Tải bản đầy đủ (.pdf) (44 trang)

đề thi thử toán THPTQG 2019 lần 3 trường chuyên đại học vinh – nghệ an

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.38 MB, 44 trang )

TRƯỜNG ĐẠI HỌC VINH
TRƯỜNG THPT CHUYÊN
(Đề thi gồm 06 trang)

ĐỀ THI THỬ THPT QUỐC GIA NĂM 2019 – LẦN 3
Môn: TOÁN
Thời gian làm bài: 90 phút
(50 câu hỏi trắc nghiệm)
Mã đề thi
132

Họ và tên thí sinh: ..................................................................... Số báo danh: ................................
Câu 1: Cho số phức z = -2 + i. Trong hình bên điểm biểu diễn số
phức z là
A. Q.
B. M .
C. P.
D. N .

Câu 2: Tất cả các nguyên hàm của hàm f (x ) =

1
3x - 2



2
2
D. 3x - 2 + C .
3x - 2 + C .
3


3
Câu 3: Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a, SA  a và SA vuông góc với mặt
phẳng đáy. Thể tích của khối chóp S .ABCD bằng

A. -2 3x - 2 + C .

B. 2 3x - 2 + C .

C.

a3
a3
B.
C. a 3 .
.
.
6
3
Câu 4: Cho hàm số y  f (x ) có đồ thị như hình bên. Hàm số đã
cho nghịch biến trên khoảng

A.

 
C.  2; 3  .

A. 2; 0 .

D.


2a 3
.
3

 
D.  3;  1 .
B. 0; 2 .

Câu 5: Cho khối nón có độ dài đường cao bằng 2a và bán kính đáy bằng a. Thể tích của khối nón đã cho
bằng
2 a 3
a 3
4 a 3
B.
C. 2 a 3 .
D.
.
.
.
3
3
3
Câu 6: Trong không gian Oxyz , cho hai điểm A(-2; - 1; 3) và B(0; 3; 1). Gọi (a) là mặt phẳng trung trực

A.

của AB . Một vectơ pháp tuyến của (a) có tọa độ là
A. (2; 4; - 1).
B. (1; 2; - 1).


C. (-1; 1; 2).

D. (1; 0; 1).

Câu 7: Cho cấp số nhân (un ) có u1 = 1, u2 = -2. Mệnh đề nào sau đây đúng ?
A. u2019 = -22018.

B. u2019 = 22019.

Câu 8: Với a, b là các số thực dương bất kỳ, log2

C. u2019 = -22019.
a
b2

D. u2019 = 22018.

bằng

1
a
a
C. log2 a - 2 log2 b.
D. 2 log2 .
log2 .
2
b
b
Câu 9: Từ các chữ số 1, 2, 3,..., 9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau ?


A. log2 a - log2 (2b ).

B.

A. 39.

B. A93 .

C. 93.

D. C 93 .
Trang 1/6 - Mã đề thi 132


Câu 10: Cho hàm số y  f (x ) có đồ thị như hình bên. Trên đoạn
 3; 3  hàm số đã cho có mấy điểm cực trị ?


A. 4.
B. 2.
C. 5.
D. 3.

Câu 11: Hình bên là đồ thị của hàm số nào dưới đây ?
A. y  x 2  2.

B. y  x 4  x 2  2.

C. y  x 4  x 2  2.


D. y  x 2  x  2.

Câu 12: Trong không gian Oxyz, một vectơ chỉ phương của đường thẳng  :
độ là
A. (1; 2;  5).

B. (1;  2;  5).

x 1 y  3 z  3
có tọa


5
1
2

C. (1; 3;  3).

D. (1; 3; 3).

Câu 13: Trong không gian Oxyz, cho điểm I(1; 2; 5) và mặt phẳng ( ) : x  2y  2z  2  0. Phương trình
mặt cầu tâm I và tiếp xúc với ( ) là

A. (x  1)2  (y  2)2  (z  5)2  9.

B. (x  1)2  (y  2)2  (z  5)2  9.

C. (x  1)2  (y  2)2  (z  5)2  3.

D. (x  1)2  (y  2)2  (z  5)2  3.


Câu 14: Khi đặt 3x = t thì phương trình 9x +1 - 3x +1 - 30 = 0 trở thành
A. 3t 2 - t - 10 = 0.

B. 9t 2 - 3t - 10 = 0.

C. t 2 - t - 10 = 0.

D. 2t 2 - t - 10 = 0.

Câu 15: Cho f (x ) và g(x ) là các hàm số liên tục bất kì trên đoạn a; b  . Mệnh đề nào sau đây đúng ?


b

A.



a

b

C.



a

b


b

f (x )  g(x ) dx   f (x )dx   g(x )dx .
a



b

B.

a

b

b

f (x )  g(x ) dx   f (x )dx   g(x )dx .
a

a



a



b


D.

b

b

a

a

b

b

a

a

f (x )  g(x ) dx   f (x )dx   g(x )dx .





f (x )  g(x ) dx 

a

 f (x )dx   g(x )dx .


Câu 16: Gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số f (x ) = 2x + cos
é-2; 2ù . Giá trị của m + M bằng
êë
úû
A. 0.
B. 2.

Câu 17: Trong không gian Oxyz,

C. -4.
cho đường thẳng d :

(P ) : x  2y  z  5  0. Tọa độ giao điểm của d với (P ) là
A. (3;  1;  2).

B. (2; 1;  1).

C. (1; 3;  2).

px
trên đoạn
2

D. -2.
x 2 y 1 z


1
2

2

và mặt phẳng

D. (1; 3; 2).

Câu 18: Cho hình lập phương ABCD.AB C D  có cạnh bằng a. Diện tích xung quanh của hình trụ có hai
đáy là hai hình tròn ngoại tiếp hai hình vuông ABCD và AB C D  bằng
A. 2 2 a 2 .

B.

2 a 2 .

C.  a 2 .

D. 2 a 2 .

Trang 2/6 - Mã đề thi 132


(

)

2

(

)


Câu 19: Cho hàm số f (x ) có đạo hàm f ¢(x ) = x 2 + x (x - 2) 2x - 4 , "x Î . Số điểm cực trị của

f (x ) là
A. 2.
B. 1.
C. 4.
Câu 20: Cho hàm số y = f (x ) có đồ thị như hình bên. Hàm
số y = -2 f (x ) đồng biến trên khoảng

( )
C. (-1; 0) .

D. 3.

( )
D. (-1; 1) .

A. 1; 2 .

B. 2; 3 .

Câu 21: Cho số phức z thỏa mãn z + 2z = 6 + 2i. Điểm biểu diễn số phức z có tọa độ là

(

)

A. 2; - 2 .


(

)

(

)

( )

B. -2; - 2 .

(

)

D. -2; 2 .

C. 2; 2 .

Câu 22: Bất phương trình log4 x 2 - 3x > log2 (9 - x ) có bao nhiêu nghiệm nguyên ?
A. 1.

B. Vô số.

C. 3.

D. 4.

x + x2 + 1

Câu 23: Đồ thị hàm số y =
có bao nhiêu đường tiệm cận ?
x -1
A. 2.
B. 3.
C. 4.
Câu 24: Hàm số y = loga x và y = logb x có đồ thị như

D. 1.

hình bên. Đường thẳng y = 3 cắt hai đồ thị tại các điểm
có hoành độ là x1, x 2 . Biết rằng x 2 = 2x1, giá trị

a
b

bằng

A.

1
.
3

3

B.

C. 2.


D.

(

Câu 25: Hàm số y = x 3 - 3x

2.
3.

)

e

có bao nhiêu điểm cực trị ?

B. 0.

A. 2.

C. 3.

D. 1.

Câu 26: Cho hình hộp chữ nhật ABCD.AB C D  có AB  a, AD  2a, AC   6a . Thể tích của khối hộp
chữ nhật ABCD.AB C D  bằng

A.

3a 3
.

3

B.

2a 3
.
3

C. 2a 3 .

D. 2 3a 3 .

Câu 27: Gọi (D ) là hình phẳng giới hạn bởi các đường y = 2x , y = 0, x = 0 và x = 2. Thể tích V của khối
tròn xoay tạo thành khi quay (D ) xung quanh trục Ox được tính bởi công thức
2

2
x +1

A. V = p ò 2

dx .

B. V =

0

Câu
2 :


28:

Trong

2
x +1

ò2

dx .

C. V =

0

không

gian

Oxyz,

2

ò 4 dx .

D. V = p ò 4x dx .

x

0


cho

hai

đường

0

thẳng

1 :

x 1 y 2 z  3


2
1
2



x  3 y 1 z 2


. Góc giữa hai đường thẳng 1, 2 bằng
1
1
4


A. 300.

B. 1350.

C. 600.

D. 450.
Trang 3/6 - Mã đề thi 132


Câu 29: Gọi z1, z2 là các nghiệm phức của phương trình z 2 - 2z + 3 = 0. Mô đun của z13z 24 bằng
A. 81.

B. 16.

C. 27 3.

D. 8 2.

Câu 30: Cho hình chóp tứ giác đều S .ABCD có AB  2a, SA  5a. Góc giữa hai mặt phẳng (SAB) và

(ABCD) bằng
A. 600.

B. 450.

C. 300.

D. 750.


Câu 31: Cho f (x ) = (x - 1)3 - 3x + 3. Đồ thị hình bên là của
hàm số có công thức
A. y = -f (x + 1) + 1.
B. y = -f (x + 1) - 1.
C. y = -f (x - 1) + 1.

p
3

Câu 32: Biết

ò
p
4

D. y = -f (x - 1) - 1.

cos2 x + sin x cos x + 1
cos4 x + sin x cos3 x

(

)

dx = a + b ln 2 + c ln 1 + 3 , với a, b, c là các số hữu tỉ. Giá

trị của abc bằng
A. - 2.
B. - 4.
C. 0.

D. - 6.
Câu 33: Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm hai chữ số phân biệt. Xác suất
để hai số được viết ra có ít nhất một chữ số chung bằng
154
448
145
281
A.
B.
C.
D.
.
.
.
.
729
729
729
729
Câu 34: Người ta xếp hai quả cầu có cùng bán kính r vào một
chiếc hộp hình trụ sao cho các quả cầu đều tiếp xúc với hai đáy,
đồng thời hai quả cầu tiếp xúc với nhau và mỗi quả cầu đều tiếp
xúc với các đường sinh của hình trụ (tham khảo hình vẽ). Biết thể
tích khối trụ là 120 cm 3 , thể tích mỗi khối cầu bằng

A. 10 cm 3 .

B. 40 cm 3 .

C. 20 cm 3 .


D. 30 cm 3 .

Câu 35: Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết AB  2a, AD  a, SA  3a và SA
vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh CD. Khoảng cách giữa hai đường thẳng SC và
BM bằng

A.

3 3a
.
4

B.

2 3a
.
3

C.

3a
.
2

D.

3a
.
3


Câu 36: Xét các số phức z, w thỏa mãn w - i = 2, z + 2 = iw. Gọi z1, z 2 lần lượt là các số phức mà tại
đó z đạt giá trị nhỏ nhất và đạt giá trị lớn nhất. Mô đun z1 + z 2 bằng

A. 3 2.
B. 3.
Câu 37: Cho hàm số f (x ) có bảng xét dấu đạo

C. 6.

D. 6 2.

hàm như hình bên. Hàm số y = f (1 - 2x ) đồng
biến trên khoảng
æ 1 ö
A. ççç- ; 1÷÷÷.
è 2 ÷ø

æ

B. ççç-2; - ÷÷÷ .
2 ÷ø
è

æ
C. ççç0;
è

3 ö÷
÷.

2 ÷÷ø

æ3 ö
D. ççç ; 3÷÷÷.
è 2 ÷ø
Trang 4/6 - Mã đề thi 132


x  1  2t
x  2  t 


; d  : y  1  2t  và mặt phẳng
Câu 38: Trong không gian Oxyz, cho hai đường thẳng d : y  t
z  1  3t
z  2t 


(P ) : x  y  z  2  0. Đường thẳng vuông góc với mặt phẳng (P ) và cắt hai đường thẳng d, d  có phương
trình là
x  3 y 1 z 2
A.


.
1
1
1
x 2 y 1 z 1
C.

.


1
1
1

x 1 y 1 z 1


.
1
1
4
x 1 y 1 z  4
D.


.
2
2
2
B.

Câu 39: Biết rằng xe x là một nguyên hàm của f (-x ) trên khoảng (;  ). Gọi F(x ) là một nguyên hàm
của f ¢(x )e x thỏa mãn F(0) = 1, giá trị của F(-1) bằng

A.

5 -e

.
2

B.

7
.
2

C.

5
.
2

7 -e
.
2

D.

Câu 40: Có bao nhiêu số nguyên m để phương trình x + 3 = me x có 2 nghiệm phân biệt ?
A. 7.
B. 6.
C. 5.
D. Vô số.
Câu 41: Hàm số f (x ) 

x


 m với m là tham số thực có nhiều nhất bao nhiêu điểm cực trị ?
x 1
A. 5.
B. 4.
C. 3.
D. 2.
Câu 42: Cho f (x ) mà đồ thị hàm số y  f (x ) như
2

f (x )  sin

hình bên. Bất phương trình

x
m
2

nghiệm đúng với mọi x   1; 3  khi và chỉ khi



A. m  f (1)  1.



B. m  f (0).

C. m  f (2).




D. m  f (1)  1.



Câu 43: Có bao nhiêu số nguyên a  2019; 2019 để phương trình



ln x  5

nghiệm phân biệt ?
A. 2015.
B. 2014.
C. 2022.
Câu 44: Cho f (x ) mà đồ thị hàm số y  f (x ) như hình bên.





1





1
3x  1


 x  a có 2

D. 0.

Hàm số y  f x  1  x 2  2x đồng biến trên khoảng

 
C.  0; 1 .

 
D.  2;  1 .

B. 1; 0 .

A. 1; 2 .

Câu

45:

Cho

hàm

số

f (x )




đạo

hàm

liên

tục

trên



thỏa

mãn

f (0)  3



2

f (x )  f (2  x )  x  2x  2, x  . Tích phân  xf (x )dx bằng
2

0

A.

5

.
3

B.

4
.
3

C.

10
.
3

D.

2
.
3

Trang 5/6 - Mã đề thi 132


Câu 46: Cho khối hộp ABCD.AB C D  có thể tích bằng V . Gọi M , N , P, Q, E, F lần lượt là tâm các
hình bình hành ABCD, AB C D , ABB A, BCC B , CDD C , DAAD . Thể tích khối đa diện có các đỉnh

M , P, Q, E, F , N bằng
A.


V
.
4

B.

V
.
2

C.

V
.
6

D.

V
.
3

x -3 y -4 z -2
=
=
và hai điểm A(6; 3; - 2),
2
1
1
B(1; 0;  1). Gọi D là đường thẳng đi qua B, vuông góc với d và thỏa mãn khoảng cách từ A đến D là


Câu 47: Trong không gian Oxyz , cho đường thẳng d :
nhỏ nhất. Một véctơ chỉ phương của D có tọa độ là
A. (2; - 1; - 3).
B. (1; 1; - 3).

C. (1; 2; - 4).

D. (1; - 1; - 1).

Câu 48: Trong không gian Oxyz, cho điểm A(2;  3; 4), đường thẳng d :

x 1 y 2 z

 và mặt cầu
2
1
2

(S ) : (x  3)2  (y  2)2  (z  1)2  20. Mặt phẳng (P ) chứa đường thẳng d thỏa mãn khoảng cách từ
điểm A đến (P ) lớn nhất. Mặt cầu (S ) cắt (P ) theo đường tròn có bán kính bằng

A. 5.
B. 1.
C. 4.
Câu 49: Sàn của một viện bảo tàng mỹ thuật được lát bằng những viên
gạch hoa hình vuông cạnh 40 (cm) như hình bên. Biết rằng người thiết kế
đã sử dụng các đường cong có phương trình




4 x 1



3

4x 2  y 4

D. 2.



 y 2 để tạo hoa văn cho viên gạch. Diện tích phần được tô

đậm gần nhất với giá trị nào dưới đây ?

A. 506 (cm2).

B. 507 (cm2).

C. 747 (cm2).

D. 746 (cm2).

Câu 50: Xét các số phức z , w thỏa mãn z  2, iw  2  5i  1. Giá trị nhỏ nhất của z 2  wz  4 bằng
A. 8.

B. 4.


C. 2





29  3 .

D. 2





29  5 .

-----------------------------------------------

----------- HẾT ----------

Trang 6/6 - Mã đề thi 132


ĐÁP ÁN MÔN TOÁN LẦN 3 - 2019
Câu

Mã 132

Mã 209


Mã 357

Mã 485

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

D
C
B
C
A

B
D
C
B
D
B
A
A
A
B
D
D
B
D
A
A
C
B
B
D
C
D
D
C
A
A
B
D
C
D

C
C
A
B
A
B
A
A
A
C
C
B
D
C
A

A
D
A
C
B
D
B
C
D
B
D
B
A
B

D
B
A
D
D
D
D
A
B
D
C
C
A
C
B
C
C
A
C
A
C
B
B
C
A
A
A
D
D
D

C
B
C
B
A
D

A
D
C
C
D
D
C
B
A
D
B
D
B
A
D
B
C
C
D
D
A
C
A

A
C
C
C
A
D
B
B
B
B
C
B
B
C
A
A
A
C
D
D
C
B
A
B
C
D
A

D
D

D
A
D
C
C
A
A
A
B
B
C
B
C
A
A
D
D
B
C
C
A
C
C
C
C
A
D
B
B
C

D
A
B
D
A
B
B
A
D
D
A
B
D
B
A
B
C
A


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

CHUYÊN ĐẠI HỌC VINH

Họ và tên:.................................................................................................... SBD: ..................................................... .

Câu 1:


Cho khối nón có độ dài đường cao bằng 2a và bán kính đáy bằng a . Thể tích của khối
nón đã cho bằng
A.

Câu 2:

2 a 3
.
3

B.

4 a 3
.
3

C.

 a3
3

.

D. 2 a 3 .

NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPT LẦN 3 QG NĂM 2019
MÔN: TOÁN
Thời gian làm bài: 90 phút

(không kể thời gian giao đề)
Mã Đề: 209
(Đề gồm 06 trang)

Cho hình chóp S. ABCD có đáy ABCD là hình vuông cạnh a , SA  a và SA vuông
góc với mặt phẳng đáy. Thể tích khối chóp S. ABCD bằng
A.

Câu 3:

a3
.
6

B.

2a 3
.
3

C. a 3 .

D.

Trong không gian Oxyz , một vectơ chỉ phương của đường thẳng  :

a3
.
3


x 1 y  3 z  3


1
2
5

có tọa độ là
A. 1; 2; 5 .
Câu 4:

Với a , b là các số thực dương bất kì, log 2

a
.
b

B.

1
a
log2 .
2
b

C.  1;3; 3 .

D.  1; 2; 5 .

a

bằng
b2
C. log 2 a  2log 2 b .

D. log 2 a  log 2  2b  .

Trong không gian Oxyz , cho hai điểm A  2; 1;3 và B  0;3;1 . Gọi   là mặt phẳng
trung trực của AB . Một vectơ pháp tuyến của   có tọa độ là
A.  2; 4; 1 .

Câu 6:

C.  1;1; 2 .

D. 1;0;1 .

Cho cấp số nhân  un  có u1  1, u2  2 . Mệnh đề nào sau đây đúng?
A. u2019  2 2018 .

Câu 7:

B. 1;2; 1 .

B. u 2019  2 2019 .

C. u 2019  2 2019 .

D. u 2019  2 2018

Hình dưới đây là đồ thị của hàm số nào?


/>
Trang 1

NHÓM TOÁN VD – VDC

A. 2log 2
Câu 5:

B. 1;3;3 .


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

B. y  x 4  x 2  2 .

A. y  x 2  2 .
Câu 8:

C. y  x 4  x 2  2 .

D. y  x 2  x  2 .

Trong không gian Oxyz , cho điểm I 1; 2;5  và mặt phẳng

  : x  2 y  2 z  2  0 .

2


2

2

B.  x  1   y  2    z  5   3 .

2

2

2

2

D.  x  1   y  2    z  5   9 .

A.  x  1   y  2    z  5   3 .

2

C.  x  1   y  2    z  5   9 .
Câu 9:

2

NHÓM TOÁN VD – VDC

Phương trình mặt cầu tâm I và tiếp xúc với   là
2


2

2

Cho hàm số y  f  x  có đồ thị như hình vẽ dưới đây

Trên đoạn  3;3 hàm số đã cho có mấy điểm cực trị?
B. 5 .

A. 4 .

C. 2 .

D. 3 .

Câu 10: Cho f  x  và g  x  là các hàm số liên tục bất kì trên đoạn  a; b . Mệnh đề nào sau đây
đúng ?
b

A.

b

b

b

b


a

B.

a

a

b

a

a

b

a

b

  f  x   g  x   dx   f  x  dx   g  x  dx . D.
a

b

  f  x   g  x   d x   f  x  dx   g  x  dx .

  f  x   g  x   dx 
a


a

b


a

b

f  x  dx   g  x  dx
a

.
Câu 11: Cho hàm số y  f  x  có đồ thị như hình vẽ bên.

Hàm số đã cho nghịch biến trên khoảng
A.  0; 2  .

B.  2;0  .

Câu 12: Tất cả các nguyên hàm của hàm f  x  

/>
C.  3; 1 .

D.  2;3 .

1

3x  2

Trang 2

NHÓM TOÁN VD – VDC


a

C.

b

f  x   g  x  dx   f  x  dx   g  x  dx .


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

A. 2 3 x  2  C .

B.

2
3x  2  C .
3

C. 

2
3x  2  C .

3

D. 2 3x  2  C .

Câu 13: Khi đặt 3 x  t thì phương trình 9 x 1  3x 1  30  0 trở thành
B. 9t 2  3t  10  0 .

C. t 2  t  10  0 .

D. 2t 2  t  1  0 .

NHÓM TOÁN VD – VDC

A. 3t 2  t  10  0 .

Câu 14: Từ các chữ số 1, 2, 3,..., 9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau
A. 39 .

C. 9 3 .

B. A93 .

D. C93 .

Câu 15: Cho số phức z  2  i . Trong hình bên điểm biểu diễn số phức z là

A. M .
Câu 16: Trong

B. Q.

không

gian

Oxyz ,

C. P.
cho hai

D. N .

đường thẳng

1 :



2 :

D. 1350 .

Câu 17: Cho số phức z thỏa mãn z  2 z  6  2i. Điểm biểu diễn số phức z có tọa độ là
A.  2; 2  .

B.  2; 2 .

C.  2; 2  .

Câu 18: Trong không gian Oxyz , cho đường thẳng d :


D.  2; 2  .

x  2 y 1 z


và mặt phẳng
1
2
2

 P  : x  2 y  z  5  0 . Tọa độ giao điểm của d và  P là
A.  2;1; 1 .
B.  3; 1; 2  .
C. 1;3; 2  .

D. 1;3;2 

Câu 19: Bất phương trình log 4  x 2  3 x   log 2  9  x  có bao nhiêu nghiệm nguyên?
A. vô số.

B. 1.



Câu 20: Hàm số y  x3  3x
A. 2 .



e


C. 4 .

D. 3

có bao nhiêu điểm cực trị?
B. 0 .

C. 3 .

D. 1.

Câu 21: Gọi  D  là hình phẳng giới hạn bởi các đường y  2 x , y  0, x  0 và x  2 . Thể tích V
của khối tròn xoay tạo thành khi quay  D  quanh trục Ox được định bởi công thức

/>
Trang 3

NHÓM TOÁN VD – VDC

x  3 y 1 z  2


. Góc giữa hai đường thẳng 1 ,  2 bằng
1
1
4
A. 300 .
B. 450 .
C. 600 .


x 1 y  2 z  3


2
1
2


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

2

2

A. V    2 x 1 dx .

2

B. V   2 x 1 dx .

0

2

C. V   4 x dx .

0


D. V    4 x dx .

0

0

C.  1;0  .

D.  1;1 .

NHÓM TOÁN VD – VDC

Câu 22: Cho hàm số y  f  x  có đồ thị như hình bên.

Hàm số y  2 f  x  đồng biến trên khoảng
A. 1; 2  .

B.  2;3 .

Câu 23: Đồ thị hàm số y 
A. 4 .

x  x2  1
có bao nhiêu đường tiệm cận
x 1
B. 3 .
C. 1.

D. 2 .


Câu 24: Hàm số y  log a x và y  log b x có đồ thị như hình vẽ dưới đây.

giá trị của

A.

a
bằng
b

1
.
3

B.

3.

C. 2 .

D.

3

2.

Câu 25: Cho hình hộp chữ nhật ABCD. ABCD có AB  a , AD  2 a , AC   6 a . Thể tích khối
hộp chữ nhật ABCD.ABCD bằng
A.


3a 3
.
3

B.

2a 3
.
3

C. 2a 3 .





D. 2 3a 3 .
2





Câu 26: Cho hàm số f  x  có đạo hàm f   x   x 2  x  x  2  2 x  4 , x  . Số điểm cực trị
của f  x  là
A. 2 .

B. 4 .


/>
C. 3 .

D. 1.

Trang 4

NHÓM TOÁN VD – VDC

Đường thẳng y  3 cắt hai đồ thị tại các điểm có hoành độ x1 , x2 . Biết rằng x2  2 x1 ,


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Câu 27: Cho hình lập phương ABCD. ABCD có cạnh bằng a . Diện tích xung quanh của hình
trụ có đáy là hai hình tròn ngoại tiếp hai hình vuông ABCD và ABCD
A.

2 a 2 .

B. 2 a 2 .

C.  a 2 .

D. 2 2 a2 .

A. 81 .


B. 16 .

C. 27 3 .

D. 8 2 .

Câu 29: Gọi m , M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của hàm số f  x   2 x  cos

x
2

trên đoạn  2; 2 . Giá trị của m  M bằng
A. 2 .

B. 2 .

C. 0 .

D. 4 .

Câu 30: Cho hình chóp đều S.ABCD có AB  2a , SA  a 5 . Góc giữa hai mặt phẳng  SAB  và

 ABCD 

NHÓM TOÁN VD – VDC

Câu 28: Gọi z1 , z2 là các nghiệm phức của phương trình z 2  2 z  3  0. Mô đun của z13 .z24 bằng

bằng


A. 30 .

B. 45 .

C. 60 .

D. 75 .

Câu 31: Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm 2 chữ số phân
biệt. Xác suất để hai số được viết ra có ít nhất một chữ số chung bằng
145
448
281
154
A.
.
B.
.
C.
.
D.
.
729
729
729
729
Câu 32: Biết rằng x e x là một nguyên hàm của f   x  trên khoảng  ;  . Gọi F  x  là một
nguyên hàm của f   x  e x thỏa mãn F  0   1 , giá trị của F  1 bằng
A.


B.

5e
.
2

C.

7e
.
2

D.

5
.
2

Câu 33: Cho hình chóp S.ABCD có đáy là hình chữ nhật, biết AB  2 a, AD  a, SA  3a và SA
vuông góc với mặt phẳng đáy. Gọi M là trung điểm cạnh CD . Khoảng cách giữa hai
đường thẳng SC và BM bằng
A.

3 3a
.
4

B.

2 3a

.
3

C.

3a
.
3

D.

3a
.
2

Câu 34: Cho hàm số f  x  có bảng xét dấu đạo hàm như hình bên dưới

Hàm số y  f 1  2 x  đồng biến trên khoảng
3
A.  0;  .
 2

 1 
B.   ;1 .
 2 

1

C.  2;   .
2



3 
D.  ;3  .
2 

Câu 35: Xét các số phức z , w thỏa mãn w  i  2, z  2  iw. Gọi z1 , z 2 lần lượt là các số phức mà
tại đó z đạt giá trị nhỏ nhất và đạt giá trị lớn nhất. Mô đun z1  z 2 bằng
A. 3 2 .

B. 3 .

/>
C. 6 .

D. 6 2 .

Trang 5

NHÓM TOÁN VD – VDC

7
.
2


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019


Câu 36: Cho f  x    x 1  3 x  3 . Đồ thị hình bên là của hàm số có công thức
3

A. y   f  x 1 1 .

B. y   f  x 1 1 . C. y   f  x 1 1 . D. y   f  x 1 1 .

quả cầu đều tiếp xúc với hai đáy, đồng thời hai quả cầu tiếp xúc với nhau và mỗi quả
cầu đề tiếp xúc với đường sinh của hình trụ ( tham khảo hình vẽ). Biết thể tích khối trụ
là 120 cm 3 , thể tích của mỗi khối cầu bằng

A. 10 cm 3 .

B. 20 cm 3 .

C. 30 cm 3 .

NHÓM TOÁN VD – VDC

Câu 37: Người ta xếp hai quả cầu có cùng bán kính r vào một chiếc hộp hình trụ sao cho các

D. 40 cm 3 .



cos2 x  sin x cos x  1
dx  a  b ln 2  c ln 1  3 , với a , b, c là các số hữu tỉ. Giá trị
Câu 38: Biết 
4
3

 cos x  sin x cos x
3





4

của abc bằng
A. 0 .

B. 2 .

C. 4 .

D. 6 .

phẳng  P  : x  y  z  2  0. Đường thẳng vuông góc với mặt phẳng  P và cắt cả hai
đường thẳng d , d  có phương trình là

x 3

1
x2

C.
1
A.


y 1

1
y 1

1

z2
.
1
z 1
.
1

x 1 y 1 z 1


.
1
1
4
x  1 y 1 z  4


D.
.
2
2
2
B.


x
Câu 40: Có bao nhiêu số nguyên m để phương trình x  3  me có 2 nghiệm phân biệt?

A. 7 .

B. 6 .

C. 5 .

D. Vô số.

Câu 41: Cho f  x  mà đồ thị hàm số y  f   x  như hình bên. Hàm số y  f  x  1  x 2  2 x
đồng biến trên khoảng

/>
Trang 6

NHÓM TOÁN VD – VDC

 x  1  2t
 x  2  t


; d  :  y  1  2t  và mặt
Câu 39: Trong không gian Oxyz , cho hai đường thẳng d :  y  t
 z  1  3t
 z  2t 





NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

B.  1;0  .

C.  0;1 .

D.  2; 1 .

Câu 42: Có bao nhiêu số nguyên a   2019; 2019 để phương trình

1
1
 x
 x  a có
ln  x  5 3  1

NHÓM TOÁN VD – VDC

A. 1; 2  .

hai nghiệm phân biệt?
A. 0 .
Câu 43: Cho hàm số

B. 2022 .


C. 2014 .

D. 2015 .

f ( x) có đạo hàm liên tục trên  và thỏa mãn f (0)  3 và
2

f ( x)  f (2  x)  x 2  2 x  2, x   . Tích phân

 xf ( x)dx

bằng

0

4
.
3

A.

Câu 44: Hàm số f  x  

B.

2
.
3

C.


5
.
3

D.

 10
.
3

x
 m (với m là tham số thực) có nhiều nhất bao nhiêu điểm cực
x 1
2

trị?
B. 3 .

C. 5 .

D. 4 .

Câu 45: Cho hình hộp ABCD. A ' B ' C ' D ' có thể tích bằng V . Gọi M , N , P, Q, E , F lần lượt là tâm
các hình bình hành ABCD, A ' B ' C ' D ', ABB ' A ', BCC ' B ', CDD ' C ', DAA ' D '. Thể tích khối
đa diện có các đỉnh M , P, Q, E , F , N bằng
A.

V
.

4

B.

V
.
2

C.

V
.
6

D.

V
.
3

Câu 46: Sàn của một viện bảo tàng mỹ thuật được lát bằng những viên gạch hình vuông cạnh

40  cm  như hình bên. Biết rằng người thiết kế đã sử dụng các đường cong có phương
trình 4x 2  y 2 và 4( x  1)3  y 2 để tạo hoa văn cho viên gạch. Diện tích phần được tô
đạm gần nhất với giá trị nào dưới đây?

/>
Trang 7

NHÓM TOÁN VD – VDC


A. 2 .


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

B. 747  cm2  .

C. 507  cm 2  .

D. 746  cm 2  .

Câu 47: Xét các số phức z , w thỏa mãn z  2 , iw  2  5i  1. Giá trị nhỏ nhất của z 2  wz  4

NHÓM TOÁN VD – VDC

A. 506  cm 2  .

bằng
A. 4 .

B. 2





29  3 .


C. 8 .

D. 2





29  5 .

Câu 48: Cho f ( x ) mà đồ thị hàm số y  f '( x ) như hình vẽ bên

A. m  f (0) .

x
2

 m nghiệm đúng với mọi x   1;3 khi và chỉ khi

B. m  f (1)  1 .

C. m  f ( 1)  1 .

Câu 49: Trong không gian Oxyz , cho đường thẳng d :

D. m  f (2) .

x3 y 4 z 2



và 2 điểm A  6;3; 2  ,
2
1
1

B 1;0; 1 . Gọi  là đường thẳng đi qua B , vuông góc với d và thỏa mãn khoảng cách
từ A đến  là nhỏ nhất. Một vectơ chỉ phương của  có tọa độ
B. 1; 1; 1 .

A. 1;1; 3 .

C. 1; 2; 4  .

Câu 50: Trong không gian Oxyz , cho điểm A  2; ;3; 4  , đường thẳng d :
2

2

D.  2; 1; 3 .

x 1 y  2 z

 và mặt
2
1
2

2


cầu  S  :  x  3   y  2    z  1  20 . Mặt phẳng  P chứa đường thẳng d thỏa mãn
khoảng cách từ điểm A đến  P lớn nhất. Mặt cầu  S  cắt  P theo đường tròn có
bán kính bằng
A.

5.

B. 1.

/>
C. 4 .

D. 2 .

Trang 8

NHÓM TOÁN VD – VDC

Bất phương trình f ( x)  sin


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

BẢNG ĐÁP ÁN

Câu 1:

2D

12B
22A
32A
42D

3A
13A
23B
33C
43D

4C
14B
24D
34A
44D

5B
15D
25C
35C
45C

6D
16B
26C
36B
46B

7B

17A
27A
37B
47C

8C
18D
28C
38C
48B

9D
19D
29B
39A
49A

10B
20D
30C
40A
50D

Cho khối nón có độ dài đường cao bằng 2a và bán kính đáy bằng a . Thể tích của khối
nón đã cho bằng
2 a 3
4 a 3
 a3
A.
.

B.
.
C.
.
D. 2 a 3 .
3
3
3
Lời giải

NHÓM TOÁN VD – VDC

1A
11D
21D
31C
41A

Chọn A

2a

a

Câu 2:

Cho hình chóp S . ABCD có đáy ABCD là hình vuông cạnh a , SA  a và SA vuông
góc với mặt phẳng đáy. Thể tích khối chóp S. ABCD bằng
a3
2a 3

a3
A.
.
B.
.
C. a 3 .
D.
.
6
3
3
Lời giải
Chọn D

/>
Trang 9

NHÓM TOÁN VD – VDC

1
2 a 3
Thể tích khối nón: V   2a   a 2 
.
3
3


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

S

NHÓM TOÁN VD – VDC

A

D

B

C

1
a3
Thể tích khối chóp VS . ABCD  S ABCD .SA 
3
3

Câu 3:

Trong không gian Oxyz , một vectơ chỉ phương của đường thẳng  :

x 1 y  3 z  3


1
2
5

có tọa độ là

A. 1; 2; 5 .

B. 1;3;3 .

C.  1;3; 3 .

D.  1; 2; 5 .

Lời giải
Chọn A
Câu 4:

Với a , b là các số thực dương bất kì, log 2
B.

1
a
log 2 .
2
b

C. log 2 a  2 log 2 b .

D. log 2 a  log 2  2b  .

Lời giải
Chọn C
Ta có: log 2
Câu 5:


a
 log 2 a  log 2 b2  log 2 a  2 log 2 b .
2
b

Trong không gian Oxyz , cho hai điểm A  2; 1;3 và B  0;3;1 . Gọi   là mặt phẳng
trung trực của AB . Một vectơ pháp tuyến của   có tọa độ là
A.  2; 4; 1 .

B. 1;2; 1 .

C.  1;1;2  .

D. 1;0;1 .

Lời giải
Chọn B
Vì   là mặt phẳng trung trực của AB nên vectơ pháp tuyến của mặt phẳng   là :
 

n  AB   2; 4; 2   2 1; 2; 1 , từ đây ta suy ra n1  1; 2; 1 là một vectơ pháp tuyến
của  
Câu 6:

Cho cấp số nhân  un  có u1  1, u2  2 . Mệnh đề nào sau đây đúng?
A. u 2019  2 2018 .

B. u 2019  2 2019 .

/>

C. u 2019  2 2019 .

D. u 2019  2 2018
Trang 10

NHÓM TOÁN VD – VDC

a
A. 2log 2 .
b

a
bằng
b2


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Lời giải
Chọn D
Cấp số nhân có u1  1, u2  2  q  2 . Vậy: u2019  u1q 2018   2 

 22018

NHÓM TOÁN VD – VDC

Câu 7:


2018

Hình dưới đây là đồ thị của hàm số nào?

B. y  x 4  x 2  2 .

A. y  x 2  2 .

C. y  x 4  x 2  2 .

D. y  x 2  x  2 .

Lời giải
Chọn B
Dựa vào đồ thị đã cho ta nhận thấy hàm số cần tìm chỉ có một cực trị nên đáp án C bị
loại.
Mặt khác đồ thị hàm số đã cho có tính đối xứng qua trục tung nên đáp án D bị loại.
Đồ thị hàm số đã cho đi qua hai điểm  1;0  và 1;0  nên đáp án A bị loại.
Vậy hàm số cần tìm là hàm số ở đáp án B.
Trong không gian Oxyz , cho điểm I 1; 2;5  và mặt phẳng

  : x  2 y  2 z  2  0 .

Phương trình mặt cầu tâm I và tiếp xúc với   là
2

2

2


B.  x  1   y  2    z  5   3 .

2

2

2

D.  x  1   y  2    z  5   9 .

A.  x  1   y  2    z  5   3 .
C.  x  1   y  2    z  5   9 .

2

2

2

2

2

2

Lời giải
Chọn C

I


R

d
H

(α )

Từ tọa độ tâm I 1; 2;5 ta loại được hai đáp án B, D.

/>
Trang 11

NHÓM TOÁN VD – VDC

Câu 8:


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Mặt khác theo bài ta có R  d  I ,    

1  2.2  2.5  2
2

2

1   2   2


2

 3 nên đáp án A loại.

2

2

Vậy chọn C
Câu 9:

Cho hàm số y  f  x  có đồ thị như hình vẽ dưới đây

NHÓM TOÁN VD – VDC

2

Vậy phương trình mặt cầu cần tìm có phương trình  x  1   y  2    z  5   9 .

Trên đoạn  3;3 hàm số đã cho có mấy điểm cực trị?
B. 5 .

A. 4 .

C. 2 .

D. 3 .

Lời giải
Chọn D

Quan sát đồ thị đã cho ta nhận thấy trên đoạn  3;3 hàm số y  f  x  có ba điểm cực
trị.
Câu 10: Cho f  x  và g  x  là các hàm số liên tục bất kì trên đoạn  a; b . Mệnh đề nào sau đây
đúng ?
A.

b

b

 f  x   g  x  dx   f  x  dx   g  x  dx .
a

a

b

C.

b

b

a

b

  f  x   g  x   d x   f  x  dx   g  x  dx .
a


b

a

b

  f  x   g  x   dx   f  x  dx   g  x  dx .
a

B.

a

b

D.

a

a

b

b

  f  x   g  x   dx   f  x  dx   g  x  dx
a

a


a

.
Lời giải
Chọn B
Theo tính chất của tích phân ta có đáp án B là mệnh đề đúng.
Mặt khác, ta có nhận xét:
+ A sai khi f  x   g  x  với x   a; b  .
b

+ C sai khi


a

b

f  x  dx   g  x  dx  0.
a

b

+ D sai khi

  f  x   g  x   dx  0 .
a

Câu 11: Cho hàm số y  f  x  có đồ thị như hình vẽ bên.

/>

Trang 12

NHÓM TOÁN VD – VDC

b


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

NHÓM TOÁN VD – VDC

Hàm số đã cho nghịch biến trên khoảng
A.  0; 2  .

B.  2;0  .

C.  3; 1 .

D.  2;3 .

Lời giải
Chọn D
Dựa vào đồ thị ta có hàm số nghịch biến trên các khoảng  1;1 và  2;3 .
Câu 12: Tất cả các nguyên hàm của hàm f  x  
A. 2 3 x  2  C .

B.


2
3x  2  C .
3

1

3x  2
2
3x  2  C .
C. 
3

D. 2 3x  2  C .

Lời giải
Chọn B
1



Câu 13: Khi đặt 3 x  t thì phương trình 9 x 1  3x 1  30  0 trở thành
A. 3t 2  t  10  0 .
B. 9t 2  3t  10  0 .
C. t 2  t  10  0 .

D. 2t 2  t  1  0 .

Lời giải
Chọn A


 

Ta có 9x 1  3x 1  30  0  9. 3x

2

 3.3x  30  0 .

Do đó khi đặt t  3 x ta có phương trình  9t 2  3t  30  0  3t 2  t  10  0 .
Câu 14: Từ các chữ số 1, 2, 3,..., 9 lập được bao nhiêu số có 3 chữ số đôi một khác nhau
A. 39 .

B. A93 .

C. 9 3 .

D. C93 .

Lời giải
Chọn B
Gọi số cần tìm có dạng là a1a 2 a3  a1  0, a1  a2 , a2  a3 , a3  a1  .
Mỗi bộ ba số  a1; a2 ; a3  là một chỉnh hợp chập 3 của 9 phần tử.
Vậy số các số cần tìm là A93 số.
/>
Trang 13

NHÓM TOÁN VD – VDC

Ta có


1
1
1
1  3x  2  2
2

dx    3 x  2  2 d  3 x  2   .
C 
3 x  2  C.
1
3
3
3
3x  2
2


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Câu 15: Cho số phức z  2  i . Trong hình bên điểm biểu diễn số phức z là

B. Q.

C. P.

NHÓM TOÁN VD – VDC

A. M .


D. N .

Lời giải
Chọn D
Ta có z  2  i . Do đó điểm biểu diễn số phức z là N  2; 1 .
Câu 16: Trong

không

gian

Oxyz ,

cho hai

đường thẳng

1 :

x 1 y  2 z  3


2
1
2

x  3 y 1 z  2



. Góc giữa hai đường thẳng 1 ,  2 bằng
1
1
4
A. 300 .
B. 450 .
C. 600 .



2 :

D. 1350 .

NHÓM TOÁN VD – VDC

Lời giải
Chọn B

Véc tơ chỉ phương của 1 là u1   2;1; 2 

Véc tơ chỉ phương của  2 là u2  1;1; 4 

 
u1.u2
 
cos  1 ,  2   cos u1 , u2    
u1 . u2






 2 .1  1.1  2.  4 
2
2
 2   12  22 . 12  12   4 



9
2

.
2
3.3 2

Do đó góc giữa hai đường thẳng 1 và  2 là 450 .
Câu 17: Cho số phức z thỏa mãn z  2 z  6  2i. Điểm biểu diễn số phức z có tọa độ là
A.  2; 2  .

B.  2; 2 .

C.  2; 2  .

D.  2; 2  .

Lời giải
Chọn A
Gọi số phức z  x  yi với x, y  . Theo bài ra ta có


x  2
.
 y  2

 x  yi   2  x  yi   6  2i  3x  yi  6  2i  
/>
Trang 14


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Vậy điểm biểu diễn số phức z có tọa độ là  2; 2  .

x  2 y 1 z


và mặt phẳng
1
2
2
 P  : x  2 y  z  5  0 . Tọa độ giao điểm của d và  P là

Câu 18: Trong không gian Oxyz , cho đường thẳng d :

B.  3; 1; 2  .

C. 1;3; 2 .


D. 1;3;2 

Lời giải
Chọn D
x  2  t
 y  1  2t

 2  t  2 1  2t   2t  5  0  t  1  A 1;3; 2  là tọa độ giao
Xét hệ: 
 z  2t
 x  2 y  z  5  0

NHÓM TOÁN VD – VDC

A.  2;1; 1 .

điểm của đường thẳng và mặt phẳng.
Câu 19: Bất phương trình log 4  x 2  3 x   log 2  9  x  có bao nhiêu nghiệm nguyên?
A. vô số.

B. 1.

D. 3

C. 4 .
Lời giải

Chọn D


 x 2  3x  0
 x  03 x  9
Điều kiện: 
9  x  0



2

 15 x  81  x 

2

27
.
5

So sánh điều kiện, ta có:

27
 x  9.
5

Vậy bất phương trình có 3 nghiệm nguyên.



Câu 20: Hàm số y  x3  3x




e

có bao nhiêu điểm cực trị?
B. 0 .

A. 2 .

C. 3 .

D. 1.

Lời giải
Chọn D



Hàm số y  x3  3x



e



 

có TXĐ:  3;0 

y  e  3x 2  3 x3  3x 


3; 



e 1

/>
Trang 15

NHÓM TOÁN VD – VDC



Ta có: log 4  x 2  3 x   log 2  9  x   log 4 x 2  3 x  log 4  9  x   x 2  3 x   9  x 


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

x 1
 x  1

y  0  

Vậy hàm số có 1 điểm cực trị.
Câu 21: Gọi  D  là hình phẳng giới hạn bởi các đường y  2 x , y  0, x  0 và x  2 . Thể tích V
của khối tròn xoay tạo thành khi quay  D  quanh trục Ox được định bởi công thức
2


A. V    2

2
x 1

dx .

0

B. V   2

2
x 1

2
x

dx .

C. V   4 dx .

0

0

NHÓM TOÁN VD – VDC

Bảng xét dấu


D. V    4 x dx .
0

Lời giải
Chọn D
Thể tích V của khối tròn xoay tạo thành khi quay  D  quanh trục Ox được định bởi
2

2

công thức V    y 2 dx    4 x dx
0

0

Câu 22: Cho hàm số y  f  x  có đồ thị như hình bên.

NHÓM TOÁN VD – VDC

Hàm số y  2 f  x  đồng biến trên khoảng
A. 1; 2  .

B.  2;3 .

C.  1;0  .

D.  1;1 .

Lời giải
Chọn A

Ta có y    2 f  x    2. f   x  . Hàm số đồng biến  2. f   x   0  f   x   0.
Dựa vào đồ thị hàm số ta có f   x   0  0  x  2  chọn đáp án A.

x  x2  1
Câu 23: Đồ thị hàm số y 
có bao nhiêu đường tiệm cận
x 1
A. 4 .
B. 3 .
C. 1.

D. 2 .

Lời giải
/>
Trang 16


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Chọn B
Tập xác định D   \ 1 .

x  x2  1
x  x2  1
  ; lim y  lim
  .
x 1

x 1
x 1
x 1
x 1
x 1
Do đó đồ thị hàm số nhận đường thẳng x  1 làm tiệm cận đứng.

NHÓM TOÁN VD – VDC

Ta có: lim y  lim

Lại có:

1 
1
x 1  1  2 
1 1 2
x
x  x 1
x  2.
  lim
+ lim y  lim
 lim 
x 
x 
x

x

1

x 1
x 1
1
x
Vậy đồ thị hàm số nhận đường thẳng y  2 làm tiệm cận ngang.
2


1 
1
x
1

1


2 
1 1 2
2
x
x  x 1
x  0.
  lim
+ lim y  lim
 lim 
x 
x 
x

x


1
x 1
x 1
1
x
Vậy đồ thị hàm số nhận đường thẳng y  0 làm tiệm cận ngang.

Do đó đồ thị hàm số đã có 3 đường tiệm cận.
Câu 24: Hàm số y  log a x và y  log b x có đồ thị như hình vẽ dưới đây.

giá trị của

A.

1
.
3

a
bằng
b
B.

3.

C. 2 .

D.


3

2.

Lời giải
Chọn D
Từ đồ thị có x1 là nghiệm của phương trình log b x  3 nên log b x1  3  x1  b3 .
Từ đồ thị có x2 là nghiệm của phương trình log a x  3 nên log a x2  3  x2  a3 .
3

a
a
a
Do x2  2 x1  a 3  2.b 3     2   3 2 . Vậy  3 2 .
b
b
b
/>
Trang 17

NHÓM TOÁN VD – VDC

Đường thẳng y  3 cắt hai đồ thị tại các điểm có hoành độ x1 , x2 . Biết rằng x2  2 x1 ,


NHÓM TOÁN VD – VDC

ĐỀ THI THỬ THPTQG – 2018-2019

Câu 25: Cho hình hộp chữ nhật ABCD. ABCD có AB  a , AD  2 a , AC   6 a . Thể tích khối

hộp chữ nhật ABCD.ABCD bằng
A.

B.

2a 3
.
3

C. 2a 3 .

D. 2 3a 3 .

NHÓM TOÁN VD – VDC

3a 3
.
3

Lời giải
Chọn C

Ta có AC  a 2  4a 2  a 5 , CC  



2

 


6a 

5a



2

a.

Thể tích khối hộp chữ nhật là V  AB. AD.CC   a.2 a.a  2a 3 .





2





Câu 26: Cho hàm số f  x  có đạo hàm f   x   x 2  x  x  2  2 x  4 , x  . Số điểm cực trị
của f  x  là
A. 2 .

B. 4 .

C. 3 .


D. 1.

Lời giải

 x2  x  0
x  0

2
2
2
x
Ta có f   x   0   x  x   x  2  .  2  4   0   x  2   0   x  1 .

 x
 x  2
 2  4  0

Nhận thấy x  2 là nghiệm bội ba nên f   x  vẫn đổi dấu khi qua x  2. Vậy hàm số đã
cho có 3 điểm cực trị.
Câu 27: Cho hình lập phương ABCD. ABCD có cạnh bằng a . Diện tích xung quanh của hình
trụ có đáy là hai hình tròn ngoại tiếp hai hình vuông ABCD và ABCD
A.

2 a 2 .

B. 2 a 2 .

2
C.  a .


D. 2 2 a2 .

Lời giải
Chọn A

/>
Trang 18

NHÓM TOÁN VD – VDC

Chọn C


×