Tải bản đầy đủ (.docx) (32 trang)

ĐỒ ÁN TỐT NGHIỆP NGÀNH XÂY DỰNG ( TIẾNG ANH ) part 1

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.08 MB, 32 trang )

GRUADUATION THESIS

PAGE 1

INSTRUCTOR

TABLE OF CONTENTS

DOCUMENTATIONS
I. STANDARD DESIGN
[1] “Bộ Xây dựng (2012), TCXDVN 5574: 2012 Kết cấu bê tông và bê tông cốt thép –
Tiêu chuẩn thiết kế, NXB Xây dựng, Hà Nội.”
[2] “Bộ Xây dựng (2007), TCVN 2737: 1995 Tải trọng và tác động – Tiêu chuẩn thiết
kế, NXB Xây dựng, Hà Nội.”
[3] “Bộ Xây dựng (2007), TCVN 229: 1999 Chỉ dẫn tính toán thành phần động của tải
trọng gió, NXB Xây dựng, Hà Nội.”
[4] “Bộ Xây dựng (2007), TCXD 198: 1997 Nhà cao tầng – Thiết kế bê tông cốt thép
toàn khối.”
PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 2

INSTRUCTOR

[5] “Bộ Xây dựng (2014), TCVN 10304: 2014 Móng cọc – Tiêu chuẩn thiết kế.”
[6] “Bộ Xây dựng (1998), TCXD 205: 1998 Móng cọc – Tiêu chuẩn thiết kế.”


[7] “Bộ Xây dựng (1995), TCVN 4453: 1995 Kết cấu bê tông và bê tông cốt thép toàn
khối - Quy phạm nghiệm thu và thi công.””
II.
REFERENCE BOOKS
[8] “Bộ Xây dựng (2008), Cấu tạo bê tông cốt thép, NXB Xây dựng.”
[9] “Nguyễn Trung Hòa (2008), Kết Cấu Bê Tông Cốt Thép theo Quy phạm Hoa Kỳ,
NXB Xây dựng.”
[10]
“Nguyễn Đình Cống (2008), Tính toán thực hành cấu kiện bê tông cốt thép
theo TCXDVN 356 -2005 (tập 1 và tập 2), NXB Xây dựng Hà Nội”.
[11]
“Vũ Mạnh Hùng (2008), Sổ tay thực hành Kết cấu Công trình, NXB Xây
dựng.”
[12]
“Nguyễn Văn Quảng (2007), Nền móng Nhà cao tầng, NXB Khoa học Kỹ
thuật.”
[13]
“Châu Ngọc Ẩn (2005), Nền móng, NXB Đại học Quốc gia TP. Hồ Chí
Minh.”
[14] “Võ Bá Tầm (2011), Kết cấu bê tông cốt thép, tập 1, Cấu kiện cơ bản theo
TCXDVN 356-2005,NXB Đại học Quốc gia TP.Hồ Chí Minh.”
[15]

“Võ Bá Tầm (2011), Kết cấu bê tông cốt thép, tập 2, Các cấu kiện nhà cửa theo
TCXDVN 356-2005,NXB Đại học quốc gia TP.Hồ Chí Minh.”

[16]

“Võ Bá Tầm (2011), Kết cấu bê tông cốt thép, tập 3, Các cấu kiện đặc biệt theo
TCXDVN 356-2005,NXB Đại học Quốc gia TP.Hồ Chí Minh.”


III.
[17]
[18]
[19]

SOFTWARE
“SAP 2000 version 14.2.”
“ETABS version 9.7.4”
Autocad 2014.
IV. WEBSITE

[20] “hDEADp://dangiaohcm.com/cay-chong-tang-4m-31779.LLml”

PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 3

PROJECT: GOODS INSPECTION CENTER

INSTRUCTOR

STUDENT: XXX



GRUADUATION THESIS

CHAPTER 1

PAGE 4

INSTRUCTOR

ARCHITECTURE OVERVIEW
1.1. PURPOSE OF
DESINGING
CONSTRUCTION

The project of the Goods Inspection Center of Hồ Chí Minh City was
established according to the current development trend of the city, located in the
central area to match the function and working efficiency of the building and to
answer adapting the city's economic growth rate as well as checking and inspecting
export and import of goods from neighboring ports into export processing zones and
industrial parks. This is level I construction (100-year sustainability, fire-resistant
level is II). Building height is 60.5 m (calculated from natural ground). Including 15
floors with a total area of 429m².
1.2. LOCATION AND FEATURES
1.2.1. Location of construction
- Scale : the building is located in District 3, Hồ Chí Minh city.
- Construction scale: Level I
- Floors: 15 floors.
- Land area: 684.61 m²
- Construction area: 429 m²
1.2.2. Natural condition
1.2.2.1. Climate

The climate of Hồ Chí Minh city is equatorial, so the temperature is high
and quite stable during the year. The average monthly sunshine hours reach
from 160 to 270 hours, the average air humidity is 79.5%.
1.3. ARCHITECTURE
OVERVIEW
1.3.1. Construction scale
1.3.1.1. Construction type
Civil construction level 1 according to “thông tư số 03/2016/DEAD-BXD
phụ lục 2”. Height of each floor is shown in Table 1.1:
PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 5

INSTRUCTOR

Floor

Height

Floor

Height

Basement


-1.000m

Floor 9

+34.700m

Ground floor

+2.500m

Floor 10

+38.100m

Floor 1

+7.500m

Floor 11

+41.500m

Floor 2

+10.900m

Floor 12

+44.900m


Floor 3

+14.300m

Floor 13

+48.300m

Floor 4

+17.700m

Floor 14

+51.700m

Floor 5

+21.100m

Floor 15

+55.100m

Floor 6

+24.500m

Roof


+58.500m

Floor 7

+27.900m

Water tank

+60.500m

Floor 8

+31.300m
Table 1.1 Floors height

1.3.1.2. Construction height
The building is high 60.5m (calculated from natural ground: +0.000m)
1.3.2. Functional area
• Basement : parking area and technical room.
• Floor 1: laboratory.
• Floor 2 to floor 15: Offices
• Roof : water tank roof.
1.3.3. Internal traffic solution
Horizontal traffic in the building (each floor) is a combination of the corridor
and lobby system in the top-down smooth construction.
Standing traffic system is stair and elevator. The ground has a 3-ladder ladder to
do the task as well as the main way to escape. Elevators arranged 2 ladders are
placed in a position to ensure the longest distance to the staircase < 25m to solve

PROJECT: GOODS INSPECTION CENTER


STUDENT: XXX


GRUADUATION THESIS

PAGE 6

INSTRUCTOR

daily travel for everyone and a safe distance to escape quickly when the incident
occurs. .
1.4. ENGINEERING
SYSTEM
1.4.1. Power system
The power supply system is going in the technical box. Each floor has a table
that controls individual interference with the power supply for each section or area.
Automatic CB break areas to isolate the local power source when a problem occurs.
There is an emergency power supply for the area: emergency exit, emergency light,
fire pump, fire alarm and communication.
1.4.2. Water supply system
Water from the main water supply system of the city is put into the tank located
at the technical floor (basement) and the water is pumped directly to the tank to the
top floor, the control of the pumping process is carried out automatically. through
automatic float valve system. Water pipes are in the genome box.
1.4.3. Fire resistance system
Because of the concentration of people and high-rise buildings, fire prevention
is very important, arranged according to national standards. Automatic smoke and
heat alarms are arranged logically in each area.
1.5. STRUCTURE

SOLUTION FOR
BUILDING
Based on architectural requirements, column mesh, function of the project,
students choose the solution of the whole floor system, arranged orthogonal beams.

PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 7

INSTRUCTOR

1.6. FOUNDATION
SOLUTION
For high-rise buildings, the effect on the big foundation next to it is also the soil
load applied to the foundation.
Deep foundation: bored pile foundation, Barret pile foundation, pre-cast reinforced
concrete pile foundation, prestressed centrifugal pile foundation.
With the facilities of the project as above students choose the solution of driven pile
foundation for the foundation solution of the project.
1.7. STRUCTURAL
DESIGN BASIC
1.7.1. Materials solution
1.7.1.1. Concrete and steel
We have concrete and steel feature of concrete is shown in Table 1.2 and Table 1.3
Num


1

Durable level

Performance

Concrete B25: Rb = 14.5 MPa

Ground floor, staircase,

Rbt = 1.05 MPa ; Eb = 30x103 Mpa

cylinder, wall, foundation,

Concrete B30: Rb = 17 MPa

column, beam, floor, water

Rbt = 1.2 MPa ; Eb = 32.5x103 Mpa

tank, staircase.

Plaster , mortar

Cement mortar, plastering

2

walls

Table 1.2 Concrete features

Nu

Steel type

m
1
2

Steel AI (d

10): Rs = Rsc = 225MPa

Rsw = 175 MPa ; Es = 2.1x105 MPa.
Steel AIII (d

10): Rs = Rsc = 365

PROJECT: GOODS INSPECTION CENTER

Performance
d

10 mm

d

10mm
STUDENT: XXX



GRUADUATION THESIS

PAGE 8

INSTRUCTOR

MPa
Rsw = 290 MPa ; Es = 20x105 MPa.
Table 1.3 Steel features

PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 9

CHAPTER 2

INSTRUCTOR

DESIGN FLOOR 2-15
2.1. PLAN VIEW OF
FLOORS 2-15:

We have Beams arrangement floors plan 2-15 is in Table 2.1


Table 2.2 Structural plan of floors 2 - 15
2.2. DETERMINATION
OF SECTIONAL
DIMENSIONS :
2.2.1. Slab’s thickness:
Primarily determination of the slab’s thickness ( Vietnamese experience):
Select the biggest slab that has size :
PROJECT: GOODS INSPECTION CENTER

(S15)
STUDENT: XXX


GRUADUATION THESIS

In that:

PAGE 10

INSTRUCTOR

m = 30

35 for one-way slab (L2 ≥ 2L1)

m = 40

45 for two-way slab (L2 < 2L1)


: Length of the shorter dimension of the slab
D = 0.8

1.4 depend on loading magnitude

All the slabs are shown in Table 2.2 by using the formula:
Num

Slabs

Thickness

1

Slabs in typical flkoor (floor 2 to floor 15)

120

2

Toilet’s slabs

120

Table 2.3 Determination of the slabs’s thickness
2.2.2. Beam sections:
Primarily determination by this experienced formulas:
Main beam :
Beam’s heigLL:


Choose hmb = 700 mm
Beam’s width:
Choose bmb = 300 mm
Secondary beam :
Beam’s heigLL:

Choose hsb= 600 mm
Beam’s width:
Choose bsb = 200 mm

PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 11

INSTRUCTOR

Use the same method for all slab we have the beam’s sections shown in Table 2.3:
Main beams
Size (bxh)
Size (bxh) Secondary beams
(mm)

(mm)

(mm)


(mm)

7000

300 x 700

7000

200 x 600

7500

300 x 700

7500

200 x 600

7800

300 x 700

7800

200 x 600

8000

300 x 700


8000

200 x 600

Table 2.4 Determination of beam sections
2.3. TYPES OF LOADS
Load applied on the slab include:
• Slab’s weigLL it self.
• Dead load depend on slab’s layers.
• Live load depend on slab’s performance.
2.3.1. Dead load of slab’s layers
We have the parameters of dead load by slab’s layers according to “TCVN 55742012 section 4.3.3” is shown in Table 2.5 and Table 2.4:
Slab
Type

gtc
Layers
(m)

(kN/m3

(kN/m2

)

)

gDEAD
n

(kN/m2)

Slab of

Ceramic brick

0.01

20

0.20

1.1

0.22

office,

Floor plaster

0.03

18

0.63

1.3

0.82


lobby,
balcony

5
Reinforced concrete

0.12

25

3.00

1.1

3.3

Ceiling plaster

0.02

18

0.36

1.3

0.47

System engineering


-

-

0.50

1.2

0.6

Summary

4.69

5.41

Table 2.5 Dead load by slab’s layers for hallway,balcony
Slab

Layers

PROJECT: GOODS INSPECTION CENTER

gtc

n

gDEAD
STUDENT: XXX



GRUADUATION THESIS

PAGE 12

Type

(m)
Ceramic brick

INSTRUCTOR

(kN/m3) (kN/m2)

0.01

20

0.2

(kN/m2)
1.

0.22

1
Floor plaster

0.05


18

0.90

1.

1.17

3
Waterproof layer
Slab of
toilet

-

-

0.02

1.

0.026

3
Reinforced concrete

0.12

25


3.00

1.

3.3

1
Ceiling plaster

0.02

18

0.36

1.

0.47

3
System engineering

-

-

0.5

1.


0.6

2
Summary

4.98

5.79

Table 2.6 Dead load by slab’s layers for toilet
To simply the calculation, we convert the equivalent for slab has two performance
(S44) like this:

2.3.2. Live load
Live load’s values is based on the performance of slab. The reliability
coefficient “n” for the distributed load is determined according from the article
“4.3.3 TCVN 2737- 1995”:
When ptc < 2( kN/m2) => n = 1.3.

When ptc ≥ 2 (kN/m2) => n = 1.2.

We have the parameters of live load by slab’s performance is shown in Table 2.6 :

Num
1

Slab
performance

Standard values (kN/m2)

Long section

Ladder, lobby, hallway

PROJECT: GOODS INSPECTION CENTER

term
1

Totality
3

Load
n

kN/m2

1.20

3.6

STUDENT: XXX


GRUADUATION THESIS

PAGE 13

INSTRUCTOR


2

Rest room

0.3

1.5

1.30

1.95

3

Balcony

0.7

2

1.20

2.4

4

Toilet

0.3


1.5

1.30

1.95

5

Office

1

2

1.20

2.4

Table 2.6 Live load

If the slab has two or more performances, then pDEAD is calculated by converting
equivalent according to the formula:

In design, only slab “S44” has two performances ( toilet and hallway). So we
calculate the equivalent load conversion for this slab like this:

We have all the design loads is shown in Table 2.7:

Size
Sla


Design load
Dead

Live

Dead load

load

load

+ live load

L1

L2

mm

mm

kN/m2

kN/m2

kN/m2

S1


3350

3900

5.79

3.6

9.39

1.16

Two-way slab

S2

3350

4100

5.79

3.6

9.39

1.22

Two-way slab


S3

3350

3500

5.79

3.6

9.39

1.04

Two-way slab

S4

3350

3500

5.79

3.6

9.39

1.04


Two-way slab

S5

3350

3750

5.79

2.4

8.19

1.12

Two-way slab

S6

3350

3750

5.79

2.4

8.19


1.12

Two-way slab

S7

3350

4650

5.79

2.4

8.19

1.39

Two-way slab

S8

3350

3350

5.41

1.95


7.36

1.00

Two-way slab

S9

3900

4150

5.79

3.6

9.39

1.06

Two-way slab

S10

4100

4150

5.79


3.6

9.39

1.01

Two-way slab

b

PROJECT: GOODS INSPECTION CENTER

Slab type

STUDENT: XXX


GRUADUATION THESIS

PAGE 14

Size

INSTRUCTOR

Design load
Dead

Live


Dead load

load

load

+ live load

mm

kN/m2

kN/m2

kN/m2

3500

4150

5.79

2.4

8.19

1.19

Two-way slab


S12

3500

4150

5.79

2.4

8.19

1.19

Two-way slab

S13

3750

4150

5.79

2.4

8.19

1.11


Two-way slab

S14

3750

4150

5.79

2.4

8.19

1.11

Two-way slab

S15

4150

4650

5.79

2.4

8.19


1.12

Two-way slab

S16

3350

4150

5.41

1.95

7.36

1.24

Two-way slab

S17

3900

3900

5.79

3.6


9.39

1.00

Two-way slab

S18

3900

4100

5.79

3.6

9.39

1.05

Two-way slab

S19
S20
S21
S22
S23
S24
S25
S26

S27
S28
S29
S30
S31
S32
S33
S34
S35
S36
S37
S38
S39
S40
S41

3500
3500
3750
3750
3900
3350
3900
3900
3500
3500
3750
3750
3900
3350

3550
3550
3500
3500
3550
3550
3550
3350
3450

3900
3900
3900
3900
4650
3900
3900
4100
3900
3900
3900
3900
4650
3900
3900
4100
3550
3550
3750
3750

4650
3550
3900

5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79
5.79

3.6
3.6

3.6
3.6
2.4
2.4
3.6
3.6
3.6
3.6
3.6
3.6
2.4
2.4
1.95
1.95
3.6
3.6
3.6
3.6
2.4
2.4
1.95

9.39
9.39
9.39
9.39
8.19
8.19
9.39
9.39

9.39
9.39
9.39
9.39
8.19
8.19
7.74
7.74
9.39
9.39
9.39
9.39
8.19
8.19
7.74

1.11
1.11
1.04
1.04
1.19
1.16
1.00
1.05
1.11
1.11
1.04
1.04
1.19
1.16

1.10
1.15
1.01
1.01
1.06
1.06
1.31
1.06
1.13

Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab

Two-way slab
Two-way slab
Two-way slab

Sla

L1

L2

mm
S11

b

PROJECT: GOODS INSPECTION CENTER

Slab type

STUDENT: XXX


GRUADUATION THESIS

PAGE 15

Size
Sla
b
S42

S43
S44
S45
S46
S47

INSTRUCTOR

Design load

L1

L2

mm
3450
1950
3450
3450
3450
3450

mm
4100
1950
3550
3750
3750
4650


Dead

Live

Dead load

load

load

+ live load

kN/m2
5.79
5.79
5.59
5.41
5.79
5.79

kN/m2
1.95
3.6
2.78
1.95
2.4
2.4

kN/m2
7.74

9.39
8.37
7.36
8.19
8.19

Slab type
1.19
1.00
1.03
1.09
1.09
1.35

Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab
Two-way slab

Table 2.7 Total load on slabs

2.4. SLAB’S STEEL
CALCULATION
2.4.1. Steel calculation of two-way slab
We calculate the slab with biggest size: S15 (4.15m x4.65m)
We have S15 is a two-way slab ( definited before ).
We have


so this slab has 4 fixed supports.

2.4.1.1. Determination of slab’s distributed load
We have moment for slab number 9 (4 fixed supports) in Table 2.8

PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 16

INSTRUCTOR

M

7.19I
M2
M2

M2

q = 8.19 kN/m2

L1

b=1m


q2
M2

4150
3.11

M2
MI
7.19

qq1= 8.19 kN/m

5.73MII

2

M5.73
II

M2

L2
4650

2.48

Table 2.8 Moment calculation for slab number 9
Moment at the mid-span :
Along short dimension (L1):
(kNm/m)

Along long dimension (L2):
(kNm/m)
Moment at the supports :
Along short dimension (L1):
(kNm/m)
Along long dimension (L2):
(kNm/m)
We have:

: are the coefficients that look up the table according to

the book “ Kết cấu bê tông cốt thép” of Võ Bá Tầm.

PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 17

INSTRUCTOR

2.4.1.2. Reinforcement calculation
Cut a strip wide 1m by each side, then calculate and arrange steel evenly for the
slab .
Base

on


durability

level

of

concrete

grade

B25,

definite

the

ratio

for reinforcement group AI and

for

reinforcement group AIII
Assume that the distance from the reinforced concrete edge to the center of tensile
reinforcement group is:
Steel ratio :
for reinforcement group AI

for reinforcement group AIII

•Calculating reinforcement in short dimension L1
At the supporters
Working heig

LL of section :

Reinforcement section:

Choose

,

Checking steel ratio :

PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 18

INSTRUCTOR

=> Eligible.
At the mid-span
Working heigLL of section :

Reinforcement section:


Choose

,

Checking steel ratio :

Eligible.
• Calculating reinforcement in long dimension L2
At the supporters
Working heigLL of section :

Reinforcement section:

Choose

,

PROJECT: GOODS INSPECTION CENTER

STUDENT: XXX


GRUADUATION THESIS

PAGE 19

INSTRUCTOR

Checking steel ratio :


Eligible.
At the mid-span
Working heigLL of section :

Reinforcement section:

Choose

,

Checking steel ratio :

Eligible.
Use the same method for other slabs, we have Table 2.9 :

Slab

Moments
(kN.m/m)

S1
M1

2.5

M2
MI

1.8

5.7

Caculalte reinforcement
Ads
αm
ζ
(mm2/m)

0.01
9
0.01
6
0.04
4

0.019

111

0.016
0.045

87
258

PROJECT: GOODS INSPECTION CENTER

φ

Arrange reinforcement

a
As
Ratio

(mm)

(mm)

6

200

6

200

8

190

(mm2/m)

(%)

141

0.141

141
265


0.141
0.265

STUDENT: XXX


GRUADUATION THESIS

Slab

Moments
(kN.m/m)

S2

S3

S4

S5

MII

4.2

M1

2.6


M2

1.8

MI

6.1

MII

4.1

M1

2.1

M2

1.9

MI

4.8

MII

4.4

M1


2.1

M2

1.9

MI

4.8

MII

4.4

M1

2.0

M2

1.6

MI

4.7

MII

3.7


M1
M2

2.0
1.6

S6

PAGE 20

Caculalte reinforcement
Ads
αm
ζ
(mm2/m)

0.03
2
0.02
0
0.01
5
0.04
7
0.03
1
0.01
6
0.01
6

0.03
7
0.03
4
0.01
6
0.01
6
0.03
7
0.03
4
0.01
6
0.01
4
0.03
6
0.02
9
0.01
6
0.01

0.033

190

0.020


119

0.015

84

0.048

277

0.032

183

0.016

92

0.016

90

0.037

216

0.034

198


0.016

92

0.016

90

0.037

216

0.034

198

0.016

91

0.014

77

0.037

212

0.029


168

0.016
0.014

91
77

PROJECT: GOODS INSPECTION CENTER

INSTRUCTOR

φ

Arrange reinforcement
a
As
Ratio

(mm)

(mm)

8

200

6

200


6

200

8

180

8

200

6

200

6

200

8

200

8

200

6


200

6

200

8

200

8

200

6

200

6

200

8

200

8

200


6

200

6

200

(mm2/m)

(%)

250

0.250

141

0.141

141

0.141

279

0.279

250


0.250

141

0.141

141

0.141

250

0.250

250

0.250

141

0.141

141

0.141

250

0.250


250

0.250

141

0.141

141

0.141

250

0.250

250

0.250

141
141

0.141
0.141

STUDENT: XXX



GRUADUATION THESIS

Slab

Moments
(kN.m/m)

S7

MI

4.7

MII

3.7

M1

2.7

M2

1.4

MI

6.0

MII

M1

3.1
1.5

M2

1.5

MI

3.4

MII

3.4

M1

2.9

M2

2.5

MI

6.7

MII


5.9

M1

2.9

M2

2.8

MI

6.7

MII

6.6

S8

S9

S10

PAGE 21

Caculalte reinforcement
Ads
αm

ζ
(mm2/m)

4
0.03
6
0.02
9
0.02
0
0.01
2
0.04
6
0.02
4
0.011
0.01
3
0.02
6
0.02
6
0.02
2
0.02
2
0.05
1
0.04

5
0.02
2
0.02
5
0.05
2
0.05
0

0.037

212

0.029

168

0.021

120

0.012

66

0.047

275


0.024
0.011

141
66

0.013

71

0.026

155

0.026

155

0.022

130

0.022

122

0.051

305


0.045

269

0.022

130

0.025

136

0.052

308

0.050

300

PROJECT: GOODS INSPECTION CENTER

INSTRUCTOR

φ

Arrange reinforcement
a
As
Ratio


(mm)

(mm)

8

200

8

200

6

200

6

200

8

180

8

200

6


200

6

200

8

200

8

200

6

200

6

200

8

160

8

190


6

200

6

200

8

160

8

160

(mm2/m)

(%)

250

0.250

250

0.250

141


0.141

141

0.141

279

0.279

250
141

0.250
0.141

141

0.141

250

0.250

250

0.250

141


0.141

141

0.141

314

0.314

265

0.265

141

0.141

141

0.141

314

0.314

314

0.314


STUDENT: XXX


GRUADUATION THESIS

Slab

Moments
(kN.m/m)

S11

S12

S13

S14

M1

2.4

M2

1.7

MI

5.6


MII

3.9

M1

2.4

M2

1.7

MI

5.6

MII

3.9

M1

2.5

M2

2.0

MI


5.8

MII

4.7

M1

2.5

M2

2.0

MI

5.8

MII

4.7

M1

3.1

M2
MI


2.5
7.2

S15

PAGE 22

Caculalte reinforcement
Ads
αm
ζ
(mm2/m)

0.01
8
0.01
5
0.04
3
0.03
0
0.01
8
0.01
5
0.04
3
0.03
0
0.01

9
0.01
8
0.04
4
0.03
6
0.01
9
0.01
8
0.04
4
0.03
6
0.02
4
0.02
1
0.05

0.018

108

0.015

82

0.043


252

0.030

178

0.018

108

0.015

82

0.043

252

0.030

178

0.019

112

0.018

97


0.044

262

0.036

213

0.019

112

0.018

97

0.044

262

0.036

213

0.024

140

0.021

0.055

118
329

PROJECT: GOODS INSPECTION CENTER

INSTRUCTOR

φ

Arrange reinforcement
a
As
Ratio

(mm)

(mm)

6

200

6

200

8


190

8

200

6

200

6

200

8

190

8

200

6

200

6

200


8

190

8

200

6

200

6

200

8

190

8

200

6

200

6


200

8

150

(mm2/m)

(%)

141

0.141

141

0.141

265

0.265

250

0.250

141

0.141


141

0.141

265

0.265

250

0.250

141

0.141

141

0.141

265

0.250

250

0.250

141


0.141

141

0.141

265

0.250

250

0.250

141

0.141

141
335

0.141
0.335

STUDENT: XXX


GRUADUATION THESIS

Slab


Moments
(kN.m/m)

S16

S17

S18

S19

S20

MII

5.7

M1

2.1

M2

1.4

MI

4.8


MII

3.1

M1

2.6

M2

2.6

MI

6.0

MII

6.0

M1

2.8

M2

2.6

MI


6.5

MII

5.9

M1

2.5

M2

2.0

MI

5.8

MII
M1

4.7
2.5

PAGE 23

Caculalte reinforcement
Ads
αm
ζ

(mm2/m)

5
0.04
4
0.01
6
0.01
2
0.03
7
0.02
4
0.02
0
0.02
2
0.04
6
0.04
6
0.02
2
0.02
2
0.05
0
0.04
5
0.01

9
0.01
8
0.04
5
0.03
6
0.01
9

0.044

260

0.016

94

0.012

65

0.037

219

0.024

142


0.020

115

0.022

123

0.046

271

0.046

271

0.022

127

0.022

122

0.050

299

0.045


269

0.019

113

0.018

97

0.045

264

0.036
0.019

212
113

PROJECT: GOODS INSPECTION CENTER

INSTRUCTOR

φ

Arrange reinforcement
a
As
Ratio


(mm)

(mm)

8

190

6
6
8
8
6
6
8
8
6
6
8
8
6
6
8
8
6

(mm2/m)

(%)


265

0.250

200

141

0.141

200

141

0.141

200

250

0.250

200

250

0.250

200


141

0.141

200

141

0.141

180

279

0.279

180

279

0.279

200

141

0.141

200


141

0.141

160

314

0.314

180

279

0.279

200

141

0.141

200

141

0.141

190


265

0.265

200
200

250
141

0.250
0.141

STUDENT: XXX


GRUADUATION THESIS

Slab

Moments
(kN.m/m)

S21

S22

S23


M2

2.0

MI

5.8

MII

4.7

M1

2.6

M2

2.4

MI

5.9

MII

5.5

M1


2.6

M2

2.4

MI

5.9

MII

5.5

M1

3.0

M2

2.1

MI

6.9

MII

4.9


M1

2.2

M2

1.6

MI
MII

5.0
3.7

S24

PAGE 24

Caculalte reinforcement
Ads
αm
ζ
(mm2/m)

0.01
8
0.04
5
0.03
6

0.02
0
0.02
0
0.04
5
0.04
2
0.02
0
0.02
0
0.04
5
0.04
2
0.02
3
0.01
8
0.05
3
0.03
7
0.01
6
0.01
4
0.03
8

0.02

0.018

97

0.045

264

0.036

212

0.020

115

0.020

113

0.045

270

0.042

249


0.020

115

0.020

113

0.045

270

0.042

249

0.023

136

0.018

101

0.053

317

0.037


221

0.016

96

0.014

76

0.038
0.028

225
165

PROJECT: GOODS INSPECTION CENTER

INSTRUCTOR

φ
(mm)
6
8
8
6
6
8
8
6

6
8
8
6
6
8
8
6
6
8
8

Arrange reinforcement
a
As
Ratio
(mm)

(mm2/m)

200

141

0.141

190

265


0.265

200

250

0.250

200

141

0.141

200

141

0.141

180

279

0.279

200

250


0.250

200

141

0.141

200

141

0.141

180

279

0.279

200

250

0.250

200

141


0.141

200

141

0.141

150

335

0.335

200

250

0.250

200

141

0.141

200

141


0.141

200
200

250
250

0.250
0.250

(%)

STUDENT: XXX


GRUADUATION THESIS

Slab

Moments
(kN.m/m)

S25

S26

S27

S28


M1

2.6

M2

2.6

MI

6.0

MII

6.0

M1

2.8

M2

2.6

MI

6.5

MII


5.9

M1

2.6

M2

2.1

MI

5.9

MII

4.8

M1

2.6

M2

2.1

MI

5.9


MII

4.8

M1
M2

2.6
2.4

S29

PAGE 25

Caculalte reinforcement
Ads
αm
ζ
(mm2/m)

8
0.02
0
0.02
2
0.04
6
0.04
6

0.02
2
0.02
2
0.05
0
0.04
5
0.01
9
0.01
8
0.04
5
0.03
6
0.01
9
0.01
8
0.04
5
0.03
6
0.02
0
0.02
0

0.020


115

0.022

123

0.046

271

0.046

271

0.022

127

0.022

122

0.050

299

0.045

269


0.019

113

0.018

97

0.045

264

0.036

212

0.019

113

0.018

97

0.045

264

0.036


212

0.020
0.020

115
113

PROJECT: GOODS INSPECTION CENTER

INSTRUCTOR

φ
(mm)

6
6
8
8
6
6
8
8
6
6
8
8
6
6

8
8
6
6

Arrange reinforcement
a
As
Ratio
(mm)

(mm2/m)

200

141

0.141

200

141

0.141

180

279

0.279


180

279

0.279

200

141

0.141

200

141

0.141

160

314

0.314

180

279

0.279


200

141

0.141

200

141

0.141

180

279

0.279

200

250

0.250

200

141

0.141


200

141

0.141

180

279

0.279

200

250

0.250

200
200

141
141

0.141
0.141

(%)


STUDENT: XXX


×