 + 9x2 - 8
203)
A) 6
B) 7
C) 15
D) 4
204) 4a 2 + 16a 5 - 5a
A) 3
B) 8
C) 7
D) 5
204)
19
205) -3a 4 - 16a 2 + 8a + 4a 6
A) 4
B) 13
C) 12
D) 6
206) -2x2 + 5x3 + 6x4 + 1
A) 4
B) 10
C) 2
D) 9
207) 4t6 + 5t3 + 4 - 3t2
A) 4
B) 11
C) 6
D) 12
208) -a + 7a 3 - 6a 7 + 4a 2
A) 12
B) 7
C) 13
D) 4
209) t - 3t2 + 6t3 + 5
A) 3
B) 1
C) 4
D) 6
210) -x - 3x2 - 6x3 - 2x5
A) 5
B) 11
C) 4
D) 10
205)
206)
207)
208)
209)
210)
Identify the polynomial as a monomial, binomial, trinomial, or none of these.
211) -17x2
A) Monomial
212) -17x
A) Monomial
211)
B) Binomial
C) None of these
D) Trinomial
B) Trinomial
C) Binomial
D) None of these
212)
213) 10y7 + 1
A) Monomial
213)
B) Binomial
C) Trinomial
D) None of these
214) 5z - 4
A) Trinomial
B) Monomial
C) None of these
D) Binomial
215) -16s 7 - 3s - 4
A) Binomial
B) Monomial
C) None of these
D) Trinomial
216) -18y3 + 6y2 + -5
A) Binomial
B) None of these
C) Trinomial
D) Monomial
214)
215)
216)
217) 11c5 - 4c4 - 6c3
A) Trinomial
B) None of these
C) Binomial
D) Monomial
218) -10z 5 + 6z 4 + 9z 3 + 12
A) Binomial
B) Trinomial
C) Monomial
D) None of these
C) Trinomial
D) None of these
217)
218)
219) -19x4 - 4w3 + 8w + 4y5 + 3
A) Monomial
B) Binomial
219)
20
220) 17
220)
A) Monomial
B) None of these
C) Trinomial
D) Binomial
B) 12a 8 - 10a 4
C) 12a 4 - 10a 2
D) 2a 6
Find the sum or difference.
221) (4a 4 - 7a 2 ) + (8a 4 - 3a 2 )
A) 2a 12
221)
222) (7n 6 - 9n + 2n 3 ) + (7n 3 + 6n 6 - 4n)
A) 9n 10
222)
B) -3n 6 + 14n 3 - 2n
C) 13n + 9n 6 - 13n 3
D) 13n 6 + 9n 3 - 13n
223) (-4 - 4x5 + 3x7 + 2x6 ) + (-6x6 - 2x5 - 5 + 4x7 )
A) 7x7 - 4x6 - 6x5 - 9
223)
B) -3x36 - 9
D) 7x14 - 4x12 - 6x10 - 9
C) -10x7 - 10x6 - 2x5 + 6
224) (7x6 + 6x8 - 7 + 4x7 ) - (-1 + 8x7 + 8x8 - 9x6 )
A) -2x8 + 12x7 - 2x6 - 8
224)
B) 14x8 + 12x7 - 2x6 - 6
D) -2x8 - 4x7 + 16x6 - 6
C) 14x8 + 12x7 - 2x6 - 8
225) 2(-2r4 + 9r3 - 3r) - 3(8r4 - 9r3 + 6r2 - 2r)
A) -28r4 + 6r2 - 5r
225)
B) -28r4 - 9r3 + 18r2 - 12r
D) -28r4 + 18r3 - 6r2 - r
C) -28r4 + 45r3 -18r2
226) (3 + 7x2 + 9x4 + 3x3 ) + (-7x3 - 9x2 + 6 + 3x4 )
A) 6x18 + 9
226)
B) -4x4 - 4x3 + 15x2 + 6
C) 12x4 - 4x3 - 2x2 + 9
D) 12x8 - 4x6 - 2x4 + 9
227) (2x7 + 6x9 - 7 - 7x8 ) - (2 - 2x8 + 3x9 - 7x7 )
A) 9x9 - 9x8 - 5x7 - 9
227)
B) 3x9 - 9x8 - 5x7 - 5
C) 9x9 - 9x8 - 5x7 - 5
D) 3x9 - 5x8 + 9x7 - 9
228) (3x9 + 11x7 - 4x3 + 8) - (11x9 - 8x5 + 8x3 - 9)
A) 8x9 + 11x7 + 8x5 - 12x3 + 17
228)
B) -8x9 + 11x7 - 8x5 - 12x3 + 17
D) -8x9 + 11x7 + 8x5 - 12x3 + 17
C) 8x9 + 11x7 - 8x5 - 12x3 + 17
229) (5x4 - 9x2 + x) - (2x3 + 8x2 + 3x) + (4x2 - x)
A) 5x4 - 2x3 - 11x2 + 3x
229)
B) 11x5 + 7x4 - 3x
D) 5x4 - 2x3 - 13x2 - 3x
C) 5x4 + 2x3 - 21x2 - 3x
230) -(2x3 + x - 8) + (4x3 + 2x2 ) - (9x2 - 3x -1)
A) 2x3 - 7x2 + 2x + 9
230)
B) 6x3 - 11x2 + 2x - 9
D) 1x3 - 5x2 - 2x + 9
C) 2x3 + 7x2 + 4x - 9
21
Find the product.
231) (3m 4 )(2m 4 )
A) 6m 8
231)
B) -6m 8
C) -6m
B) -8m 5
C) 8m 6
D) 6m
232) (-2m 2 )(4m 3 )
A) -8m
232)
D) 8m
233) (-2x2 y4 )(-2x2 y2 )
A) 4xy6
B) 4x6 y4
C) 4x4 y6
D) 4xy4
234) 3x5 (-8x - 10)
A) 24x6 + 30x5
B) -24x5 - 30
C) -54x6
D) -24x6 - 30x5
235) 2x2 (6x6 + 4x4 )
A) 12x8 + 4x4
B) 12x12 + 8x8
C) 12x8 - 8x6
D) 12x8 + 8x6
233)
234)
235)
236) 7ax7 (2ax3 - 2x2 - 3)
A) -14a 2 x21 + 14ax14 + 21ax7
236)
B) -14a 2 x10 + 14ax9 + 21ax7
D) 14ax21 - 14ax14 - 21ax7
C) 14a 2 x10 - 14ax9 - 21ax7
237) 11ax6 (-4ax7 - 2x5 - 12a)
A) -44a 2 x42 - 22ax30 - 132a 2 x6
237)
B) -44a 2 x13 + 22ax11 + 132a 2 x6
C) -44ax13 - 22ax11 - 132ax6
D) -44a 2 x13 - 22ax11 - 132a 2 x6
238) 12a 2 x8 (-4a 7 x9 - 3x5 - 8a)
A) -48a 14x72 + 36a 2 x40 + 96a 2 x8
238)
B) -48a 9 x17 - 36a 2 x13 - 96a 3 x8
C) -48a 9 x17 - 3x5 - 8a
D) 48a 9 x17 + 36a 2 x13 + 96a 3 x8
239) -3x5 (11x4 + 8x3 )
A) -57x9 - 57x8
B) -33x9 + 8x3
C) -33x9 - 24x8
D) -57x5
240) (5m 2 z 4 )(3m 3 z 2 )
A) 15m 5 z
B) 15mz 5
C) 15mz 6
D) 15m 5 z 6
241) (2x - 6)(x + 5)
A) x2 + 4x + 3
B) 2x2 + 4x - 30
C) 2x2 + 3x - 30
D) x2 - 30x + 4
239)
240)
241)
242) (x + 1)(3x + 6)
A) 3x2 + 8x + 6
B) 3x2 + 9x + 6
C) 3x2 + 6x + 9
D) x2 + 9x + 9
243) (x + 4)(-3x - 2)
A) -3x2 - 14x - 8
B) -3x2 - 8x - 14
C) -3x2 - 16x - 8
D) -3x2 - 14x - 14
242)
243)
22
244) (x + 11y)(x - 4y)
A) x + 7xy - 44y
244)
B) x2 + 7xy + 7y2
C) x2 + 4xy - 44y2
245) (-9a + 5b)(-8a + 3b)
A) 72a 2 + 13ab + 15b2
D) x2 + 7xy - 44y2
245)
B) 72a 2 + 67ab + 15b2
D) 72a 2 - 67ab + 15b2
C) 72a 2 + 15b2
246) (-2 + x)(3x + 1)
A) 3x2 - 2x - 5
B) 3x2 - 6x - 2
C) x2 - 5x - 5
D) 3x2 - 5x - 2
247) (x + 4)(5x - 5)
A) 5x2 - 20x + 15
B) 5x2 + 15x + 15
C) 5x2 + 13x - 20
D) 5x2 + 15x - 20
248) 3x +
246)
247)
1
1
8x 8
4
A) 24x2 +
1
1
x+
4
32
248)
B) 24x2 -
1
1
x+
4
32
C) 24x2 -
249) (7p - 1)(49p2 + 7p + 1)
A) 49p3 - 1
7
1
x4
32
D) 24x2 +
1
1
x4
32
249)
B) 343p3 + 56p2 - 1
C) 343p3 + 1
D) 343p3 - 1
250) (6y - 5)(36y2 + 30y + 25)
250)
A) 216y3 + 150y2 - 125
B) 216y3 - 125
C) 216y3 + 125
D) 36y3 + 125
251) (4x2 + 3x - 1)(x2 - 3x - 3)
A) 4x4 - 12x3 - 21x2 - 6x + 3
B) 4x4 - 9x3 - 21x2 - 6x + 3
C) 4x4 - 12x3 - 22x2 - 6x + 3
D) 4x4 - 9x3 - 22x2 - 6x + 3
251)
252) (3k2 + 4k - 3)(k2 - 5k + 1)
A) 3k4 - 15k3 - 20k2 + 19k - 3
B) 3k4 - 15k3 - 17k2 + 19k - 3
C) 3k4 - 11k3 - 20k2 + 19k - 3
D) 3k4 - 11k3 - 17k2 + 19k - 3
252)
253) (2s + 3)(2s 3 - 4s 2 + 3s + 2)
A) 4s 4 - 2s 3 + 15s 2 + 13s + 6
253)
B) 4s 4 - 2s 3 - 6s 2 + 13s + 6
D) 4s 4 - 20s 3 - 6s 2 + 13s + 6
C) 4s 4 - 2s 3 - 6s 2 + 4s + 6
254) ( 2x3 - x2 + 3x - 1) (2x + 2)
A) 3x4 + 6x3 + 6x2 + 6x - 4
254)
B) 4x4 + 2x3 + 4x2 + 4x - 2
D) 5x4 - 2x3 + 3x2 - 4x + 2
C) 4x3 + 2x2 + 4x + 4
23
255) 3x(3x - 1)(4x + 9)
A) 34x2 + 70x - 27
255)
B) 12x3 + 23x2 - 9x
D) 36x3 + 69x2 - 27x
C) 32x3 + 71x2 - 25x
256) (3x - 6y)(5x + 9y + 1)
A) 15x2 - 3xy + 3x - 54y2 - 6y
256)
B) 15x2 - 3xy - 3y2
D) 15x2 + 27xy + 3x - 54y2
C) 15x2 - 30xy + 3x - 54y2 - 6y
257) (2x2 - 11y)(-4x2 + 3y + z)
A) -8x2 + 50xy + 2x2 z - 33y2 - 11z
257)
B) -8x4 + 50x2 y2 - 33y2
D) -8x4 + 50x2 y + 2x2 z - 33y2 - 11yz
C) -8x4 + 50x2 y - 33y4 + 2x2 yz
258) (4x - 2y + 7)(4x - 2y - 7)
A) 8x2 - 4y2 - 98
258)
B) -16xy - 28x + -14y - 49
D) 16x2 - 16xy + 4y2 - 49
C) 16x2 + 16xy - 4y2 - 98
259) n 2 3n -
1
1
11n +
4
2
259)
A) 33n 4 -
17 3 1 2
n - n
4
8
B) 33n 4 -
5 3 1 2
n - n
4
8
C) 33n 4 -
5 3 1 2
n + n
8
4
D) 33n 4 +
5 3 1 2
n - n
4
8
260) (x - 8)(x + 8)(x2 + 64)
A) x4 - 64
260)
B) x4 - 16x2 - 64
D) x4 - 4096
C) x4 - 256x2 + 4096
261) (n - 2)(n - 2)(n + 2)(n + 2)
A) n 4 + 8n - 16
B) n 4 - 8n + 16
C) n 4 - 8n 2 + 16
D) n 4 + 8n 2 - 16
262) (a - 11)(a + 11)
A) a 2 - 22
B) a 2 + 22a - 121
C) a 2 - 121
D) a 2 - 22a - 121
263) (m + 3)(m - 3)
A) m 2 - 6
B) m 2 - 6m - 9
C) m 2 - 6m + 9
D) m 2 - 9
264) (n - 1)(n + 1)
A) n 2 - 1
B) n 2 - 2n - 1
C) n 2 - 2
D) n 2 - 2n + 1
261)
262)
263)
264)
265) (12p + 13)(12p - 13)
A) 144p2 - 312p - 169
265)
B) p2 - 169
C) 144p2 - 169
266) (6r - 5)(6r + 5)
A) 36r2 - 25
D) 144p2 + 312p - 169
266)
B) 6r2 - 25
C) 36 + 60r - 25r2
24
D) 36r2 - 60r - 25
267) (p + 3q)(p - 3q)
A) p2 - 6q2
267)
B) p2 - 6pq - 9q2
C) p2 - 9q2
268) (12y + x)(12y - x)
A) 144y2 - 24xy - x2
D) p2 + 6pq - 9q2
268)
B) 144y2 - x2
D) 24y2 - x2
C) 144y2 + 24xy - x2
269) (8a + 11c)(8a - 11c)
A) 64a 2 - 121c2
269)
B) 8a 2 - 11c2
C) 64a 2 + 176ac - 121c2
D) 64a 2 - 176ac - 121c2
270) (9m - 11w)(9m + 11w)
A) 81m 2 - 198mw - 121w2
270)
B) 81m 2 - 121w2
C) 81m 2 + 198mw - 121w2
D) 9m 2 - 11w2
271) [(5x - y) + 3z][(5x - y) - 3z]
A) 25x2 - 10xy + y2 + 30xz + 6yz - 9z 2
271)
B) 25x2 - 10xy + y2 - 9z 2
D) 25x2 + y2 - 9z 2
C) 25x2 + y2 + 30xz + 6yz - 9z 2
272) (n + 7)2
A) 49n 2 + 14n + 49
272)
B) n + 49
C) n 2 + 49
D) n 2 + 14n + 49
273) (p + 10)2
273)
A) p + 100
C) p2 + 100
274) (w - 4)2
A) w2 + 16
B) p2 + 20p + 100
D) 100p2 + 20p + 100
274)
B) w2 - 8w + 16
C) 16w2 - 8w + 16
275) (r - 15)2
A) r2 - 30r + 225
D) w + 16
275)
B) r + 225
D) 225r2 - 30r + 225
C) r2 + 225
276) (8m + 11)2
A) 8m 2 + 121
276)
B) 8m 2 + 176m + 121
C) 64m 2 + 121
D) 64m 2 + 176m + 121
277) (4a - 7)2
A) 16a 2 - 56a + 49
278) (-2x - 9)2
A) -2x2 + 81
277)
B) 4a 2 + 49
C) 16a 2 + 49
D) 4a 2 - 56a + 49
B) -2x2 + 36x + 81
C) 4x2 + 81
D) 4x2 + 36x + 81
278)
25