Tải bản đầy đủ (.pdf) (143 trang)

Download test bank for a graphical approach to algebra and trigonometry 5th edition by john hornsby lial rockswold

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (5.87 MB, 143 trang )

Test Bank for A Graphical Approach to Algebra and Trigonometry 5th Edition by John
Hornsby Lial Rockswold
Link full download: />Link download solution: />MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Determine the intervals of the domain over which the function is continuous.
1)

A) (-∞, ∞)

B)

C) [0, ∞)

1)

D)

Answer: A
2)

2)

A) [0, ∞)
Answer: B
3)

B) (-∞, ∞)

C) (0, ∞)

D) (-∞, 0]


3)


A) (-∞, ∞)

B) (-∞, 0); (0, ∞)

C) (-∞, 0)

D) (0, ∞)


Answer: A
4)


4)

_

A) (-∞, 2]
Answer: A

B) (-∞, 2); ( 2, ∞)

C) ( 2, ∞)

D) (-∞, ∞)

5)


5)

A) (-∞, ∞)

B) (-∞, 1); ( 1, ∞)

C) (-∞, -1); ( -1,
∞)

D) (0, ∞)

Answer: B
6)

6)

A) (-∞, ∞)
Answer: B
7)

B) (-∞, 2); ( 2, ∞)

C) (-∞,

4); ( 4, ∞)

D) (-∞, -2); ( -2,
∞)



7)

_

A) [ -1, ∞)
Answer: D

B) [ 1, ∞)

C) [0, 1)

D) [0, ∞)

8)

8)

A) (0, 5)
Answer: C

B) ( 5, ∞)

C) (-∞, ∞)

Determine the intervals on which the function is increasing, decreasing, and constant.
9)

A) Increasing on (-∞, 1]; Decreasing on [1, ∞)
B) Increasing on (-∞, -1]; Decreasing on [-1, ∞)

C) Increasing on [1, ∞); Decreasing on (-∞, 1]
D) Increasing on [-1, ∞); Decreasing on (-∞, -1]
Answer: D
10)

D) (0, ∞)

9)


10)

A) Increasing on (-∞, 0]; Decreasing on (-∞, 0]
B) Increasing on [0, ∞); Decreasing on (-∞, 0]
C) Increasing on (-∞, 0]; Decreasing on [0, ∞)
D) Increasing on (∞, 0]; Decreasing on [0, -∞)
Answer: B
11)

11)

A) Increasing on (∞, 0]; Decreasing on [0, -∞)
B) Increasing on [0, ∞); Decreasing on (-∞, 0]
C) Increasing on (-∞, 0]; Decreasing on (-∞, 0]
D) Increasing on (-∞, 0]; Decreasing on [0, ∞)
Answer: D
12)

12)


A) Increasing on (-∞, -3]; Decreasing on [ -3, ∞)
B) Increasing on [-3, ∞); Decreasing on [ -3, ∞)
C) Increasing on (-∞, -3]; Decreasing on (-∞, -3]
D) Increasing on [-3, ∞); Decreasing on (-∞, -3]
Answer: A
13)


13)

A) Increasing on (-∞, 0]; Decreasing on [0,
∞)
C) Decreasing on (-∞, ∞)
Answer: D

B) Increasing on [0, ∞); Decreasing on (-∞,
0]
D) Increasing on (-∞, ∞)

14)

14)

A) Increasing on [ 4, ∞); Decreasing on [ -4, ∞); Constant on [ -4, 4]
B) Increasing on [ 4, ∞); Decreasing on (-∞, -4]; Constant on [ -4, 4]
C) Increasing on (-∞, 4]; Decreasing on (-∞, -4]; Constant on [4, ∞)
D) Increasing on (-∞, 4]; Decreasing on [ -4, ∞); Constant on [4, ∞)
Answer: B
15)


15)

A) Increasing on [1, 3]; Decreasing on [-2, 0] and [3, 5]; Constant on [2, 5]
B) Increasing on [-2, 0] and [3, 5]; Decreasing on [1, 3]; Constant on
C) Increasing on [-1, 0] and [3, 5]; Decreasing on [0, 3]; Constant on [-5, -3]
D) Increasing on [-2, 0] and [3, 4]; Decreasing on [-5, -2] and [1, 3]
Answer: B


16)

16)

A) Increasing on [-3, -1]; Decreasing on [-5, -2] and [2, 4]; Constant on [-1, 2]
B) Increasing on [-3, 1]; Decreasing on [-5, -3] and [0, 5]; Constant on [1, 2]
C) Increasing on [-3, 0]; Decreasing on [-5, -3) and [2, 5]; Constant on [0, 2]
D) Increasing on [-5, -3] and [2, 5]; Decreasing on [-3, 0]; Constant on [0, 2]
Answer: C
Find the domain and the range for the function.
17)

17)

A) D: (-∞, ∞), R: (-∞, ∞)

B)

C)

D)


D:
D:
Answer: A
18)

, R: (-∞, 0]

, R: [0, ∞)

D: [0, ∞), R:


18)
A) D: (0, ∞), R: (0, ∞)
C) D: [0, ∞), R: [0, ∞)
Answer: D

B) D: (-∞, 0], R: (-∞, 0]
D) D: (-∞, ∞), R: (-∞, ∞)

19)

19)

A) D: ( 2, ∞), R: [0, ∞)
C) D: [ 2, ∞), R: [0, ∞)
Answer: C

B) D: [0, ∞), R: (-∞, 0]

D) D: (0, ∞), R: (-∞, 0)

20)

20)

A) D: (0, ∞), R: (-∞, 3]
C) D: (-∞, 0), R: (-∞, 0)
Answer: D

B) D: (-∞, ∞), R: (-∞, ∞)
D) D: (-∞, ∞), R: [6, ∞)

21)

21)

A) D: [0, ∞), R: (-∞, 8]
C) D: (-∞, 8], R: [8, ∞)
Answer: B

B) D: (-∞, 8], R: [0, ∞)
D) D: (-∞, ∞), R: [0, ∞)


22)

22)

A) D: (-∞, 3) ∪ (3, ∞), R: (-∞, 1) ∪ (1, ∞)

C) D: (-∞, ∞), R: (-∞, ∞)
Answer: A

B) D: (0, ∞), R: (1, ∞)
D) D: (-∞, -3) ∪ (-3, ∞), R: (-∞, ∞)

23)

23)

A) D: (-∞, 4) ∪ (4, ∞), R: (-∞, 2) ∪ (2, ∞)
C) D: (-∞, -2) ∪ (-2, ∞), R: (-∞, -4) ∪ (-4, ∞)
Answer: D

B) D: (-∞, ∞), R: (-∞, ∞)
D) D: (-∞, 2) ∪ (2, ∞), R: (-∞, 4) ∪ (4, ∞)

24)

24)

A) D: [0, ∞), R: [0, ∞)
C) D: [0, ∞), R: [4, ∞)
Answer: C
25)

B) D: [4, ∞), R: [0, ∞)
D) D: [ -4, ∞), R: (-∞, 0]



25)

A) D: ( 5, ∞), R: (-∞, 0]
C) D: (-∞, ∞), R: (-∞, ∞)
Answer: C

B) D: (4, ∞), R: [0, ∞)
D) D: (0, ∞), R: [0, ∞)

Determine if the function is increasing or decreasing over the interval indicated.
26) f(x) = 7x - 5; (-∞, ∞)
A) Increasing
B) Decreasing
Answer: A
27)
f(x) =
- x; (1, ∞)
A) Increasing
Answer: A
28)

29)

f(x) =
- 2x + 1; (1, ∞)
A) Increasing
Answer: A
f(x) =
; (3, ∞)
A) Increasing

Answer: A

26)

27)

B) Decreasing

28)
B) Decreasing

29)
B) Decreasing

30)

30)
f(x) =
; (-∞, 0)
A) Increasing
Answer: A

B) Decreasing

31) f(x) =

; (-∞, 4)
A) Increasing
Answer: B
32) f(x) = ∣ x - 8∣ ; (-∞, 8)

A) Increasing
Answer: B

31)
B) Decreasing
32)
B) Decreasing

33)

33)
f(x) =
+ 7; (0, ∞)
A) Increasing

B) Decreasing


Answer: B
34) f(x) = -

34)

; (-3, ∞)
A) Increasing
Answer: B

B) Decreasing

Determine if the graph is symmetric with respect to the x-axis, y-axis, or origin.

35)

A) y-axis
Answer: A

B) Origin

C) y-axis, origin

35)

D) x-axis, origin

36)

36)

A) x-axis, origin
Answer: C

B) x-axis

C) y-axis

37)

D) y-axis, origin

37)


A) x-axis, origin
C) x-axis, y-axis, origin
Answer: C

B) Origin
D) x-axis


38)

38)

A) y-axis
Answer: D

B) x-axis, origin

C) x-axis

D) Origin

39)

39)

A) Origin
Answer: A

B) x-axis


C) y-axis

D) No symmetry

Based on the ordered pairs seen in the pair of tables, make a conjecture as t o whether the function defined in Y 1 is
even, odd, or neither even nor odd.
40)
40)

A) Odd
Answer: A
41)

B) Neither even nor odd

C) Even


41)

A) Even
Answer: A

B) Neither even nor odd

C) Odd

42)

42)


A) Even
Answer: C

B) Odd

C) Neither even nor odd

43)

43)

A) Odd
Answer: B
44)

B) Even

C) Neither even nor odd


44)

A) Neither even nor odd
Answer: C

B) Odd

C) Even


45)

45)

A) Odd
Answer: C

B) Even

C) Neither even nor odd

46)

46)

A) Odd
Answer: C
47)

B) Even

C) Neither even nor odd


47)

A) Neither even nor odd
Answer: B

B) Odd


C) Even

48)

48)

A) Neither even nor odd
Answer: C

B) Odd

C) Even

49)

49)

A) Odd
Answer: C

B) Even

C) Neither even nor odd

Determine whether the function is even, odd, or neither.
50) f(x) =
-5
A) Even


B) Odd

50)
C) Neither


Answer: A
51) f(x) = (x + 3)(x
A) Even
Answer: C
52) f(x) = -6

+ 1)

52)
B) Odd

53) f(x) = -7

C) Neither

53)

+8
B) Odd

A) Even
Answer: B
f(x) =
+

A) Even
Answer: A

55) f(x) = -5
A) Even
Answer: C

C) Neither

+ 8x

A) Even
Answer: B

54)

51)
B) Odd

C) Neither

54)

+1
B) Odd

C) Neither

55)


+ 3x - 1
B) Odd

C) Neither

56) f(x) =

56)

A) Even
Answer: C

B) Odd

C) Neither

57)

57)
f(x) =
A) Even
Answer: B

B) Odd

C) Neither

Determine whether the graph of the given function is symmetric with respect to the y-axis, symmetric with respect to
the origin, or neither.
58) f(x) =

58)
+2
A) y-axis
Answer: A
59) f(x) =

B) Origin

B) Origin

60) f(x) = 2
A) y-axis
Answer: B

A) y-axis
Answer: A

59)

+3

A) y-axis
Answer: A

61) f(x) =

C) Neither

C) Neither


60)
B) Origin

C) Neither

61)

+3
B) Origin

C) Neither


62) f(x) = -3
A) y-axis
Answer: B

62)

+ 6x
B) Origin

63) f(x) = 6
+7
A) y-axis
Answer: B
64) f(x) =

+
A) y-axis

Answer: A

C) Neither

63)
B) Origin

C) Neither

64)

+5
B) Origin

65) f(x) = 6
+ 5x - 3
A) y-axis
Answer: C

C) Neither

65)
B) Origin

C) Neither

66)

66)
f(x) = x +

A) y-axis
Answer: C

B) Origin

C) Neither

Provide an appropriate response.
67)

67)

True or False: The function y =
A) True
Answer: B

is continuous at x = 6.
B) False

68)

Sketch the graph of f(x) = . At which of these points is the function increasing?
A) 5
B) 0
C) 3
D) -3
Answer: D
69)
True or False: A continuous function cannot be drawn without lifting the pencil from the
paper.

A) False
B) True
Answer: A
70)

What symmetry does the graph of y = f(x) exhibit?

A) y-axis
Answer: A

B) Origin

68)

69)

70)

C) x-axis

D) No symmetry


71)

What symmetry does the graph of y = f(x) exhibit?

A) Origin
Answer: A
72)


B) y-axis

71)

C) x-axis

D) No symmetry

Complete the table if f is an even function.

72)

A)

B)

C)

D)

Answer: A
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.
73)
Complete the right half of the graph of y = f(x) for each of the following conditions:
(i)

f is odd.

(ii) f is even.


73)


Answer: (i) f is odd.

(ii) f is even.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Write an equation that results in the indicated translation.
74)
The squaring function, shifted 2 units downward
A)

B) y =

-2

C) y =

+2

74)

D) y =

y=
Answer: B
75)


76)

The absolute value function, shifted 6 units to the
A) y =
B) y =
+ 6
Answer: A

left
C) y =

The absolute value function, shifted 6 units upward
B) y =
C) y =
+ 6
Answer: B

75)
D) y =

- 6

77) The square root function, shifted 8 units to the right 77)
B) y =
C) y =
- 8
+ 8
Answer: C
78)


79)

The square root function, shifted 7 units to the left
A) y =
B) y =
- 7
Answer: D
The square root function, shifted

5 units upward

76)
D) y =

-6

A) y =

A) y =
D) y =

78)
C) y =

+ 7

D) y =

79)



A) y =
Answer: D
80)

- 5

B) y =

C) y =

The square root function, shifted 5 units downward 80)
B) y =
C) y =
+ 5
- 5

Answer: B
Use translations of one of the basic functions to sketch a graph of y = f(x) by hand.
81)
y=
-2

A)

B)

C)

D)


Answer: A
82)
y=

D) y =

+ 5

A) y =
D) y =

81)


82)

A)

B)

C)

D)

Answer: A
83) y =

A)


-2

83)


B)

C)

D)

Answer: D
84) y =

A)

C)

84)

B)


Answer: C
85) y =

A)

C)


85)

+1

B)


Answer: D
86) y =

A)

C)

86)

-8

B)


×