Tải bản đầy đủ (.pdf) (12 trang)

Đề thi chọn học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thái Bình (Có đáp án)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (553.17 KB, 12 trang )


ĐỀ THI HỌC SINH GIỎI TOÁN 12 TỈNH THÁI BÌNH NĂM HỌC 2018-2019
Câu 1: (6,0 điểm).
2x +1
y 2 x + m . Tìm m để
( C ) và đường thẳng ( d ) có phương trình: =
x −1
đường thẳng ( d ) cắt đồ thị ( C ) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB

1. Cho hàm số y =

bằng

5
(với O là gốc tọa độ).
4

2. Cho hàm số y = x3 + 2(m + 1) x 2 + (8m − 3) x + 8m − 6 . Tìm m để hàm số có cực đại, cực tiểu
trong đó một điểm cực trị của đồ thị hàm số thuộc góc phần tư thứ hai, một điểm cực trị của đồ
thị hàm số thuộc góc phần tư thứ tư của hệ trục tọa độ Oxy .
3. Tính giới hạn: lim

x →0

log 2018 ( 2 − cos2 x )
x2

.

Câu 2: (4,0 điểm)


 5π

π

1. Giải phương trình: sin 
− 3x  − 16 =
−15sin  + x  .
 4

4

2. Cho A là tập hợp các số tự nhiên có 6 chữ số. Chọn ngẫn nhiên một số thuộc tập A . Tính xác
suất để số được chọn chia hết cho 13 và có chữ số tận cùng bằng 2.
Câu 3: (3,0 điểm) Giải hệ phương trình
 y 3 ( x + 5) 2 + x =1 + 3y 2 (1)


2
2
+ 12 y 2 3 x 2 − 2x + 4 + 5 x 2 − 6x + 12 + 8
2 + x − 2x+4 + x − 6x =

(

) (2)

Câu 4: (2,0 điểm)
Trong mặt phẳng tọa độ Oxy , cho hình vuông ABCD , điểm M 1;0 là trung điểm của cạnh BC ,
điểm N thuộc cạnh CD sao cho CN  2 ND , phương trình đường thẳng AN là: x  y  2  0 .
Tìm tọa độ điểm A biết điểm A có hoành độ dương

Câu 5: (3,0 điểm)

= SC
= SD
= a 3.
Cho hình chóp S . ABCD có đáy ABCD là hình thoi cạnh a 3 , SA = a , SB
Gọi M là trung điểm CD .
1. Tính thể tích khối chóp S . ABCM .
2. Tính khoảng cách giữa hai đường thẳng SM và BC .
Câu 6: (2,0 điểm) Cho a , b , c là các số thực dương.
9
32

≥ −5 .
Chứng minh rằng:
2
ab ( a + c )( b + c )
4 + 4a + 4b 2 + c 2

ĐÁP ÁN
1
NHÓM TOÁN VD_VDC


2x +1
y 2 x + m . Tìm m để
( C ) và đường thẳng ( d ) có phương trình: =
x −1
đường thẳng ( d ) cắt đồ thị ( C ) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB


1. Cho hàm số y =

bằng

5
(với O là gốc tọa độ).
4

Lời giải
Xét phương trình:
2x +1
 x ≠ 1
= 2x + m ⇔ 
x −1
2 x + 1 =

 x ≠ 1
⇔
( x − 1)( 2 x + m )  g ( x )= 2 x 2 + ( m − 4 ) x − ( m − 1)= 0

+) Đường thẳng ( d ) cắt ( C ) tại hai điểm phân biệt A, B

⇔ g ( x) =
0 có hai nghiệm phân biệt khác 1
∆= ( m − 4 )2 + 8 ( m − 1) > 0 ⇔ m 2 + 24 > 0 (∀m ∈ )
⇔
 g (1) =−3 ≠ 0
+) Gọi A ( x1 ; 2 x1 + m ) ; B ( x2 ; 2 x2 + m )
m−4



 x1 + x2 =
2
Khi đó x1 , x2 là hai nghiệm: g ( x ) = 0 . Theo Viet thì 
x x = − m +1
 1 2
2
Ta có ( d ) : 2 x − y + m =
0
d ( O, d ) =

m
5

; AB = 5 ( x1 − x2 ) = 5 ( x1 + x2 )

2

2

2

2
5 ( m 2 + 24 )


8
16
4
4

m

m
+
m
+
− 4 x1 x2  = 5 
+
=

4
2 
4


2
1
1 m 5 ( m + 24 )
Khi đó: SOAB =
=
d ( O, d ) . AB
.
.=
2
2 5
2

m m 2 + 24
4


5
SOAB = ⇔ m m 2 + 24 =5 ⇔ m 4 + 24m 2 − 25 =0 ⇔ ( m 2 − 1)( m 2 + 25 ) =0 ⇔ m =±1.
4

Vậy m = ±1
2. Cho hàm số y = x3 + 2(m + 1) x 2 + (8m − 3) x + 8m − 6 . Tìm m để hàm số có cực đại, cực tiểu
trong đó một điểm cực trị của đồ thị hàm số thuộc góc phần tư thứ hai, một điểm cực trị của đồ
thị hàm số thuộc góc phần tư thứ tư của hệ trục tọa độ Oxy .
Lời giải
Ta có y ' = 3 x 2 + 4(m + 1) x + (8m − 3)
Hàm số có cực đại, cực tiểu khi y ' = 0 có hai nghiệm phân biệt.
2
NHÓM TOÁN VD_VDC



4+ 3
m >
2
∆' > 0 ⇔ 

4− 3
m <

2
Đường thẳng qua hai điểm cực tri của đồ thị hàm số có phương trình:
2
2
y = 13 và có chữ số tận cùng bằng 2 là a1a2a3a4a5 2 .
Ta có: =

a1a2a3a4a5 2 10.a1a2a3a4a5 + 2 .
Gọi k là số dư của phép chia a1a2a3a4a5 cho 13

( k ∈ , 0 ≤ k ≤ 12 ) .

Khi đó vì =
a1a2a3a4a5 2 10.a1a2a3a4a5 + 2  13 ( k ∈ , 0 ≤ k ≤ 12 ) nên ta có:

10k + 213 ( k ∈ , 0 ≤ k ≤ 12 )
Do đó tồn tại số tự nhiên t sao cho: 10k + 2= 13t ⇔ t=

10k + 2
∈  , ( k ∈ , 0 ≤ k ≤ 12 ) . Ta có
13

bảng:
k =0

10k + 2 2
=
∉
13
13

Loại

k =1

10k + 2 12
=

∉
13
13

Loại

k =2

10k + 2 22
=
∉
13
13

Loại

k =3

10k + 2 32
=
∉
13
13

Loại

k =4

10k + 2 42
=

= 4∈
13
13

Thỏa mãn

k =5

10k + 2 52
=
∉
13
13

Loại

5
NHÓM TOÁN VD_VDC


k =6

10k + 2 62
=
∉
13
13

Loại


k =7

10k + 2 72
=
∉
13
13

Loại

k =8

10k + 2 82
=
∉
13
13

Loại

k =9

10k + 2 92
=
∉
13
13

Loại


k = 10

10k + 2 102
=
∉
13
13

Loại

k = 11

10k + 2 112
=
∉
13
13

Loại

k = 12

10k + 2 122
=
∉
13
13

Loại


Từ bảng trên ta có k = 4 là số dư của phép chia a1a2a3a4a5 cho 13. Như vậy, tồn tại số tự nhiên t
để:

a1a2a3a4a=
13t + 4 . Vì 10000 ≤ a1a2a3a4a5 ≤ 99999 nên
5

10000 − 4
99999 − 4
, hay:
≤k≤
13
13

9996
99995
≈ 768,923 ≤ k ≤
≈ 7691,923 ⇒ 769 ≤ k ≤ 7691, k ∈  .
13
13
Gọi B là biến cố số được chọn chia hết cho 15 và có chữ số tận cùng bằng 2 .

= 7691 − 769 +=
1 6923 .
Khi đó số phần tử của biến cố B là B
Xác suất của biến cố B là: P ( B=
)

B
6923

=
.
Ω 900000

Câu 3 (3,0 điểm). Giải hệ phương trình
 y 3 ( x + 5) 2 + x =1 + 3y 2 (1)


2
2
+ 12 y 2 3 x 2 − 2x + 4 + 5 x 2 − 6x + 12 + 8
2 + x − 2x+4 + x − 6x =

(

Lời giải
Điều kiện: x ≥ −2
Với điều kiện x ≥ −2 , từ (1) ⇒ y > 0 . Khi đó:

6
NHÓM TOÁN VD_VDC

) (2)


(1) ⇔ (

2+ x

)


3

3

1 3
x   + ⇔ f
+3 2+=
y y

(

)

1
2 + x= f   (*) với f ( t )= t 3 + t
y

t ) 3t 2 + 1 > 0  
∀ t , do đó: (*) ⇔ 2 + x =
mà f ′ (=

1
1
⇔ y 2 =     ( 3)
y
x+2

Thay (3) vào phương trình (2), ta được:


(2 + x ) (2 +

)

x 2 − 2x+4 + x 2 − 6x + 12 = 3 x 2 − 2x + 4 + 5 x 2 − 6x + 12 + 8

⇔ ( x − 1) x 2 − 2x+4 + ( x − 3) x 2 − 6x + 12 + 2x − 4 =
0
⇔ ( x − 2) x 2 − 2x+4 + ( x − 2) x 2 − 6x + 12 +

(

)

x 2 − 2x+4 − x 2 − 6x + 12 + 2( x − 2) =
0
4( x − 2)

⇔ ( x − 2) x 2 − 2x+4 + ( x − 2) x 2 − 6x + 12 +

+ 2( x − 2) =
0
x 2 − 2x+4 + x 2 − 6x + 12


4
0
⇔ ( x − 2 )  x 2 − 2x+4 + x 2 − 6x + 12 +
+ 2 =



x 2 − 2x+4 + x 2 − 6x + 12


x − 2 =
0 (4)

⇔ 2
4
x − 2x+4 + x 2 − 6x + 12 +
0 (5)
+2 =

x 2 − 2x+4 + x 2 − 6x + 12
1
1
2 , thay vào (3) ta được y = ± . Vì y > 0 nên suy ra y = .
+ Xét (4) ⇒ x =
2
2

∀ x ≥ −2 , do đó phương trình vô nghiệm.
+ Xét (5), ta thấy : VT ( 5 ) > 0  
 1
Vậy hệ đã cho có nghiệm duy nhất ( x; y ) =  2;  .
 2

Câu 4: (2,0 điểm)
Trong mặt phẳng tọa độ Oxy , cho hình vuông ABCD , điểm M 1;0 là trung điểm của cạnh BC ,
điểm N thuộc cạnh CD sao cho CN  2 ND , phương trình đường thẳng AN là: x  y  2  0 .

Tìm tọa độ điểm A biết điểm A có hoành độ dương
Lời giải
A

B

M

D

C

N

Đặt cạnh của hình vuông bằng a
Ta có: AM 

2
2
2
a 5
a 10
5
  AM  AN  MN  1
, AN 
, NM  a, cos MAN
2
3
6
2 AM . AN

2

7
NHÓM TOÁN VD_VDC


A  AN  A x; x  2 với x  0


AM , AN có vectơ chỉ phương là: AM  1 x, x  2 , u  1;1


cos MAN

x  1 N 
2 x 1
1
1
 2 x 2  2 x  4  0  


2
2
2
2
 x  2  L
1 x  x  2 . 2

Vậy A 1;3


Câu 5.

(3,0 điểm)

= SC
= SD
= a 3.
Cho hình chóp S . ABCD có đáy ABCD là hình thoi cạnh a 3 , SA = a , SB
Gọi M là trung điểm CD .
1. Tính thể tích khối chóp S . ABCM .
2. Tính khoảng cách giữa hai đường thẳng SM và BC .

AC ∩ BD =
I , ta có IA
= IC
= IS (là đường cao của các tam giác cân bằng nhau) nên SAC
1
vuông tại S ⇒ AC = SA2 + SC 2 = 2a và SI
= IA
= IC
=
AC
= a.
2

IB=

SB 2 − SI 2=

3a 2 − a 2= a 2 ⇒ BD = 2 IB = 2a 2 .


1
=
IC.BD a 2 2 ; Gọi O là tâm đường tròn ngoại tiếp BCD , bán kính đường tròn ngoại
2
BC.CD.BD 3a
tiếp BCD là:=
. ( O là trung điểm AI )
R OC
=
=
4.S BCD
2

=
S BCD

Do SB
= SC
= SD nên SO ⊥ ( ABCD ) ; SO =

=
S ABCD 2.=
S BCD 2a 2 2 ; SCDM =

SC 2 − OC 2 =

a 3
.
2


3
3a 2 2
1
.
S ABCD =
S ABCD ⇒ S ABCM =
4
2
4

1
a3 6
.
=
VS . ABCM
=
SO.S ABCM
3
4

d ( BC , SM ) d=
2. IM // BC ⇒ BC // ( SMI ) nên=
( BC , ( SMI ) ) d ( C , ( SMI ) ) .
8
NHÓM TOÁN VD_VDC


2OI ⇒ d ( C , ( SMI ) ) =
2d ( O, ( SMI ) ) ; d ( A,=

Mà CI =
BC )

S ABCD 2a 6
=
BC
3

O là trung điểm AI và ME là đường trung bình hình thoi ABCD nên
=
d ( O, ME )

1
a 6
. ( E là trung điểm AB )
=
d ( A, BC )
4
6

Kẻ OH ⊥ ME , H ∈ ME thì OH =

a 6
; ME ⊥ SO ⇒ ME ⊥ ( SOH )
6

Kẻ OK ⊥ SH , K ∈ SH ⇒ OK ⊥ ME vậy OK ⊥ ( SME ) tức là d ( O, ( SME ) ) = OK .

=
OK


SO.OH
=
SO 2 + OH 2

a 3 a 6
.
a 66
a 66
2=
6
;=
.
d ( C , ( SMI ) ) 2=
d ( O, ( SMI ) )
2
22
11
a 3 a 6

 +

 2   6 

Vậy khoảng cách giữa hai đường thẳng SM và BC là
Câu 6:

a 66
.
11


(2,0 điểm) Cho a , b , c là các số thực dương.
9
32

≥ −5 .
Chứng minh rằng:
2
ab ( a + c )( b + c )
4 + 4a + 4b 2 + c 2
Lời giải
Cách 1:
Ta có:

ab ( a + c )( b + c ) = ( a + ac )( b + bc )
2

2

a 2 + ac + b 2 + bc

2

Cosi

a 2 + b2 + c ( a + b )
⇒ ab ( a + c )( b + c ) ≤
(1) .
2


c2 + ( a + b )
Lại có: c ( a + b ) ≤
2
Cosi

2

và ( a + b ) ≤ 2 ( a + b
2

Từ (1) , ( 2 ) ⇒ ab ( a + c )( b + c ) ≤
⇔ ab ( a + c )( b + c ) ≤



ab ( a + c )( b + c )



2

) ⇒ c (a + b) ≤

Cosi

c2 + 2 ( a 2 + b2 )
2

( 2) .


c2 + 2 ( a 2 + b2 )
2
2

4a 2 + 4b 2 + c 2

4

9

P
Do đó =

a 2 + b2 +

2

1
ab ( a + c )( b + c )



4
4a + 4b 2 + c 2
2

36
.
4a + 4b 2 + c 2


9
ab ( a + c )( b + c )

2



32
4 + 4a + 4b + c
2

2

2



36
32

.
2
2
2
4a + 4b + c
4 + 4a + 4b 2 + c 2
2

9
NHÓM TOÁN VD_VDC



4 + 4a 2 + 4b 2 + c 2 =
t . Vì a , b , c là các số thực dương nên t > 2 .

Đặt

⇒ 4a 2 + 4b 2 + c 2 = t 2 − 4 .

36
32
với t > 2 .

t −4 t

Xét hàm số =
f (t )
′ (t )
⇒ f=

=

(t

2

3
4
2
32 −72t + 32 ( t − 8t + 16 ) 32t 4 − 72t 3 − 256t 2 + 512

+=
=
2 2
2
2
t2

t
t
4
.
( t 2 − 4 ) .t 2
( )

−72t
2

− 4)

2

( t − 4 ) ( 32t 3 + 56t 2 − 32t − 128)

( t 2 − 4 ) .t 2
2

.

( 32t


Ta có 32t 3 + 56t 2 − 32t − 128=

3

− 128 ) + ( 56t 2 − 32t=
) 32 ( t 3 − 4 ) + 4t (14t − 8) > 0 (vì t > 2 ).

Do đó f ′ ( t ) = 0 ⇔ t = 4 .
Bảng biến thiên :

9

⇒ f ( t ) ≥ −5 ⇒

ab ( a + c )( b + c )

32



4 + 4a 2 + 4b 2 + c 2

≥ −5 .

2
 4 + 4a 2 + 4b=
12a 2 12
+ c2 4 =
a = 1




Dấu bằng xảy ra khi=
và chỉ khi a b
⇔ b =
1.
=
⇔ a b
c = 2
c =
c =

 2a
 a + b

Cách 2:
Cosi

ab ( a + c )( b + c ) = ( ab + bc )( ab + ac ) ≤

Ta có:

⇒ ab ( a + c )( b + c ) ≤
Đồng thời
Cosi



2ab + bc + ac
.

2

4 + 4a 2 + 4b 2 + c 2 =

4 + ( 2a 2 + 2b 2 ) + 2a 2 +

c2
c2
+ 2b 2 +
2
2

4 + 4ab + 2ac + 2bc ⇒ 4 + 4a 2 + 4b 2 + c 2 ≥ 4 + 2 ( 2ab + ac + bc ) .

Do đó :
Đặt

ab + bc + ab + ac
2

9
ab ( a + c )( b + c )



32
4 + 4a + 4b + c
2

2


2



18
32
.

2ab + ac + bc
4 + 2 ( 2ab + ac + bc )

4 + 2 ( 2ab + ac + bc ) =
t . Vì a , b , c là các số thực dương nên t > 2 .
10
NHÓM TOÁN VD_VDC


t2 − 4
⇒ 2ab + ac + bc = .
2
36
32
với t > 2 .

t −4 t

Xét hàm số =
f (t )
′ (t )

⇒ f=

=

(t

2

3
4
2
32 −72t + 32 ( t − 8t + 16 ) 32t 4 − 72t 3 − 256t 2 + 512
+=
=
2
2
t2
( t 2 − 4 ) .t 2
( t 2 − 4 ) .t 2

−72t
2

− 4)

2

( t − 4 ) ( 32t 3 + 56t 2 − 32t − 128)

(t


2

− 4 ) .t 2
2

Ta có 32t 3 + 56t 2 − 32t − 128=

.

( 32t

3

− 128 ) + ( 56t 2 − 32t=
) 32 ( t 3 − 4 ) + 4t (14t − 8) > 0 (vì t > 2 ).

Do đó f ′ ( t ) = 0 ⇔ t = 4 .
Bảng biến thiên :

⇒ f ( t ) ≥ −5 ⇒

9
ab ( a + c )( b + c )



32
4 + 4a + 4b 2 + c 2
2


≥ −5 .

 4 + 2 ( 2ab + ac + bc ) =
4
12a 2 = 12
a = 1



⇔ b =
1.
Dấu bằng xảy ra khi
và chỉ khi a b
=
=
⇔ a b

=

c 2=
a 2b
c 2a
c = 2
=


11
NHÓM TOÁN VD_VDC




×