Tải bản đầy đủ (.pdf) (15 trang)

Solution manual for optical fiber communications 4th edition by gerd keiser

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (381.83 KB, 15 trang )

Download Full Solution Manual for Optical Fiber Communications 4th Edition by Gerd
Keiser

/>Gerd Keiser, Optical Fiber Communications, McGraw-Hill, 4th ed., 2011
Problem Solutions for Chapter 2
E  100cos 210 t  30 e x  20cos 210 t  50 e y
8

2.1
2.2

8

 40cos 2108 t  210 e z

The general form is:
y = (amplitude) cos(t - kz) = A cos [2(t - z/)]. Therefore
(a) amplitude = 8 m
(b) wavelength: 1/ = 0.8 m-1 so that  = 1.25 m
(c)  = 2(2) = 4
(d) At time t = 0 and position z = 4 m we have
y = 8 cos [2(-0.8 m-1)(4 m)]
= 8 cos [2(-3.2)] = 2.472

2.3

x1 = a1 cos (t - 1) and x2 = a2 cos (t - 2)
Adding x1 and x2 yields
x1 + x2 = a1 [cos t cos 1 + sin t sin 1]
+ a2 [cos t cos 2 + sin t sin 2]
= [a1 cos 1 + a2 cos 2] cos t + [a1 sin 1 + a2 sin 2] sin t


Since the a's and the 's are constants, we can set
a1 cos 1 + a2 cos 2 = A cos 

(1)

a1 sin 1 + a2 sin 2 = A sin 

(2)

provided that constant values of A and exist which satisfy these equations. To
verify this, first we square both sides and add:

1


A2 (sin2  + cos2 ) = a 21 sin2 1  cos2 1 
+ a 22 sin2  2  cos2  2  + 2a1a2 (sin 1 sin 2 + cos 1 cos 2)
or
A2 = a 12  a 22 + 2a1a2 cos (1 - 2)
Dividing (2) by (1) gives

tan  =

a 1 sin1  a 2 sin2
a 1 cos 1  a 2 cos 2

Thus we can write
x = x1 + x2 = A cos  cos t + A sin  sin t = A cos(t - )

2.4


First expand Eq. (2.3) as
Ey
E0 y

= cos (t - kz) cos  - sin (t - kz) sin 

(2.4-1)

Subtract from this the expression

Ex
cos  = cos (t - kz) cos 
E0 x
to yield
Ey
E0 y

-

Ex
cos  = - sin (t - kz) sin 
E 0x

(2.4-2)

Using the relation cos2  + sin2  = 1, we use Eq. (2.2) to write
  E 2 
sin2 (t - kz) = [1 - cos2 (t - kz)] = 1   x  
 E 0x  


(2.4-3)

Squaring both sides of Eq. (2.4-2) and substituting it into Eq. (2.4-3) yields

2


2

E y

E
 x cos  =
E

 0 y E 0x


  E 2 
2
 x 
1  E   sin 
0x



Expanding the left-hand side and rearranging terms yields
2


2
 E 

 E x   E y 
  +   - 2  E x 
 y  cos  = sin2 
E 0x E 0y 
E 0x  E 0y 

2.5

Plot of Eq. (2.7).

2.6

Linearly polarized wave.

2.7
Air: n = 1.0

33 

33 
90 

Glass

(a) Apply Snell's law
n1 cos 1 = n2 cos 2
where n1 = 1, 1 = 33, and 2 = 90 - 33 = 57

 n2 =

cos 33
= 1.540
cos 57

(b) The critical angle is found from
nglass sin glass = nair sin air
with air = 90 and nair = 1.0
 critical = arcsin

1
n glass

= arcsin

3

1
= 40.5
1.540


4


2.8
Air

r


Water

12 cm

Find c from Snell's law

n1 sin 1 = n2 sin c = 1

When n2 = 1.33, then c = 48.75
r
Find r from tan c =
, which yields r = 13.7 cm.
12 cm

2.9

45 

Using Snell's law nglass sin c = nalcohol sin 90
where c = 45 we have
1.45
nglass =
= 2.05
sin 45
n pure

1.450
= 83.3
1.460


2.10

critical = arcsin

2.11

Need to show that n1 cos 2  n 2 cos 1  0 . Use Snell’s Law and the relationship
sin 
tan  
cos 

n doped

= arcsin

5


2.12

(a) Use either NA = n12  n22  = 0.242
1/ 2

or
NA  n1 2 = n1

2(n1  n 2 )
= 0.243
n1


(b) A = arcsin (NA/n) = arcsin

2.13

0.242 
= 14
 1.0 

n 
 1.00 
(a) From Eq. (2.21) the critical angle is  c  sin 1  2   sin 1 
  41
 1.50 
 n1 




(c) The number of angles (modes) gets larger as the wavelength decreases.

2.14

NA = n12  n22  = n12  n12(1 )2 
1/ 2

1/ 2

= n1 2  2 


1 /2

Since  << 1, 2 << ;  NA  n1 2

2.15

(a) Solve Eq. (2.34a) for jH:

jH = j


1 Hz
Er 
r 

j  Er +

Substituting into Eq. (2.33b) we have

 
E z
1 Hz 
=  j

Er 

r
r  
 



Solve for Er and let q2 = 2 - 2 to obtain Eq. (2.35a).
(b)
jHr = -j

Solve Eq. (2.34b) for jHr:

1 Hz
E 
 r

Substituting into Eq. (2.33a) we have

6


j  E +

1 E z
 
1 Hz 
= -  j

E 

r 
 r 
 



Solve for E and let q2 = 2 - 2 to obtain Eq. (2.35b).

(c)

Solve Eq. (2.34a) for jEr:

jEr =




1


1 
Hz  jrH 


r  

Substituting into Eq. (2.33b) we have

1 
Hz  jrH + E z = jH

 r
r  

Solve for H and let q2 = 2 - 2 to obtain Eq. (2.35d).
(d)


Solve Eq. (2.34b) for jE
jE= -

1 
Hz 
jHr 


r 

Substituting into Eq. (2.33a) we have

Hz 
1 E z  
= -jHr
jHr 

r  
r 
Solve for Hr to obtain Eq. (2.35c).

(e)

Substitute Eqs. (2.35c) and (2.35d) into Eq. (2.34c)

-




j 1  
 Hz  r E z    Hz   E z  = jE
z
2
q r 
r    r
r  
r  


Upon differentiating and multiplying by jq2/ we obtain Eq. (2.36).

7


(f)

Substitute Eqs. (2.35a) and (2.35b) into Eq. (2.33c)

-



j 1  
 E z  r Hz    E z   Hz  = -jHz
2
q r 
r    r
r  
r  



Upon differentiating and multiplying by jq2/ we obtain Eq. (2.37).

2.16

For  = 0, from Eqs. (2.42) and (2.43) we have

Ez = AJ0(ur) e j(t  z ) and Hz = BJ0(ur) e j(t  z )
We want to find the coefficients A and B. From Eq. (2.47) and (2.51),
respectively, we have

C=

J (ua)
A and
K  (wa)

D=

J (ua)
B
K  (wa)

Substitute these into Eq. (2.50) to find B in terms of A:

A

J'  (ua) K'  (wa) 
j  1

1
 2 = B

2

 a u
w 
uJ  (ua) wK(wa) 


For  = 0, the right-hand side must be zero. Also for  = 0, either Eq. (2.55a) or (2.56a)
holds. Suppose Eq. (2.56a) holds, so that the term in square brackets on the right-hand
side in the above equation is not zero. Then we must have that B = 0, which from Eq.
(2.43) means that Hz = 0. Thus Eq. (2.56) corresponds to TM0m modes.
For the other case, substitute Eqs. (2.47) and (2.51) into Eq. (2.52):

0=

1  j

J  (ua)  A 1uJ'  (ua)
2 B
u  a


8


+


1
2
w

 j
K' (wa)J (ua) 
B
J (ua)  A 2 w 


K (wa)
 a



With k21 = 21 and k22 = 22 rewrite this as




ja  1
2
2
B =
1
 (k1 J + k2 K) A
   1 
 u 2 w2 
where J and K are defined in Eq. (2.54). If for  = 0 the term in square brackets on the
right-hand side is non-zero, that is, if Eq. (2.56a) does not hold, then we must have that A

= 0, which from Eq. (2.42) means that Ez = 0. Thus Eq. (2.55) corresponds to TE0m
modes.
2.17

From Eq. (2.23) we have
 =

2
1 
n 21  n22
1  n 2 

=
2
2
2  n1 
2n1

 << 1

implies n1  n2

Thus using Eq. (2.46), which states that n2k = k2  k1 = n1k, we have

2

n 2k

2.18


2



2

2

k 2  n 1k

2



2

k1  

2

(a) From Eqs. (2.59) and (2.61) we have

M

2 2 a 2 2
2 2 a 2
2
n

n


NA 2

2
1
2
2


1/ 2

 M
a   
2

1/ 2


1000
 
NA
2 

0.85m
 30.25m
0.2

9



Therefore, D = 2a =60.5 m
2 30.25m
2
(b) M 
0.2  414
2
1.32m
2

2

(c) At 1550 nm, M = 300
2.19

From Eq. (2.58),

V=

2 (25 m)
2
2 1/ 2
(1.48)  (1.46)  = 46.5

0.82 m

Using Eq. (2.61) M  V2/2 =1081 at 820 nm.
Similarly, M = 417 at 1320 nm and M = 303 at 1550 nm. From Eq. (2.72)

4  100%
4

Pclad 
 M-1/2 =
= 4.1%
 P total 3
3 1080
at 820 nm. Similarly, (Pclad/P)total = 6.6% at 1320 nm and 7.8% at 1550 nm.

2.20 (a) At 1320 nm we have from Eqs. (2.23) and (2.57) that V = 25 and M = 312.
(b) From Eq. (2.72) the power flow in the cladding is 7.5%.
2.21

(a) For single-mode operation, we need V  2.40.

Solving Eq. (2.58) for the core radius a

a=

2.40(1.32m)
V 2
2 1/ 2
= 6.55 m
n1  n2  =

2
2 1/ 2
2
2(1.480)  (1.478) 

(b) From Eq. (2.23)
NA = n1  n2  = (1.480)  (1.478)

2

2 1/ 2

2



2 1/ 2

= 0.077

(c) From Eq. (2.23), NA = n sin A. When n = 1.0 then

10


A = arcsin

2.22

n2 =

2
2
n1  NA =

a=

2.23


0.077 
NA 
= arcsin
= 4.4
 1.0 
 n 

2
2
(1.458) (0.3) = 1.427

(1.30)(75)
V
=
= 52 m
2(0.3)
2NA

For small values of  we can write V 

2a
n1


2

For a = 5 m we have  0.002, so that at 0.82 m
V 


2 (5 m)
1.45
0.82 m

2(0.002) = 3.514

Thus the fiber is no longer single-mode. From Figs. 2.18 and 2.19 we see that the LP01
and the LP11 modes exist in the fiber at 0.82 m.

2.25

From Eq. (2.77), Lp =


2
=
n y  nx


1.3  10 6 m
= 1.310-5
1
10 m

For Lp = 10 cm

ny - nx =

For Lp = 2 m


1.3  10 6 m
ny - nx =
= 6.510-7
2m

Thus
6.510-7 ny - nx 1.310-5
2.26

We want to plot n(r) from n2 to n1. From Eq. (2.78)
n(r) = n1 1 2(r / a)



 1 /2

= 1.48 1 0.02(r / 25)



 1 /2

11


n2 is found from Eq. (2.79):
2.27

n2 = n1(1 - ) = 1.465


From Eq. (2.81)
2


 2an1 
2 2 2
M
a k n1  

2
  2   

where
=

n1  n2
= 0.0135
n1

At  = 820 nm, M = 543 and at  = 1300 nm, M = 216.
For a step index fiber we can use Eq. (2.61)
2

1 2a  2
V2
2
Mstep 
=
n1  n 2 




2 
2

At  = 820 nm, Mstep = 1078 and at  = 1300 nm, Mstep = 429.
Alternatively, we can let  in Eq. (2-81):
2

Mstep =
2.28

2an1 
=
  

1086 at 820 nm

432 at 1300 nm

Using Eq. (2.23) we have
(a) NA = n1  n2  = (1.60)  (1.49)
2

2 1/ 2



2 1/ 2


2

= 0.58

(b) NA = (1.458)2  (1.405)2  = 0.39
1/ 2

2.29

(a) From the Principle of the Conservation of Mass, the volume of a preform rod

section of length Lpreform and cross-sectional area A must equal the volume of the fiber
drawn from this section. The preform section of length Lpreform is drawn into a fiber of
length Lfiber in a time t. If S is the preform feed speed, then Lpreform = St. Similarly, if s is
the fiber drawing speed, then Lfiber = st. Thus, if D and d are the preform and fiber
diameters, respectively, then
Preform volume = Lpreform(D/2)2 = St (D/2)2

12


Fiber volume = Lfiber (d/2)2 = st (d/2)2

and
Equating these yields

2

2


D 
d 
St
= st
2 
2 

2

D 
s=S
d 

or

2

2

0.125 mm 
d 
= 1.2 m/s
= 1.39 cm/min
 9 mm 
D 

(b)

S=s


2.30

Consider the following geometries of the preform and its corresponding fiber:

25 m
R

4 mm
62.5 m

3 mm

FIBER

PREFORM

We want to find the thickness of the deposited layer (3 mm - R). This can be done by
comparing the ratios of the preform core-to-cladding cross-sectional areas and the fiber
core-to-cladding cross-sectional areas:
A preform core
Apreform clad

or

=

A fiber core
Afiber clad

(32  R2 )

 (25)2
=
2
2
2
2
(4  3 )  (62.5)  (25) 

from which we have
1/ 2


7(25)2

R = 9 
2
2  = 2.77 mm
 (62.5)  (25) 

13


Thus, the thickness = 3 mm - 2.77 mm = 0.23 mm.

2.31

(a) The volume of a 1-km-long 50-m diameter fiber core is
V = r2L =  (2.510-3 cm)2 (105 cm) = 1.96 cm3

The mass M equals the density  times the volume V:

M = V = (2.6 gm/cm3)(1.96 cm3) = 5.1 gm
(b) If R is the deposition rate, then the deposition time t is
t=

2.32

5.1 gm
M
=
= 10.2 min
R 0.5 gm / min

Solving Eq. (2.82) for  yields
2

 K 
=
Y 
Thus
=

2.33

where Y =



for surface flaws.

(20 N / mm 3 / 2 ) 2

= 2.6010-4 mm = 0.26 m
2 2
(70 MN/ m ) 

(a) To find the time to failure, we substitute Eq. (2.82) into Eq. (2.86) and

integrate (assuming that  is independent of time):
f



t

b /2

d

= AYbb

i



dt

0

which yields

1


or


b f
1
2
t=

1 b / 2

1 b/ 2

 i

 = AYbbt

2
(2 b)/ 2
(2 b)/ 2
 f

b  i
(b  2)A(Y)

(b) Rewriting the above expression in terms of K instead of yields

14



 Ki 2 b  Kf 2 b 
2
t=

b 
Y  
(b  2)A(Y) 
 Y 

2 b

2Ki

b
(b  2)A(Y)

2
2
if K b
<< K b
or
i
f

15

2 b

Ki


 Kf

2 b



×