Tải bản đầy đủ (.pdf) (8 trang)

Download solution manual for advanced mechanics of materials and applied elasticity 5th edition by ugural and fenster

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.42 MB, 8 trang )

Solution Manual for Advanced Mechanics of Materials and Applied Elasticity
Click here to Purchase full Solution Manual at o
5th Edition by Ugural and Fenster

CHAPTER 3
SOLUTION (3.1)
( a ) We obtain
" 4#
"x 4

= !12 pxy

Thus,

" 4#
"y 4

" 4#
"x 2"y 2

=0

= 6 pxy

# 4 " = !12 pxy + 2(6 pxy ) = 0

and the given stress field represents a possible solution.

= pxy 3 ! 2 px 3 y

" 2#


"x 2

(b)

Integrating twice

"=

px 3 y 3
6

!

px 5 y
10

+ f1 ( y ) x + f 2 ( y )
" 4 ! = 0 to obtain
=0

The above is substituted into
d 4 f1 ( y )
dy 4

d 4 f2 ( y )

x+

dy 4


This is possible only if
d 4 f1 ( y )
dy 4

d 4 f2 ( y )

=0

dy 4

=0

We find then

f 1 = c 4 y 3 + c5 y 2 + c 6 y + c 7
f 2 = c8 y 3 + c9 y 2 + c10 y + c11

Therefore,

"=
( c ) Edge y=0:

px 3 y 3
6

!

px 5 y
10


+ ( c4 y 3 + c5 y 2 + c6 y + c7 ) x + c8 y 3 + c9 y 2 + c10 y + c11

a

a

"a
a

"a
a

"a

"a

4

Vx = # ! xy tdx = # ( px2 + c3 )tdx =

pa5t
5

+ 2c3 at

Py = ! # y tdx = ! (0)tdx = 0

Edge y=b:

a


Vx = " (! 32 px 2b 2 + c1b 2 +
!a

= ! pa 3 (b 2 !

a2
5

px 4
2

+ c3 )tdx

)t + 2a ( c1b 2 + c3 )t

a

Py = " ( pxb3 ! 2 px 3b)tdx = 0
!a

______________________________________________________________________________________
SOLUTION (3.2)
Edge

x = ±a :
" xy = 0 :

" xy = 0 :
Adding,


! 23 pa 2 y 2 + c1 y 2 + 12 pa 4 + c3 = 0
! 23 pa 2 y 2 + c1 y 2 + 12 pa 4 + c3 = 0

( !3 pa 2 + 2c1 ) y 2 + pa 4 + 2c3 = 0

(CONT.)
______________________________________________________________________________________


______________________________________________________________________________________
3.2 (CONT.)

c1 = 23 pa 2
Edge x = a :
"x = 0:

c3 = ! 12 pa 4

or

or

pa 3 y ! 2c1ay + c2 y = 0

c2 = 2 pa 3

______________________________________________________________________________________
SOLUTION (3.3)
( a ) Equations (3.6) become

!# x
!x

+

!" xy
!y

!" xy
!x

=0

=0

Substituting the given stresses, we have

c 2 y ! 2 c3 y = 0

Thus

(b)

c 2 = 2 c3

c1 = arbitrary

# x = c1 y + c2 xy
Assume


" xy =

c2
2

(b 2 ! y 2 )

c1 > 0 and c2 > 0 .
y

" xy =

c2
2

2

2

(b ! y )

b

! x = c1 y

b

" xy =

c2

2

(b 2 ! y 2 )

x

! x = ( c1 + c2 a ) y

a
______________________________________________________________________________________
SOLUTION (3.4)
Boundary conditions, Eq. (3.6):
!" x
!x

+

!# xy
!y

=0

!# xy
!x

+

!" y
!y


=0

( 2ab ! 2ab) x = 0
( !2ab + 2ab) y
or
are fulfilled.
However, equation of compatibility:
2

( !!x 2 +

!2
!y 2

=0

)(" x + " y ) = 0 or 4ab ! 0 is not satisfied.

Thus, the stress field given does not meet requirements for solution.
______________________________________________________________________________________
SOLUTION (3.5)
It is readily shown that

" 4!1 = 0
4

" !2 = 0

is satisfied
is satisfied


(CONT.)
______________________________________________________________________________________


______________________________________________________________________________________
3.5 (CONT.)
We have
" 2 #1

%x =

= 2 c,

"y 2

%y =

" 2 #1
"x 2

= 2a ,

Thus, stresses are uniform over the body.
Similarly, for ! 2 :

# x = 2cx + 6dy

# y = 6ax + 2by


2

$ xy = ! ""x#"y1 = !b

" xy = !2bx ! 2cy

Thus, stresses vary linearly with respect to x and y over the body.
______________________________________________________________________________________
SOLUTION (3.6)

! z = 0 and ! y = 0 , we have plane stress in xy plane and plane strain

Note: Since

in xz plane, respectively.
Equations of compatibility and equilibrium are satisfied by

" y = !c

" x = !" 0

"z = 0

! xy = ! yz = ! xz = 0
We have

!y = 0

(a)


(b)

Stress-strain relations become

#x =

(" x $!" y )
E

#z =

!% ($ x +$ y )
E

,

#y =
,

(" y $!" x )
E

(c)

" xy = " yz = " xz = 0

Substituting Eqs. (a,b) into Eqs. (c), and solving

! y = $"! 0
2


" x = ! (1#!0$E )

# z = " (1+E" )! 0
"y = 0

Then, Eqs. (2.3) yield, after integrating:
2

u = ! (1!# E)" 0 x

v=0

w = " (1+"E )! 0 z
______________________________________________________________________________________
SOLUTION (3.7)
Equations of equilibrium,
!# x
!x

+

!" xy
!y

= 0,

2axy + 2axy = 0

"$ xy

"y

+

"# y
"x

= 0,

ay 2 ! ay 2 = 0

are satisfied. Equation (3.12) gives
2

( ##x 2 +

#2
#y 2

)($ x + $ y ) = "4ay ! 0

Compatibility is violated; solution is not valid.
______________________________________________________________________________________


______________________________________________________________________________________
SOLUTION (3.8)
We have
" 2$ x


" 2$ y

=0

"y 2

"x 2

" 2# xy
"x"y

= !2ay

= 2ay

Equation of compatibility, Eq. (3.8) is satisfied. Stresses are
E
1$! 2

#x =

(" x + !" y ) =

aE
1$! 2

( x 3 + !x 2 y )

# y = 1$E! 2 (" y + !" x ) = 1$aE! 2 ( x 2 y + !x 3 )


# xy = G" xy =

aE
2 (1+! )

xy 2

Equations (3.6) become
aE
1!" 2

(3x 2 + 2"xy ) + 1aE
+" xy = 0

aE
1!" 2

y 2 + 1!aE" 2 x 2 = 0

These cannot be true for all values of x and y. Thus, Solution is not valid.
______________________________________________________________________________________
SOLUTION (3.9)

#x =

"u
"x
"u
"y


# xy =
Thus

= !2$cx
+

"v
"x

#y =

y

= 2ax

"v
"y

= !2cy + 2cy = 0

% x = 1&E# 2 ($ x + #$ y ) = 0

" xy = G! xy

2a

$ y = 1!E" 2 (# y + "# x ) = 2 Ecx

O


2Eac

x

2b
2Eac

Note that this is a state of pure bending.
______________________________________________________________________________________
SOLUTION (3.10)
(a)

%x =

" 2#
"y 2

Note that

% y = 6 pxy

= 0,

$ xy = !3 px 2

" 4 ! = 0 is satisfied.

(b)

! y = 6 pbx

y

!x = 0
b
! xy = 0

! xy = 3px 2

!x = 0
a

!y =0
( c ) Edge

x = 0:

V y = Px = 0

Edge

x=a:

Px = 0

! xy = 3pa 2
x

! xy = 3px 2

(CONT.)

______________________________________________________________________________________

Click here to Purchase full Solution Manual at o


______________________________________________________________________________________
3.10 (CONT.)
b

V y = " # xy tdy = 3 pa 2 bt !

Edge

y = 0:

0

Py = 0

a

V x = " # xy tdx = pa 3t !
0

Edge

V x = pa 3t !

y = b:
a


Py = " # y tdx = 3 pa 2 bt !
0

______________________________________________________________________________________
SOLUTION (3.11)
( a ) We have

# 4 " ! 0 is not satisfied.
2
2
% y = !!x"2 = pya 2 ,
%x =

p ( x 2 + xy )
a2

y

(b)

! x = p(1 + ay )

py 2 a
" xy = ! 2a
2

a

" y = 0, ! xy = 0 p


Edge

x=a:

Vy = !

a py 2

2
0 2a

a

dy = 16 pat

V y = " # xy tdy =

7
6

pat !

Px = " # x tdy =

3
2

pat !


0
a

0

y = 0:
Edge y = a :

Vx = 0

Edge

a

V x = " # xy tdx =
0
a

p ( 4 xy + y 2 )
2a2

2p

!x = 0

x = 0:

$ xy = #

! xy = 2p (1 + 4 ax )


!y = p

( c ) Edge

,

! xy =

py
2a2

( 4a + y )

x

Px = 0

Py = 0
3
2

pat !

Py = " # y ptdx = pat !
0

______________________________________________________________________________________
SOLUTION (3.12)
( a ) We have


" 4 ! = 0 is satisfied. The stresses are
2
$ x = ""y#2 = ! bpx3 (6b ! 12 y )
$y =
2

$ xy = ! ""x"#y =

6 py
b3

" 2#
"x 2

=0

(b ! y )
(CONT.)

______________________________________________________________________________________


______________________________________________________________________________________
3.12 (CONT.)
(b)

y

"x = !


! xy

b

! xy

pa
b3

(6b ! 12 y )

x

a
______________________________________________________________________________________
SOLUTION (3.13)
We have
"#
"y

= ! $P [tan !1 xy +

" 2#
"y 2

= ! $P [ x 2 +x y 2 +

xy
x2 + y2


],

"#
"x

( x 2 + y 2 ) x !2 y 2 x
( x 2 + y 2 )2

= ! Py
$

!y
x2 + y2

]

The stresses are thus,

%x =

! 2"
!y 2

= # 2$P

x3
( x 2 + y 2 )2

%y =


! 2"
!x 2

= # 2$P

xy 2
( x 2 + y 2 )2

2

% xy = # !!x!"y = # 2$P

x2 y
( x 2 + y 2 )2

P

!x
2 P !L

! xy

L

______________________________________________________________________________________
SOLUTION (3.14)

! are:
2

3
( y ! yh ! hy2 ),

Various derivatives of
"#
"x

=

" 4#
"x 2"y 2

" 2#
"y 2
4

! "
!x 4

=

$0
4

" 2#
"x"y

= 0,
$0
4h


= 0,

( !2 x !
4

! "
!y 4

6 xy
h

" 2#
"x 2

= $40 (1 !

2y
h

+ 2L +

6 Ly
h2

=0
2

! 3hy2 )


)

(a)

=0

It is clear that Eqs. (a) satisfy Eq. (3.17). On the basis of Eq. (a) and (3.16), we obtain
(CONT.)
______________________________________________________________________________________


______________________________________________________________________________________
3.14 (CONT.)

"x =

#0
4h

( !2 x ! 6hxy + 2 L +

6 Ly
h

),

"y =0

(b)


2

" xy = ! "40 (1 ! 2hy ! 3hy2 )

From Eqs. (b), we determine
"y =
Edge y = h :
Edge

y = !h :

Edge

x = L:

0

! xy = ! 0

#y =0

" xy = 0
2

" xy = ! "40 (1 ! 2hy ! 3hy2 )

# x = 0,

It is observed from the above that boundary conditions are satisfied at


y = ±h ,

but not at x = L .
______________________________________________________________________________________
SOLUTION (3.15)
(a)

# 4 " = 0, e = !5d and a, b, c are arbitrary.

For

" = ax 2 + bx 2 y + cy 3 + d ( y 5 ! 5 x 2 y 3 )

Thus

( b ) The stresses:

(1)

= 6cy + 10d ( 2 y 3 ! 3x 2 y )

(2)

= 2a + 2by ! 10dy 3

(3)

$ xy = ! ""x"#y = !2bx ! 30dxy 2

(4)


$x =

" 2#
"y 2

$y =

2

" #
"x 2
2

Boundary conditions:

# y = !p

" xy = 0

(at y=h)

(5)

Equations (3), (4), and (5) give

b = !15dh 2

!


h

"h

2a ! 40dh 3 = ! p

$ x dy = 0

!

h

"h

y$ x dy = 0

Equations (2), (4), and (7) yield
Similarly

!

h

"h

# xy dy = 0

(at x=0)

c = !2dh 2


"y =0

give

(6)

(8)

! xy = 0

(at y=-h)

a = 20dh 3

(9)

Solution of Eqs. (6), (8), and (9) results in

a = ! 4p

(7)

b = ! 163ph

The stresses are therefore

c = ! 40ph

d=


p
80 h 3

e = ! 16ph3

(10)

" x = ! 320pyh + 8hp3 ( 2 y 3 ! 3x 2 y )
3

" y = ! 2p ! 38pyh ! 8pyh3
" xy =

3 px
8h

(1 !

y2
h2

)

______________________________________________________________________________________


______________________________________________________________________________________
SOLUTION (3.16)
We obtain


$x =

" 2#
"y 2

=

p ( x 2 !2 y 2 )
a2

#y =

! 2"
!x 2

=

py 2
a2

(a)

2

$ xy = ! ""x"#y = !

2 pxy
a2


Taking higher derivatives of

! , it is seen that Eq. (3.17) is not satisfied.

Stress field along the edges of the plate, as determined from Eqs. (a),
is sketched bellow.
y

!y = p

! xy = 2 p ax

p

2p

! xy = 2 p ay

! xy = 0

a

2

! x = 2 p ay2

2

" x = p(1 ! 2 ay2 )


a
2

a

" y = 0, ! xy = 0

p

x

______________________________________________________________________________________
SOLUTION (3.17)

Fx = 0

The first of Eqs. (3.6) with
!" xy
!y

=

pxy
I

! xy =

pxy 2
2I


Integrating,

+ f1 ( x )

(a)

The boundary condition,

(! xy ) y =h = 0 =
gives

pxh 2
2I

+ f1 ( x )

f1 ( x ) = ! pxh 2 2 I . Equation (a) becomes
" xy = ! 2pxI ( h 2 ! y 2 )

Clearly,

(b)

(" xy ) y = ! h = 0 is satisfied by Eq. (b).

Then, the second of Eqs. (3.6) with
"# y
"y

=


2

Fy = 0 results in

2

p(h ! y )
2I

Integrating,

"y =

p
2I

y (h 2 !

Boundary condition, with

y2
3

) + f 2 ( x)

(c)

2


t = 3I 2h ,

(CONT.)
______________________________________________________________________________________

Click here to Purchase full Solution Manual at o



×