Tải bản đầy đủ (.docx) (60 trang)

ĐỒ ÁN TỐT NGHIỆP NGÀNH XÂY DỰNG ( TIẾNG ANH ) part 3

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.48 MB, 60 trang )

GRADUATION THESIS

PAGE 1

INSTRUCTOR


GRADUATION THESIS

PAGE 2

CHAPTER 5

INSTRUCTOR

DESIGN FRAMES

1.1. DETERMINE OF
FRAME’S INNER
FORCE FROM
FLOOR 1-15:
We have beams arrangement plan floor is shown in Fig 5.1:

Fig 5.1 Beams arrangement plan floor 2-15

1.1.1. Premilinary of columns’s size:
The building has 15 floors and 1 roof floor with reinforcement concrete B25.
So according to “TCVN 198-1997 mục 2.5.4” we change the columns’s size each 4
floors.
In Axis Frame 3 we have:
+ Column C9:


Transmission area from slabs to C9 column :
7.5  8 �7.5  7.8 �
2
SC9  (
) ��
� 59.2875 m
2
� 2

Vertical force from beams to C7 column:

 


GRADUATION THESIS

PAGE 3

INSTRUCTOR

G d  n bt b d  h d  h s  L
�7.5 �2  8  7.8 �
 1.1�25 �0.3  0.7  0.12  ��
� 73.69 kN
2


We have size of column C7 at floor 13 - 15:
nt


Ac 

k � Si q si  G d 
i 1

bR b



1.1 �3 � 59.2875 �8.19  73.69  �10 6
 141420 mm 2
3
0.9 �14.5 �10

= > we choose the columns’s size of column C7 at floor 13-15 is 400x400 (mm)

With:
nt: amount of floor
k: The coefficient refers to influence of bending moment, reinforcement
ratio, column’s size ;
+ k = 1,1 – middle column
+ k = 1,2 – edge column
+ k = 1,3 – corner column
qsi: Load by slab
Use the same method for other columns we have premilinary of columns’s size is
shown in Table 5.1:


GRADUATION THESIS


Colum
n

PAGE 4

Ac
(mm2)

bc
(mm)

53174

300

hc
(mm
)
300

124073

450

450

194973

550


550

265872

650

650

20848

400

400

80394

400

400

187587

450

450

294779

550


550

401972

650

650

20848

400

400

69620

400

400

162447

450

450

255273

550


550

Base-4

348100

650

650

13-15

74097

300

300

172893

450

450

271690

550

550


370486

650

650

53174

300

300

124073
194973

450
550

450
550

Floor

Si
(m2)

qsi
(kN/m2
)


INSTRUCTOR

Gd
(kN)

K

13-15

C1

9-12
5-8
Base-4
Roof water
tank
13-15

C2

9-12
5-8
Base-4
Roof water
tank
13-15

C3

9-12

5-8

C4

9-12
5-8

15.0

13.12
5
28.12
5
13.12
5

27.19

29.06

9.39

6.91

9.39

6.91

8.19


8.19

37.08

13.95

53.83

13.95

52.63

55.02

1.3

1.3

1.1

1.3

1.1

1.1

Base-4

C5


13-15
9-12
5-8

15.0

9.39

37.08

1.3


GRADUATION THESIS

Colum
n

C6

bc
(mm)

Base-4

265872

650

hc

(mm
)
650

13-15

85411

300

300

197193

450

450

309875

550

550

422557

650

650


20848

400

400

154578

400

400

360683

600

600

566788

750

750

772893

850

850


20848

400

400

149716

400

400

349337

600

600

584959

750

750

Base-4

748580

850


850

13-15

150196

400

400

350459

600

600

550721

750

750

Base-4

750983

850

850


13-15

85411

300

300

197193

450

450

309875

550

550

Base-4

422557

650

650

13-15


84076

300

300

196178

450

450

308280

550

550

420382
149811

650
400

650
400

Floor

9-12

5-8

9-12
5-8
Base-4
Roof water
tank
13-15

C8

9-12
5-8

C9

C10

C11

C12

9-12
5-8

9-12
5-8

9-12
5-8

Base-4
13-15

Si
(m2)

30.6

13.12
5

57.38

13.12
5

55.46

59.29

30.6

29.6

55.5

qsi
(kN/m2
)


INSTRUCTOR

Ac
(mm2)

Base-4
Roof water
tank
13-15
C7

PAGE 5

8.19

6.91

9.39

6.91

9.39

8.775

8.19

9.39

9.39


Gd
(kN)

55.74

13.95

72.49

13.95

71.29

73.69

55.74

54.54

71.29

K

1.2

1.3

1.1


1.3

1.1

1.1

1.2

1.2

1.1


GRADUATION THESIS

Colum
n

PAGE 6

Ac
(mm2)

bc
(mm)

9-12

349559


600

hc
(mm
)
600

5-8

549307

750

750

Base-4

749055

850

850

13-15

128814

400

400


300567

600

600

472320

750

750

Base-4

644073

850

850

13-15

154507

400

400

360517


600

600

566527

750

750

Base-4

772536

850

850

13-15

84076

300

300

196178

450


450

308280

550

550

Base-4

420382

650

650

13-15

49295

300

300

115022

450

450


180749

550

550

Base-4

246477

650

650

13-15

78020

300

300

182046

450

450

286073


550

550

Base-4

390100

650

650

13-15

40802

300

300

95204

450

450

149607

550


550

204010

650

650

Floor

Si
(m2)

qsi
(kN/m2
)

INSTRUCTOR

Gd
(kN)

K

9-12
C13

C14


C15

C16

C19

C20

5-8

9-12
5-8

9-12
5-8

9-12
5-8

9-12
5-8

9-12
5-8
Base-4

53.65

57.35


29.6

14.0

27.12
5

14.0

8.19

9.39

8.19

9.39

9.39

7.36

70.01

72.49

54.54

33.49

53.83


33.49

1.1

1.1

1.2

1.3

1.1

1.3

Table 5.1 Columns’size premilinary


GRADUATION THESIS

PAGE 7

We have arrangement of columns for Frame axis 3 is shown in Fig 5.2:

Fig 5.2 Columns arrangement of Frame axis 3

1.1.2. Staircase load
+ dead load:
Staircase break : gs1 = 1.4 (kN/m2); Slant slab: gs2 = 3.2 (kN/m2)
+ Live load: pDEAD = 3.6 (kN/m2)


INSTRUCTOR


GRADUATION THESIS

PAGE 8

INSTRUCTOR

1.1.3. Load transmission from wall to beam
We have load transmission from wall to beam is difinited by this formulation:
g t  n t b  h floor  h d 
We have wall load on beams is shown in Table 5.2:

Wall load (kN/m)
HeigL
Floor

L
(m)

Main beam

Secondary beam

“(300 x 700) mm”
Wall 100
Wall 200


“(200 x 600) mm”
Wall 100

 γ =18 kN/m   γ =18 kN/m   γ =18 kN/m 
3

3

t

Basement
1
2-15

2.5
5
3.4

t

8.54
5.34

3

t

7.13
17.03
10.69


8.72
5.54

Table 5.2 Wall load on beams
1.1.4. Roof slab load
We have dead load on roof slab is shown in Table 5.3 :

δ

γ

gtc

(m)

(kN/m3)

(kN/m2)

Ceramic

0.10

20

0.2

1.1


0.22

Plaster

0.40

18

0.72

1.3

0.936

Reinforcement concrete

0.1

25

2.5

1.1

2.75

Water proffing

-


-

0.02

1.3

0.026

Mortar lining

0.15

18

0.27

1.3

0.35

Engineer systems

-

-

0.5

1.2


0.6

Layers

n

gDEAD
(kN/m2)

4.882

Total

Table 5.3 Dead load of roof slab
Live load :
ps  np tc  1.3 �0.75  0.95  kN / m 2 


GRADUATION THESIS

PAGE 9

INSTRUCTOR

1.1.5. Load on slabs
We have load on slabs is shown in Table 2.7
1.1.6. Load on basement’s slab
Dead load:
We have dead load of basement’s slab is shown in table 5.4:


Layers
Ceramic
Mortar
Water proofing
Total

δ

γ

gtc

(m)
0.10
0.30
-

(kN/m3)
20
18
-

(kN/m2)
0.2
0.54
0.02

n
1.1
1.3

1.3

gDEAD
(kN/m2)
0.22
0.702
0.026
0.948

Table 5.4 Dead load
Live load:
We have live load on basement’s slab is shown in table 5.5:
ptc
Performances
n
(kN/m2)
Gara
5
1.2
Technical room
3
1.2
Toilet
1.5
1.3
Table 5.5 Live load

ps
(kN/m2)
6

3.6
1.95

1.1.7. Calculation charts using “Etab”
We have:
L 30.5

 1.36 �2
B 22.3
( L,B – long,short size of the bulding)
= > Use 3D frame with the fixed supports between column’s foots and foundations
By using “ Etab” we have calculation charts of loads on building is shown from Fig
5.3 to Fig 5.17


GRADUATION THESIS

PAGE 10

Fig 5.3 Model of building

INSTRUCTOR


GRADUATION THESIS

PAGE 11

INSTRUCTOR


2.34

2.34

2.34

2.34

2.34

2.34

2.34

2.34

2.34

2.34

2.34
2.34

Fig 5.4 Dead load by slabs on floors


GRADUATION THESIS

PAGE 12


Fig 5.5 Dead load by wall on floors

Fig 5.6 Dead load on staircase slabs

INSTRUCTOR


GRADUATION THESIS

PAGE 13

Fig 5.7 Live load 1 on odd floors

INSTRUCTOR


GRADUATION THESIS

PAGE 14

Fig 5.8 Live load 2 on even floors

INSTRUCTOR


GRADUATION THESIS

PAGE 15

Fig 5.9 Live load 3 on floors


INSTRUCTOR


GRADUATION THESIS

PAGE 16

Fig 5.10 Live load 4 on floors

INSTRUCTOR


GRADUATION THESIS

PAGE 17

Fig 5.11 Live load 5 on floors

INSTRUCTOR


GRADUATION THESIS

PAGE 18

Fig 5.12 Live load 6 on floors

INSTRUCTOR



GRADUATION THESIS

PAGE 19

Fig 5.13 Live load 7 on floors

INSTRUCTOR


GRADUATION THESIS

PAGE 20

Fig 5.14 Live load 8 on floors

Fig 5.15 Live load 9 on floors

INSTRUCTOR


GRADUATION THESIS

PAGE 21

Fig 5.16 Live load 10 on floors

INSTRUCTOR



GRADUATION THESIS

PAGE 22

INSTRUCTOR

Fig 5.17 Live load 11 on floors
1.1.8. Static wind load :
“With the heigLL is high from 2.5m to 60.5m , the building is located in Hồ Chí
Minh so we have it is in II.A region, togographic type C.
Wtt  n �W0 �k �C  kN / m 2 
With :
n = 1.2 : coefficent of wind load W0 : Standard wind force
k: coefficent about the changing of wind pressure depend on heigLL
and togographic according to “Table 5 TCVN 2737 – 1995”
c: aerodynamic coefficient . IIA region, togographic type C =>
W0 = 0.83 (kN/m2)
c = +0.8 for pushed wind and c = -0.6 for absorb wind
C = 0.8 + 0.6 = 1.4
Centre point load of the building :
H  Ht
W  W tt �Bct � d
 kN 
2
Bct (Bx = 30.5 m ,By = 22.3 m): Width sides are effected by wind load of the
building
Hd, LL : HigLL sides are effected by wind load of the building
Use the same method for other floor heigLLs, we have static wind load is shown in
Table 5.5:


Floor
Roof
water
tank
Roof
15
14
13
12
11
10
9
8

Floor
heigL
L (m)

HeigL
L (m)

K

Bx
(m)

By
(m)

Wx (kN)


Wy (kN)

2

58.5

1.07

7

7.5

11.19

10.44

3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4

55.1
51.7
48.3

44.9
41.5
38.1
34.7
31.3
27.9

1.04
1.01
0.98
0.96
0.93
0.90
0.87
0.85
0.82

30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5
30.5

22.3
22.3
22.3

22.3
22.3
22.3
22.3
22.3
22.3

109.95
106.78
103.61
101.49
98.32
95.15
91.98
89.86
86.69

150.38
146.05
141.71
138.82
134.48
130.14
125.80
122.91
118.57


GRADUATION THESIS


PAGE 23

INSTRUCTOR

Floor

Floor
heigL
L (m)

HeigL
L (m)

K

Bx
(m)

By
(m)

Wx (kN)

Wy (kN)

7
6
5
4
3

2
1

3.4
3.4
3.4
3.4
3.4
3.4
5

24.5
21.1
17.7
14.3
10.9
7.5
2.5

0.79
0.76
0.74
0.71
0.68
0.65
0.47

30.5
30.5
30.5

30.5
30.5
30.5
30.5

22.3
22.3
22.3
22.3
22.3
22.3
22.3

83.52
80.35
78.24
75.06
71.89
68.72
61.38

114.23
109.90
107.00
102.67
98.33
93.99
83.95

Table 5.6 – Static wind load (kN)


1.1.9. Oscillation calculation
We have 12 modes from the “ Etab” and we also have formulation of f:
1
f
 Hz 
T
+ Mode 1: oscillate from X direction
+ Mode 2: oscillate from Y direction
+ Mode 3: with RZ = 61 % = > Twisted oscillation
We have 12 modes is shown Table 5.7
SumU SumU SumR
T
F
UX
UY
RZ
X
Y
Z
Mode
(s)
(Hz)
%
%
%
%
%
%
1

2.21
0.453 0.890 66.87 30.000 0.890 66.870 0.000
64.88
2
2.16
0.462
1.410 0.580 65.770 68.290 0.000
0
3

1.66

0.603

4.260

0.900

0.210

70.030 69.190

0.000

4

0.72

1.383


0.000

11.56

28.000 70.030 80.760

0.000

5

0.71

1.410

10.73
0

0.004

0.004

80.760 80.760

0.000

6

0.52

1.927


0.450

0.110

0.290

81.210 80.870

0.000

7

0.38

2.646

0.020

4.150

6.040

81.230 85.020

0.000

8

0.37


2.688

3.980

0.010

0.010

85.210 85.030

0.000

9

0.26

3.876

0.050

0.050

0.080

85.260 85.080

0.000



GRADUATION THESIS

PAGE 24

INSTRUCTOR

10

0.23

4.274

0.010

2.210

4.860

85.270 87.290

0.000

11

0.23

4.310

2.190


0.010

0.010

87.460 87.300

0.000

12

0.17

5.917

0.010

0.630

1.160

87.460 87.920

0.000

Table 5.7 – Period and oscillation frequency of building

And also we have weigLL of floors is shown in Table 5.8
Story

Mass X

(ton)

Mass Y
(ton)

XCM
(m)

YCM
(m)

XCCM
(m)

WATER TANK
ROOF
15
14
13
12
11
10
9
8
7
6
5
4
3
2

1

56.47
683.78
849.61
818.27
821.80
826.99
826.99
830.13
833.77
834.18
843.63
854.93
862.83
863.70
875.05
894.01
924.49

56.47
683.78
849.61
818.27
821.80
826.99
826.99
830.13
833.71
834.18

843.63
854.93
862.83
863.70
875.05
894.01
924.49

11.87
17.74
15.46
15.46
15.45
15.44
15.44
15.44
15.43
15.44
15.42
15.40
15.47
15.37
15.36
15.35
15.32

3.50
9.59
11.12
11.12

11.11
11.11
11.11
11.11
11.11
11.11
11.12
11.13
11.04
11.13
11.13
11.13
11.14

11.87
17.98
16.31
16.03
15.88
15.79
15.73
15.69
15.66
15.63
15.61
15.59
15.58
15.56
15.55
15.53

15.52

YCC
M
(m)
3.50
9.13
10.19
10.51
10.66
10.75
10.81
10.86
10.89
10.91
10.93
10.95
10.96
10.97
10.99
11.03
11.99

Table 5.8 – Weight of floors extract from “Etab”

1.1.10. Calculation of unstatic wind loads
According to “Table 2 TCXD 299 – 1999”, we have the building in IIA region’s
type wind and has specific oscillation frequency fL = 1.3
The oscillations need to calculate are f1 = 0.442 < f2 = 0.453 < f3 = 0.584 < fL = 1.3
< f4 = 1.34 (Hz)

The calculation values of unstatic wind from jth floor and ith mode is taken
acorrdingto “formulation (4.3) TCXD 299 – 1999”:
Wp ji   M ji  i y ji
With:


GRADUATION THESIS

PAGE 25

INSTRUCTOR

Mj: WeigLL of floor j
i : kinetic coefficient corresponding i, according to “TCXD 299 – 1999,
i 

W0
940 �f i

Table 2” then   0.3 và and
With:
yji : Horizontal displacement of the center of jth part with the oscillation ith.
We have  i is definited by this formulation:
n

i 

�y

ji


.WFj

�y

2
ji

.M j

j1
n

j1

We have WFj is definited by this formulation:

WFj  Wj iS j
With:
Wj

- Static load of wind.

 i - kinetic coefficient corresponding i , according to “TCXD 299 – 1999,
th
Fig 3” Error: Reference source not found.
Si – Wind surface section ith .
- Correlation coefficient of unstatic wind load’space ,depent on ,  and
oscillation types according to “Table 4 TCXD 229:1999”.
Size of X direction , Lx (m): 30.5

Size of Y direction , Ly (m): 22.3
HeigLL of building compare with ground H (m): 60.5
We have the Parameter for calculation of unstatic wind loads is show in Table 5.9
Parameter
- Wind pressure

sym
bol
Wo

Value

Unit

Quote from

0.83

kN/m2

Table 4 (TCVN
2737:1995)


×