Tải bản đầy đủ (.docx) (21 trang)

Đồ án vi điều khiển đồng hồ thời gian thực DS1307

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (854.65 KB, 21 trang )

Update đồ án vi điều khiển đồng hồ thời gian thực DS1307
+89S52
25-11-2011 | fee_08 | 2 phản hồi »

Mạch đồng hồ hiển thị giờ phút giây ,có khả năng lưu giờ khi mất điện .Thích
hợp cho những ai muốn tự tay làm cho riêng mình ,hoặc tặng bạn bè.

Mạch sử dụng chip thời gian thực DS 1307 hoạt động ở tần số 32768kHZ được
nuôi bằng nguồn dự phòng 3V có thể hoạt động trong thời gian 5 năm khi k có
nguồn điện
I, Nói qua về chuẩn giao tiếp I2c
Giao thức ưu tiên truyền thông nối tiếp được phát triển bởi Philips
Semiconductor và được gọi là bus I2C. Vì nguồn gốc nó được thiết kế là để điều
khiển liên thông IC (Inter-Intergrated Circuit) nên nó được đặt tên là I2C. Tất cả
các chip có tích hợp và tương thích với I2C đều có thêm một giao diện tích hợp
trên Chip để truyền thông trực tiếp với các thiết bị tương thích I2C khác. Việc
truyền dữ liệu nối tiếp theo hai hướng 8 bit được thực thi theo 3 chế độ sau:
Chuẩn (Standard)—100 Kbits/sec Nhanh (Fast)—400 Kbits/sec Tốc độ cao (High
speed)—3.4 Mbits/sec Đường bus thực hiện truyền thông nối tiếp I2C gồm hai


đường là đường truyền dữ liệu nối tiếp SDA và đường truyền nhịp xung đồng hồ
nối tiếp SCL. Vì cơ chế hoạt động là đồng bộ nên nó cần có một nhịp xung tín
hiệu đồng bộ. Các thiết bị hỗ trợ I2C đều có một địa chỉ định nghĩa trước, trong
đó một số bit địa chỉ là thấp có thể cấu hình. Đơn vị hoặc thiết bị khởi tạo quá
trình truyền thông là đơn vị Chủ và cũng là đơn vị tạo xung nhịp đồng bộ, điều
khiển cho phép kết thúc quá trình truyền. Nếu đơn vị Chủ muốn truyền thông với
đơn vị khác nó sẽ gửi kèm thông tin địa chỉ của đơn vị mà nó muốn truyền trong
dữ liệu truyền. Đơn vị Tớ đều được gán và đánh địa chỉ thông qua đó đơn vị Chủ
có thể thiết lập truyền thông và trao đổi dữ liệu. Bus dữ liệu được thiết kế để cho
phép thực hiện nhiều đơn vị Chủ và Tớ ở trên cùng Bus. Quá trình truyền thông


I2C được bắt đầu bằng tín hiệu start tạo ra bởi đơn vị Chủ. Sau đó đơn vị Chủ
sẽ truyền đi dữ liệu 7 bit chứa địa chỉ của đơn vị Tớ mà nó muốn truyền thông,
theo thứ tự là các bit có trọng số lớn nhất MSB sẽ được truyền trước. Bit thứ tám
tiếp theo sẽ chứa thông tin để xác định đơn vị Tớ sẽ thực hiện vai trò nhận (0)
hay gửi (1) dữ liệu. Tiếp theo sẽ là một bit ACK xác nhận bởi đơn vị nhận đã
nhận được 1 byte trước đó hay không. Đơn vị truyền (gửi) sẽ truyền đi 1 byte dữ
liệu bắt đầu bởi MSB. Tại điểm cuối của byte truyền, đơn vị nhận sẽ tạo ra một
bit xác nhận ACK mới. Khuôn mẫu 9 bit này (gồm 8 bit dữ liệu và 1 bit xác nhận)
sẽ được lặp lại nếu cần truyền tiếp byte nữa. Khi đơn vị Chủ đã trao đổi xong dữ
liệu cần nó sẽ quan sát bit xác nhận ACK cuối cùng rồi sau đó sẽ tạo ra một tín
hiệu dừng STOP để kết thúc quá trình truyền thông. I2C là một giao diện truyền
thông đặc biệt thích hợp cho các ứng dụng truyền thông giữa các đơn vị trên
cùng một bo mạch với khoảng cách ngắn và tốc độ thấp. Ví dụ như truyền thông
giữa CPU với các khối chức năng trên cùng một bo mạch như EEPROM, cảm
biến, đồng hồ tạo thời gian thực… Hầu hết các thiết bị hỗ trợ I2C hoạt động ở
tốc độ 400Kbps, một số cho phép hoạt động ở tốc độ cao vài Mbps. I2C khá đơn
giản để thực thi kết nối nhiều đơn vị vì nó hỗ trợ cơ chế xác định địa chỉ.
II, Sơ lược về chip thời gian thực Ds1307
DS1307 là chip đồng hồ thời gian thực (RTC : Real-time clock), khái niệm thời
gian thực ở đây được dùng với ý nghĩa thời gian tuyệt đối mà con người đang
sử dụng, tình bằng giây, phút, giờ… DS1307 là một sản phẩm của Dallas
Semiconductor (một công ty thuộc Maxim Integrated Products). Chip này có 7
thanh ghi 8-bit chứa thời gian là: giây, phút, giờ, thứ (trong tuần), ngày, tháng,
năm. Ngoài ra DS1307 còn có 1 thanh ghi điều khiển ngõ ra phụ và 56 thanh ghi
trống có thể dùng như RAM. DS1307 xuất hiện ở 2 gói SOIC và DIP có 8 chân


Các chân của DS1307 được mô tả như sau: • X1 và X2: là 2 ngõ kết nối với 1
thạch anh 32.768KHz làm nguồn tạo dao động cho chip. • VBAT: cực dương của
một nguồn pin 3V nuôi chip. • GND: chân mass chung cho cả pin 3V và Vcc. •

Vcc: nguồn cho giao diện I2C, thường là 5V và dùng chung với vi điều khiển.
Chú ý là nếu Vcc không được cấp nguồn nhưng VBAT được cấp thì DS1307 vẫn
đang hoạt động (nhưng không ghi và đọc được). • SQW/OUT: một ngõ phụ tạo
xung vuông (Square Wave / Output Driver), tần số của xung được tạo có thể
được lập trình. Như vậy chân này hầu như không liên quan đến chức năng của
DS1307 là đồng hồ thời gian thực, chúng ta sẽ bỏ trống chân này khi nối mạch. •
SCL và SDA là 2 đường giao xung nhịp và dữ liệu của giao diện I2C. • Có thể kết
nối DS1307 bằng một mạch điện đơn giản như sau:

Cấu tạo bên trong DS1307 bao gồm một số thành phần như mạch nguồn, mạch
dao động, mạch điều khiển logic, mạch giao diện I2C, con trỏ địa chỉ và các
thanh ghi (hay RAM). Sử dụng DS1307 chủ yếu là ghi và đọc các thanh ghi của
chip này. Vì thế có 2 vấn đề cơ bản đó là cấu trúc các thanh ghi và cách truy xuất
các thanh ghi này thông qua giao diện I2C. Như đã trình bày, bộ nhớ DS1307 có
tất cả 64 thanh ghi 8-bit được đánh địa chỉ từ 0 đến 63 (từ 00H đến 3FH theo hệ
HexaDecimal). Tuy nhiên, thực chất chỉ có 8 thanh ghi đầu là dùng cho chức
năng “đồng hồ” (RTC) còn lại 56 thanh ghi bỏ trống có thể được dùng chứa biến
tạm như RAM nếu muốn. Bảy thanh ghi đầu tiên chứa thông tin về thời gian của
đồng hồ bao gồm: giây (SECONDS), phút (MINUETS), giờ (HOURS), thứ (DAY),
ngày (DATE), tháng (MONTH) và năm (YEAR). Việc ghi giá trị vào 7 thanh ghi
này tương đương với việc “cài đặt” thời gian khởi động cho RTC. Việc đọc giá trị
từ 7 thanh ghi là đọc thời gian thực mà chip tạo ra. Ví dụ, lúc khởi động chương
trình, chúng ta ghi vào thanh ghi “giây” giá trị 42, sau đó 12s chúng ta đọc thanh
ghi này, chúng ta thu được giá trị 54. Thanh ghi thứ 8 (CONTROL) là thanh ghi
điều khiển xung ngõ ra SQW/OUT (chân 6). Tuy nhiên, do chúng ta không dùng
chân SQW/OUT nên có thề bỏ qua thanh ghi thứ 8. Tổ chức bộ nhớ của DS1307
được trình bày trong hình 3. Vì 7 thanh ghi đầu tiên là quan trọng nhất trong hoạt
động của DS1307, chúng ta sẽ khảo sát các thanh ghi này một cách chi tiết.
Trước hết hãy quan sát tổ chức theo từng bit của các thanh ghi này như trong
hình




Tổ chức các thanh ghi thời gian Thanh ghi giây (SECONDS): thanh ghi này là
thanh ghi đầu tiên trong bộ nhớ của DS1307, địa chỉ của nó là 0×00. Bốn bit thấp
của thanh ghi này chứa mã BCD 4-bit của chữ số hàng đơn vị của giá trị giây. Do
giá trị cao nhất của chữ số hàng chục là 5 (không có giây 60) nên chỉ cần 3 bit
(các bit SECONDS 6:4) là có thể mã hóa được (số 5 =101, 3 bit). Bit cao nhất,
bit 7, trong thanh ghi này là 1 điều khiển có tên CH (Clock halt – treo đồng hồ),
nếu bit này được set bằng 1 bộ dao động trong chip bị vô hiệu hóa, đồng hồ
không hoạt động. Vì vậy, nhất thiết phải reset bit này xuống 0 ngay từ đầu.
Thanh ghi phút (MINUTES): có địa chỉ 01H, chứa giá trị phút của đồng hồ.
Tương tự thanh ghi SECONDS, chỉ có 7 bit của thanh ghi này được dùng lưu mã
BCD của phút, bit 7 luôn luôn bằng 0. Thanh ghi giờ (HOURS): có thể nói đây là
thanh ghi phức tạp nhất trong DS1307. Thanh ghi này có địa chỉ 02H. Trước hết
4-bits thấp của thanh ghi này được dùng cho chữ số hàng đơn vị của giờ. Do
DS1307 hỗ trợ 2 loại hệ thống hiển thị giờ (gọi là mode) là 12h (1h đến 12h) và
24h (1h đến 24h) giờ, bit6 (hình 4) xác lập hệ thống giờ. Nếu bit6=0 thì hệ thống
24h được chọn, khi đó 2 bit cao 5 và 4 dùng mã hóa chữ số hàng chục của giá
trị giờ. Do giá trị lớn nhất của chữ số hàng chục trong trường hợp này là 2 (=10,
nhị phân) nên 2 bit 5 và 4 là đủ để mã hóa. Nếu bit6=1 thì hệ thống 12h được
chọn, với trường hợp này chỉ có bit 4 dùng mã hóa chữ số hàng chục của giờ, bit
5 (màu orange trong hình 4) chỉ buổi trong ngày, AM hoặc PM. Bit5 =0 là AM và
bit5=1 là PM. Bit 7 luôn bằng 0. Thanh ghi thứ (DAY – ngày trong tuần): nằm ở


địa chỉ 03H. Thanh ghi DAY chỉ mang giá trị từ 1 đến 7 tương ứng từ Chủ nhật
đến thứ 7 trong 1 tuần. Vì thế, chỉ có 3 bit thấp trong thanh ghi này có nghĩa. Các
thanh ghi còn lại có cấu trúc tương tự, DATE chứa ngày trong tháng (1 đến 31),
MONTH chứa tháng (1 đến 12) vàYEAR chứa năm (00 đến 99). Chú ý, DS1307

chỉ dùng cho 100 năm, nên giá trị năm chỉ có 2 chữ số, phần đầu của năm do
người dùng tự thêm vào (ví dụ 20xx). Ngoài các thanh ghi trong bộ nhớ, DS1307
còn có một thanh ghi khác nằm riêng gọi là con trỏ địa chỉ hay thanh ghi địa chỉ
(Address Register). Giá trị của thanh ghi này là địa chỉ của thanh ghi trong bộ
nhớ mà người dùng muốn truy cập.

III,AT89S52: SƠ ĐỒ KHỐI VÀ SƠ ĐỒ CHÂN
Vi điều khiển 8051 được Intel cho ra đời vào năm 1980 thuộc vi điều khiển đầu
tiên của họ MCS-51. Hiện tại rất nhiều nhà sản xuất như Siemens, Advanced
Micro Devices, Fusisu và Philips tập trung phát triển các sản phẩm trên cơ sở
8051.Atmel là hãng đã cho ra đời các chip 89C51, 52, 55 và sau đó cải tiến
thêm, hãng cho ra đời 89S51, 89S52, 89S8252… Cấu hình 89S52: + 8KB bộ
nhớ chương trình. + Dao động bên ngoài với thạch anh


Về cơ bản thì các chip nêu trên giống nhau, chỉ có một số tính năng được cải
tiến thêm. Các phiên bản về sau càng có nhiều khối tính năng đặc biệt hơn.
Chúng ta xem bảng so sánh một số loại phổ biến như dưới đây.


Chức năng các chân 89S52 • P0,1,2,3 có chức năng cơ bản xuất/nhập. • Riêng
P0, P2 còn có chức năng kết nối bộ nhớ mở rộng, sẽ được khảo sát trong phần
mở rộng bộ nhớ. • P1: Chân T2 và T2EX dùng cho timer/ counter 2. Hai chức
năng này sẽ khảo sát trong phần Timer. Chân SS\, MOSI, MISO, SCK truyền dữ
liệu theo chuẫn SPI đồng thời có chức năng kết nối với mạch nạp chương trình.
Xem hình


Mạch nạp :


Chân ALE, PSEN, WR\, RD\ dùng để kết nối bộ nhớ mở rộng. • Chân EA\ có
chức năng chọn bộ nhớ chương trình: EA\=GND: Chọn bộ nhớ ngoại, EA\=VCC
chọn bộ nhớ nội. • Chân Xtal1 và Xtal2 gắn với thạch anh
IV, THUẬT TOÁN GIAO TIẾP I2C VỚI VI ĐIỀU KHIỂN 89S52
Điều kiện START and STOP START và STOP là những điều kiện bắt buộc phải
có khi một thiết bị chủ muốn thiết lập giao tiếp với một thiết bị nào đó trong mạng


I2C. START là điều kiện khởi đầu, báo hiệu bắt đầu của giao tiếp, còn STOP báo
hiệu kết thúc một giao tiếp. Hình 11 mô tả điều kiện START và điều kiện STOP
khi giao tiếp I2C giữa DS1307 với Vi Điều Khiển.

Ban đầu khi chưa thực hiện quá trình giao tiếp, cả hai đường SDA và SCL đều ở
mức cao (SDA = SCL = HIGH). Lúc này bus I2C được coi là “rỗi” (“bus free”),
sẵn sàng cho một giao tiếp. Hai điều kiện START và STOP là không thể thiếu
trong việc giao tiếp giữa các thiết bị I2C, tất nhiên là trong giao tiếp này cũng
không ngoại lệ. • Điều kiện START: một sự chuyển đổi trạng thái từ cao xuống
thấp trên đường SDA trong khi đường SCL đang ở mức cao (cao = 1; thấp = 0)
báo hiệu một điều kiện START • Điều kiện STOP: Một sự chuyển đổi trạng thái
từ mức thấp lên cao trên đường SDA trong khi đường SCL đang ở mức cao. •
Cả hai điều kiện START và STOPđều được tạo ra bởi thiết bị chủ. Sau tín hiệu
START, bus I2C coi như đang trong trạng thái làm việc (busy). Bus I2C sẽ rỗi,
sẵn sàng cho một giao tiếp mới sau tín hiệu STOP từ phía thiết bị chủ. • Sau khi
có một điều kiện START, trong qua trình giao tiếp, khi có một tín hiệu START
được lặp lại thay vì một tín hiệu STOP thì bus I2C vẫn tiếp tục trong trạng thái
bận. Tín hiệu START và lặp lại START đều có chức năng giống nhau là khởi tạo
một giao tiếp.
Chế độ hoạt động



Chế độ hoạt động của I2C DS1307 có thể hoạt động ở 2 chế độ sau: • Ở chế độ
slave nhận (chế độ DS1307 ghi ): chuỗi dữ liệu và chuỗi xung clock sẽ được
nhận thông qua SDA và SCL. Sau mỗi byte được nhận thì 1 bit ACKnowledge sẽ
được truyền. Các điều kiện START và STOP sẽ được nhận dạng khi bắt đầu và
kết thúc 1 truyền 1 chuỗi, nhận dạng địa chỉ được thực hiện bởi phần cứng sau
khi chấp nhận địa chỉ của slave và bit một chiều. • Chế độ slave phát ( chế độ
DS1307 đọc ): byte đầu tiên slave nhận được tương tự như chế độ slave ghi.
Tuy nhiên trong chế độ này thì bit chiều lại chỉ chiều chuyền ngược lại. Chuỗi dữ
liệu được phat đi trên SDA bởi DS1307 trong khi chuỗi xung clock vào chân SCL
Để làm việc với DS1307, ta thực hiện các bước như sau: • START I2C • Ghi:
0DxH (Đây là địa chỉ của DS1307 do nhà sản xuất quy định trong giao tiếp I2C)
với: x=0: Ghi dữ liệu vào DS1307 x=1: Đọc dữ liệu vào DS1307 • Ghi tham số x
này vào, có nghĩa là việc tiếp theo là chúng tag hi hay đọc dữ liệu từ con
DS1307 tùy vào giá trị x=0 (ghi dữ liệu) hay x=1 (đọc dữ liệu). • Ghi vào địa chỉ
thanh ghi cần ghi hoặc cần đọc (bảng đồ thanh ghi của DS1307 này đã được giớ
thiệu ở hình 3 & hình 4). • Ghi hoặc đọc dữ liệu. • STOP I2C
Một ví dụ minh họa cho việc đọc ghi • Thanh ghi có địa chỉ 01H chứa Data về
“phút”, muốn set phút vào DS1307 chúng ta làm theo quy trình: START→Ghi:
0D0H→Ghi tiếp: 01H→Ghi tiếp:→Ghi tiếp hoặc STOP nếu chỉ muốn cài đặt thời
gian cho phút.


Nếu muốn Ghi vào địa chỉ 01H rồi kế tiếp Ghi vào địa chỉ 04H chẳng hạn thì
chúng ta phải START lại từ đầu→Ghi vào 0D0H (để xác định sẽ Ghi vào DS1307
_ hướng giao tiếp là Ghi vào) →Ghi tiếp 04H→Ghi dữ liệu của thanh ghi cần cài
đặt→STOP I2C. • Tương tự, nếu chúng ta muốn đọc thì trước hết chúng ta phải
ghi vào địa chỉ cần đọc: tức là vẫn tiếp tục tiến hành 3 thủ tục START→Ghi
0D0H→Ghi vào địa chỉ (địa chỉ của thanh ghi mà ta muốn đọc dữ liệu). Sau đó,
mới START lại rồi ghi lại 0D1H (lúc này mới thông báo là ta sẽ đọc từ DS1307),
tiếp theo cứ đọc bình thường (thanh ghi đọc được sẽ là thanh ghi có địa chỉ ta

mới vừa ghi vào), tiếp tục đọc thì địa chỉ cần đọc sẽ tự động tăng lên cho đến khi
STOP I2C.
V, SƠ ĐỒ KHỐI TỔNG QUÁT CỦA MẠCH ĐỒNG HỒ

Dựa vào sơ đồ khối của giao tiếp trên, điều cơ bản là chúng ta phải viết một
phần mềm khởi tạo DS1307, thực ra là chương trình giao tiếp I2C, đọc giá trị
trong Ram của con DS1307 lưu tạm thời vào trong Ram của 89S52. Sau đó, viết
thêm một phần mềm để đọc nội dung trong Ram này đưa ra hiển thị bằng


phương pháp quét. Để đơn giản, việc đọc dữ liệu từ DS1307 lưu vào trong Ram
của 89S52 và hiển thị giờ_phút_giây, được chia ra làm 2 chương trình con nhỏ,
nếu có phím nhấn thì sẽ nhảy đến chương trình con xử lý phím nhấn riêng.
Sơ đồ nguyên lý:

Sơ đồ mạch in:



VI,THIẾT KẾ PHẦN MỀM
Như đã trình bày trong phần thuật toán gaio tiếp và sơ đồ khối tổng quát, thì
chương trình MAIN của chúng ta sẽ gồm 3 mục chính được mô tả cụ thể trong
lưu đồ của chương trình MAIN ỏ hình


Giải thích lưu đồ chính này: Bắt đầu, chương trình sẽ gọi chương trình con đọc
dữ liệu từ con DS1307 với chuẩn giao tiếp I2C bằng phương pháp đã được trình
bày cụ thể ở mục 4 (thuật toán giao tiếp), sau đó, sẽ gọi chương trình con để
quét Led 7 đoạn hiện thị 6 số: 2 số hiển thị giá trị của Giờ, 2 số hiển thị giá trị của
Phút, 2 số hiển thị giá trị của Giây. Nếu phím MODE (chọn chế độ cài đặt) không

được nhấn thì vòng lặp của chương trình này sẽ chạy vô tận. Nếu phím MODE
được nhấn, nó sẽ nhảy tới chương trình con cài đặt giờ hay phút còn tùy thuộc
vào số lần nhấn phím MODE. Sau đây ta đi vào chi tiết của tùng khối nhỏ:
ĐỌC DỮ LIỆU TỪ DS1307 LƯU VÀO TRONG RAM CỦA 89S52 Xem lưu đồ
chương trình như hình dưới. Ở đây, các chương trình con nhỏ hơn, chẳng hạn
như: CTC SEND_START, SEND_STOP, SEND_BYTE, v.v. đã được đề cập đến
trong mục 4 (thuật toán giao tiếp đã được đề cập ở trên).


VII, HIỂN THỊ BẰNG PHƯƠNG PHÁP QUÉT LED 7 ĐOẠN


VIII, CÀI ĐẶT THỜI GIAN
Trong lưu đồ giải thuật trên hình
trên[img] />%2021.JPG[/img], cho chúng ta thấy, vòng lặp của chương trình sẽ chạy vô tận
cho đến khi có phím MODE được ấn xuống. Khi đó, nó nhảy đến CTC để giải
quyết việc cài đặt thời gian. Lưu đồ giải thuật của CTC xử lý cài đặt phím được
thể hiện ở hình


Lưu đồ CTC cài đặt giờ CTC cài đặt phút cũng có nguyên tắc tương tự như cài
đặt giờ nên không được nói ra ở đây. Nhìn vào lưu đồ chúng ta thấy,
ThanhGhi=02H, là địa chỉ của thanh ghi Giở trong con DS1307, như vậy, mục
đích của việc định nghĩa ô nhớ ThanhGhi là để xác định địa chỉ thay đổi giá trị
trong ô nhớ RAM của con DS1307. CTC cài đặt giờ sẽ lặp vô tận và CTC hiển thi
giờ sẽ chỉ cho hiển thị 2 Led 7 đoạn, chỉ hiển thị giờ trong khi cài đặt, tất cả các
đèn Led còn lại đều tắt hết. Trong khi CTC cài đặt đang chạy vô tận, nếu có phím
INC hoặc DEC được nhấn thì nó sẽ nhảy đến CTC tăng hoặc giảm tùy vào phím
được nhấn. CTC tăng giờ được chỉ ra ở hinh 22 bên dưới đây, nguyên tắc của
CTC giảm giờ cũng như vậy.



Lưu đồ CTC tăng giờ Nếu nhấn phím tăng quá 23, thì chương trình sẽ đặt thời
gian lại giá trị là 00h.
the end!
Video sản phẩm:


Tham khảo code: />


×