10 de thi vao 10
Đề số 1
Câu 1 ( 3 điểm )
1) Vẽ đồ thị hàm số
2
2
x
y
=
2) Viết phơng trình đờng thẳng đi qua hai điểm ( 2 ; -2 ) và ( 1 ; - 4 )
3) Tìm giao điểm của đờng thẳng vừa tìm đợc với đồ thị trên .
Câu 2 ( 3 điểm )
1) Giải phơng trình :
21212
=++
xxxx
2) Giải phơng trình :
5
12
412
=
+
+
+
x
x
x
x
Câu 3 ( 3 điểm )
Cho hình bình hành ABCD , đờng phân giác của góc BAD cắt DC và
BC theo thứ tự tại M và N . Gọi O là tâm đờng tròn ngoại tiếp tam giác MNC .
1) Chứng minh các tam giác DAM , ABN , MCN , là các tam giác
cân .
2) Chứng minh B , C , D , O nằm trên một đờng tròn .
Câu 4 ( 1 điểm )
Cho x + y = 3 và y
2
. Chứng minh x
2
+ y
2
5
Đề số 2
Câu 1 ( 3 điểm )
1) Giải phơng trình :
8152
=++
xx
2) Xác định a để tổng bình phơng hai nghiệm của phơng trình x
2
+ax
+a 2 = 0 là bé nhất .
Câu 2 ( 2 điểm )
Trong mặt phẳng toạ độ cho điểm A ( 3 ; 0) và đờng thẳng x 2y = - 2 .
a) Vẽ đồ thị của đờng thẳng . Gọi giao điểm của đờng thẳng với trục
tung và trục hoành là B và E .
b) Viết phơng trình đờng thẳng qua A và vuông góc với đờng thẳng x
2y = -2 .
c) Tìm toạ độ giao điểm C của hai đờng thẳng đó . Chứng minh rằng
EO. EA = EB . EC và tính diện tích của tứ giác OACB .
Câu 3 ( 2 điểm )
Giả sử x
1
và x
2
là hai nghiệm của phơng trình :
x
2
(m+1)x +m
2
2m +2 = 0 (1)
a) Tìm các giá trị của m để phơng trình có nghiệm kép , hai nghiệm
phân biệt .
b) Tìm m để
2
2
2
1
xx
+
đạt giá trị bé nhất , lớn nhất .
Câu 4 ( 3 điểm )
Cho tam giác ABC nội tiếp đờng tròn tâm O . Kẻ đờng cao AH , gọi trung
điểm của AB , BC theo thứ tự là M , N và E , F theo thứ tự là hình chiếu vuông
góc của của B , C trên đờng kính AD .
a) Chứng minh rằng MN vuông góc với HE .
b) Chứng minh N là tâm đờng tròn ngoại tiếp tam giác HEF .
Đề số 3
Câu 1 ( 2 điểm )
So sánh hai số :
33
6
;
211
9
=
=
ba
Câu 2 ( 2 điểm )
Cho hệ phơng trình :
=
=+
2
532
yx
ayx
Gọi nghiệm của hệ là ( x , y ) , tìm giá trị của a để x
2
+ y
2
đạt giá trị nhỏ
nhất .
Câu 3 ( 2 điểm )
Giả hệ phơng trình :
=++
=++
7
5
22
xyyx
xyyx
Câu 4 ( 3 điểm )
1) Cho tứ giác lồi ABCD các cặp cạnh đối AB , CD cắt nhau tại P và BC
, AD cắt nhau tại Q . Chứng minh rằng đờng tròn ngoại tiếp các tam giác
ABQ , BCP , DCQ , ADP cắt nhau tại một điểm .
3) Cho tứ giác ABCD là tứ giác nội tiếp . Chứng minh
BD
AC
DADCBCBA
CDCBADAB
=
+
+
..
..
Câu 4 ( 1 điểm )
Cho hai số dơng x , y có tổng bằng 1 . Tìm giá trị nhỏ nhất của :
xy
yx
S
4
31
22
+
+
=
Đề số 4
Câu 1 ( 2 điểm )
Tính giá trị của biểu thức :
322
32
322
32
+
++
+
=
P
Câu 2 ( 3 điểm )
1) Giải và biện luận phơng trình :
(m
2
+ m +1)x
2
3m = ( m +2)x +3
2) Cho phơng trình x
2
x 1 = 0 có hai nghiệm là x
1
, x
2
. Hãy lập ph-
ơng trình bậc hai có hai nghiệm là :
2
2
2
1
1
;
1 x
x
x
x
Câu 3 ( 2 điểm )
Tìm các giá trị nguyên của x để biểu thức :
2
32
+
=
x
x
P
là nguyên .
Câu 4 ( 3 điểm )
Cho đờng tròn tâm O và cát tuyến CAB ( C ở ngoài đờng tròn ) . Từ
điểm chính giữa của cung lớn AB kẻ đờng kính MN cắt AB tại I , CM cắt đ-
ờng tròn tại E , EN cắt đờng thẳng AB tại F .
1) Chứng minh tứ giác MEFI là tứ giác nội tiếp .
2) Chứng minh góc CAE bằng góc MEB .
3) Chứng minh : CE . CM = CF . CI = CA . CB
Đề số 5
Câu 1 ( 2 điểm )
Giải hệ phơng trình :
=++
=
044
325
2
22
xyy
yxyx
Câu 2 ( 2 điểm )
Cho hàm số :
4
2
x
y
=
và y = - x 1
a) Vẽ đồ thị hai hàm số trên cùng một hệ trục toạ độ .
b) Viết phơng trình các đờng thẳng song song với đờng thẳng y = - x
1 và cắt đồ thị hàm số
4
2
x
y
=
tại điểm có tung độ là 4 .
Câu 2 ( 2 điểm )
Cho phơng trình : x
2
4x + q = 0
a) Với giá trị nào của q thì phơng trình có nghiệm .
b) Tìm q để tổng bình phơng các nghiệm của phơng trình là 16 .
Câu 3 ( 2 điểm )
1) Tìm số nguyên nhỏ nhất x thoả mãn phơng trình :
413
=++
xx
2) Giải phơng trình :
0113
22
=
xx
Câu 4 ( 2 điểm )
Cho tam giác vuông ABC ( góc A = 1 v ) có AC < AB , AH là đờng cao
kẻ từ đỉnh A . Các tiếp tuyến tại A và B với đờng tròn tâm O ngoại tiếp tam
giác ABC cắt nhau tại M . Đoạn MO cắt cạnh AB ở E , MC cắt đờng cao AH
tại F . Kéo dài CA cho cắt đờng thẳng BM ở D . Đờng thẳng BF cắt đờng
thẳng AM ở N .
a) Chứng minh OM//CD và M là trung điểm của đoạn thẳng BD .
b) Chứng minh EF // BC .
c) Chứng minh HA là tia phân giác của góc MHN .