Tải bản đầy đủ (.pdf) (3 trang)

THE HADWIGER FINSLER INEQUALITY REVERSE IN AN ACUTE TRIANGLE sorin radulescu, marian dinca, marius dragan, eduard puschin

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (45.67 KB, 3 trang )

THE HADWIGER-FINSLER INEQUALITY REVERSE IN AN
ACUTE TRIANGLE
Prof.dr. Sorin Rădulescu,Prof. Marian Dincă,Prof.Marius Drăgan,Prof.
Eduard Puschin
In the paper1 the authors proposed the following inequality:
In any acute triangle ABC are true the following inequality:
a 2 + b 2 + c 2 ≤ 4 3 F + 2− 3 a − b 2 + b − c 2 + c − a 2

1

3−2 2

Abstract: In this paper for begining we shall prove the inequality 1 for the isosceles acute
triangle
and then for any acute triangle.
Theorem 1.In any isoscel acute triangle ABC with the sides of lengths a, b, c
and area F and b = c are true the inequality 1
Proof :The inequality 1 may be written as :
a 2 +b 2 +c 2 −4 3 F
≤ 2− 3
2
a−b 2 +b−c 2 +c−a 2
3−2 2

Using the notation b = c = x, because F =
inequality 2
may be written as
a 2 +b 2 +c 2 −4 3 F
a−b 2 +b−c 2 +c−a 2

;



4x 2 sin 2

=

+2x 2 −2 3 x 2 sinA
2

A
2

−x

4−4 cosA⋅ 12 +

3
2

2 2xsin

x 2 sinA and a = 2xsin A2 , the right side ratio of

4sin 2

=

A
2

+2−2 3 sinA


=

2

2 2sin A2 −1

21−cosA+2−2 3 sinA
2 2sin A2 −1

2

3
4−2 cosA+ 3 sinA

=
=

A
2

1
2

2 2sin A2 −1
π
cos 2 A4 − 12
A
4


cos 2

π
+ 12

2

=
1+cos

=
1+cos

⋅sinA

=

2

A
2
A
2

2 2sin A2 −1
− π6
1+cos

=


+ π6

1+cos

We shall consider the function f : 0,

A
2
A
2

π

2
π
6

8 sin A2 − 12
− π6
+ π6

8sin 2

4 1−cos A− π3

−1 +1 =

→ R,

fA =


A
2

=

2

8 sin A2 −sin π6
cos A2 − π6 −cos
1+cos
2sin A2 sin π6

32sin 2

− π6

A
2

2

+ π6

A
2

=
+ π6


32sin 2

A
4
A
4

π
− 12
cos 2
π
− 12
cos 2

A
4
A
4

+1

+1

1+cos A2 + π6 

< π2 , or
12

= 3π
+ 2π

=
in on equivalent form
As A ≤ π2 , we have A2 + π6 ≤ π4 +
12
12
A
π
π
π
A
π
cos 2 + 6 ≥cos 4 + 6 also sin 2 ≤sin 4
it follow that fA ≤ f π2  and we have the inequality of the statement.
Theorem 2. For any triangle ABC of semiperimeter s with incircle CI, r and circumcicle
CO, R there exist two isosceles triangles
A 1 B 1 C 1 and A 2 B 2 C 2 of semiperimeter s 1 and s 2 with incircle CI, r and circumcicle CO, R
So as inequality exist :
s2 ≤ s ≤ s1
4
Proof. The straight line OI cat the circumcircle in it A 1 and A 2 .The tangents to the incircle
from a point A 1 , cat the circumcicle in
B 1 and C 1 .The straight line B 1 C 1 is tangent to the incircle ,acording to Poncelet’s closure
theorem.
The triangle A 1 B 1 C 1 is isosceles. Similarly the tangents to the incircle from a point A 2 cat
the circumcircle in B 2 and C 2 .
The straght line B 2 C 2 is tangent to the incircle ,acording to Poncelet’s closure theorem it
follows that A 2 B 2 C 2 is isoscel.
As a 1 = B 1 C 1 = 2rR+r+d
, b 1 = c 1 = A 1 C 1 = A 1 B 1 = R+r+dR+d
, where

2 2
2 2
R+d −r

R+d −r

2

d =∣ OI ∣= R − 2Rr and
a 2 = B 2 C 2 = 2rR+r−d
, b2 = c2 = A2C2 = A2B2 =
2 2
R−d −r

s1 =

1
2

a 1 + b 1 + c 1  =

R+r−dR−d
R−d 2 −r 2

and as

2R 2 + 10Rr − r 2 + 2R − 2r R 2 − 2Rr

π
− 12

π
+ 12


s 2 = 12 a 2 + b 2 + c 2  = 2R 2 + 10Rr − r 2 − 2R − 2r R 2 − 2Rr
acording with the W.J.Blundon inequality it follows that the inequality 4 is true
Proof of the inequality (1) If the point O exterior of the incircle C(I,r),rezult∣ OI∣= d ≥ r
, and the tangent to the incircle from a point O,cat
the circumcircle in B 3 and C 3 and the tangent to the incircle C(I,r) from a points B 3 and
C 3 cat the circumcircle C(O,R) in A 3 ,
acording the Poncelet’s closure theorem.The triangle A 3 B 3 C 3 it is right angled
∢B 3 A 3 C 3 = π2 ,
Let s the semiperimeter of the acute angled triangle ABC and s 3 the semiperimeter of the
triangle A 3 B 3 C 3
We shall prove that s ≥ s 3
5
Let the triangle A 3 B 3 C 3 tangent to the incircle C(I,r) in the points ; D.E.F ;where
D ∈ B 3 C 3 ; E ∈ C 3 A 3 and F ∈ B 3 A 3
we have A 3 F = A 3 E = x = rctg π4 = r, B 3 F = B 3 D = y = rctg B23 ,
C 3 D = C 3 E = z = rctg C23 ,
As B 3 C 3 = B 3 D + C 3 D = y + z = 2R ,we shall obtain :s 3 =x + y + z = 2R + r ,it rezults that
the inequality 5 is equivalent to :
R ∑ sinA ≥ r + 2R ,or ∑ sinA ≥ Rr + 2 = ∑ cosA + 1, or ∑ sinA −cosA ≥ 1 ,6 lets
ciclic
π−α
,B
2

ciclic


ciclic

ciclic

= π−β
, C = π−γ
, as A, B, C ∈ 0, π2 
2
2
we have that α, β, γ ∈ 0, π ,and α + β + γ = π .The inequality 6 is equivalented
to ∑ cos α2 −sin α2  ≥ 1,or ∑ cos α2 −tg π4 sin α2  ≥ 1, or

A=

ciclic

ciclic

∑ cos α2 +

ciclic

π
4

 ≥cos π4

7, let

α

2

+

π
4

= u,

β
2

+

π
4

= v and

γ
2

+

π
4

= w and

using well-know identity:

cosu +cosv +cosw +cosu + v + w = 4 ∏ cos u+v
 it follows that:
2
ciclic

∑ cos α2 +

ciclic

π
4

 +cos ∑  α2 +

or ∑ cos α2 +
ciclic

π
4



ciclic
−cos π4

π
4

 = 4 ∏ cos α+β
+

4
ciclic

= 4 ∏ cos π2 −
ciclic

γ
4

π
4

 = 4 ∏ cos π−γ
+
4
ciclic

π
4



 = 4 ∏ sin γ4 ≥ 0 we shall obtain the
ciclic

inequality 7
Using well-known identity: ab + bc + ca = s 2 + r 2 + 4Rr and
a 2 + b 2 + c 2 = 2s 2 − 2r 2 − 8Rr and F = sr, let 2− 3 = λ
3−2 2


The inequality 1 is equivalented to
4 3 sr + 2λ − 12s 2 − 2r 2 − 8Rr − 2λs 2 + r 2 + 4Rr ≥ 0
or λ − 1s 2 + 2 3 sr + 1 − 3λr 2 + 4 − 12λRr = Es, R, r ≥ 0
8
As λ > 1, we shall obtain : Es, R, r ≥ Es 3 , R, r
9
In order to prove inequality 8 it will be sufficient to prove inequality Es 3 , R, r ≥ 0 ,what
reprezent the inequality 1 for right angled triangle
A3B3C3
bc
2
2
2
We have F = 2 , and a = b + c .We shall obtain the following inequality:
b
c
2 3 bc + 2λ − 12b 2 + c 2  − 2λ b 2 + c 2 b + c + bc ≥ 0, let b+c
= x and b+c
=y
obtain
2 3 xy + 2λ − 121 − 2xy − 2λ 1 − 2xy + xy ≥ 0 or
xy 3 + 2 − 5λ + 2λ − 1 ≥ λ 1 − 2xy ,let xy = t
As x + y = 1, we shall obtain : t ∈ 0; 14  ,let 1 − 2xy = θ ,θ ∈  1 , 1, it will rezult that
:xy

2
= 1−θ
2
1−θ 2


2

2

,we shall obtain:
3 + 2 − 5λ + 2λ − 1 − λ ⋅ θ ≥ 0

or 5λ − 3 − 2θ 2 − 2λθ − λ + 3 ≥ 0 ,

the equation 5λ − 3 − 2θ 2 − 2λθ − λ + 3 = 0 has a root θ 1 =
it follows that θ 2 =

2 −λ+ 3 
5λ− 3 −2

1
2

and θ 1 θ 2 =

−λ+ 3
5λ− 3 −2


1
2

and θ 2 <

and 5λ − 3 − 2θ 2 − 2λθ − λ + 3 = 5λ − 3 − 2θ − θ 1 θ − θ 2  ≥ 0


For ∣ OI ∣= d ≤ r, it shall rezult that any triangle is acute, let ∢B 1 A 1 C 1 = α and
∢B 2 A 2 C 2 = β
r
r
sin α2 = R+d
< 1 =sin π4 , it follows that α2 < π4 and α < π2 .As sin β2 = R−d
≤ 1 or
2

2

r 2 ≤ R − d , or d ≤ R − r 2 , or
d 2 ≤ R − r 2  2 or R 2 − 2Rr ≤ R 2 − 2 2 Rr + 2r 2 or  2 − 1R ≤ r or R ≤  2 + 1r
,this inequality is true,because
d ≤ r imply R 2 − 2Rr ≤ r 2 , or R − r 2 ≤ 2r 2 who imply R ≤  2 + 1r we shall obtain:
β
sin 2 ≤ 1 =sin π4 , it follows that β ≤ π2
2

Because Es, R, r ≥ Es 2 , R, r and Es 2 , R, r ≥ 0 because is an inequality for acute
triangle and isosceles triangle
We have inequality of the statement
References
1 Cezar Lupu,Constatin Mateescu,Vlad Matei,Mihai Opincariu:Refinements of the
Finsler-Hadwiger
reverse inequality,Gazeta Matematica seria A,nr 1-2(2010)p.49-53
2 P.G.Popescu,I.V.Maftei,J.L.Diaz-Barrero,M.Dincă:Inegalitati Matematice;Modele
Inovatoare,
Editura Didactica şi Pedagogica,2007

3 Marian Dincă,J.L.Diaz-Barrero: A new proof of an Inequality of Oppenheim, vixra
org:1008.0013
4 Marian Dincă,Mihaly Bencze:New generalisation Finsler-Hadwiger inequality:Octogon
Mathematical Magazine,2002



×