Tải bản đầy đủ (.pdf) (479 trang)

Computational paradigm techniques for enhancing electric power quality (2019)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (27.15 MB, 479 trang )


Computational Paradigm
Techniques for Enhancing
Electric Power Quality



Computational Paradigm
Techniques for Enhancing
Electric Power Quality

L. Ashok Kumar
S. Albert Alexander


MATLAB ® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB ® and Simulink® software
or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach
or particular use of the MATLAB ® and Simulink® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-1-138-33699-5 (Hardback)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made
to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all


materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future
reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-7508400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that
have been granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.
Library of Congress Cataloging‑in‑Publication Data
Names: Kumar, L. Ashok, author. | Albert Alexander, S. author.
Title: Computational paradigm techniques for enhancing electric power quality
/ L. Ashok Kumar and S Albert Alexander.
Description: First edition. | New York, NY : CRC Press/Taylor & Francis
Group, 2019. | Includes bibliographical references and index.
Identifiers: LCCN 2018033182 | ISBN 9781138336995 (hardback : acid-free paper)
| ISBN 9780429442711 (ebook)
Subjects: LCSH: Electric power production--Quality control--Data processing.
Classification: LCC TK1010 .K86 2019 | DDC 621.31/042--dc23
LC record available at />Visit the Taylor & Francis Web site at

and the CRC Press Web site at



Contents

Preface...................................................................................................................................................... xv
Acknowledgments................................................................................................................................... xvii
Authors..................................................................................................................................................... xix
Abbreviations........................................................................................................................................... xxi
1.Introduction....................................................................................................................................... 1
1.1 General Classes of Power Quality Problems........................................................................... 1
1.2 Types of Power Quality Problems........................................................................................... 3
Voltage Sags (Dips).................................................................................................. 4
1.2.1
1.2.2
Voltage Swells.......................................................................................................... 5
1.2.3Long-Duration Overvoltages................................................................................... 5
1.2.4
Undervoltages.......................................................................................................... 6
1.2.5
Interruptions............................................................................................................. 7
1.2.6Transients................................................................................................................. 8
1.2.7
Voltage Unbalance................................................................................................... 8
1.2.8Voltage Fluctuations................................................................................................ 9
Harmonics.............................................................................................................. 10
1.2.9
1.2.10 Electrical Noise.......................................................................................................14
1.2.11 Transient Overvoltage............................................................................................ 15
1.2.11.1 Capacitor Switching............................................................................. 15
1.2.11.2 Magnification of Capacitor-Switching Transients................................16
1.2.11.3 Restrikes during Capacitor Deenergizing............................................18
1.2.12Lightning................................................................................................................ 20
1.2.13Ferroresonance....................................................................................................... 22
1.3 Principles of Overvoltage Protection..................................................................................... 27

1.3.1
Devices for Overvoltage Protection....................................................................... 29
Surge Arresters and Transient Voltage Surge Suppressors................. 29
1.3.1.1
1.3.1.2
Isolation Transformers......................................................................... 30
Low-Pass Filters...................................................................................31
1.3.1.3
1.3.1.4
Low-Impedance Power Conditioners...................................................31
Utility Surge Arresters......................................................................... 32
1.3.1.5
1.3.2
Utility Capacitor-Switching Transients.................................................................. 34
1.3.2.1
Switching Times.................................................................................. 34
1.3.2.2
Pre-insertion Resistors......................................................................... 34
1.3.2.3
Synchronous Closing........................................................................... 36
Capacitor Location............................................................................... 39
1.3.2.4
1.3.2.5
Utility System Lightning Protection.................................................... 39
1.3.2.6Shielding.............................................................................................. 40
Line Arresters...................................................................................... 40
1.3.2.7
1.4 Origin of Short Interruptions..................................................................................................41
1.4.1Terminology............................................................................................................41
1.4.1.1Interruption...........................................................................................41

1.4.1.2Sags (Dips)........................................................................................... 42
1.4.1.3Swells................................................................................................... 44

v


vi

Contents
1.5

1.6

Monitoring of Short Interruptions......................................................................................... 44
1.5.1Sag......................................................................................................................... 44
1.5.2Swell...................................................................................................................... 45
1.5.3
Influence of Equipment......................................................................................... 45
1.5.3.1 Single Phase Tripping........................................................................... 45
1.5.3.2 Benefits of Single-Pole Tripping.......................................................... 46
1.5.3.3 Single-Pole Tripping Concerns and Solutions...................................... 46
Description of Long-Duration Power Quality Issues............................................................ 53
1.6.1Transients............................................................................................................... 53
1.6.2
Short-Duration Voltage Variations........................................................................ 53
1.6.3
Long-Duration Voltage Variations........................................................................ 53
1.6.4
Voltage Unbalance................................................................................................. 53
1.6.5

Waveform Distortion............................................................................................. 53
1.6.6
Voltage Fluctuations.............................................................................................. 53
1.6.7
Power Frequency Variations.................................................................................. 54

2. Mitigation Techniques.................................................................................................................... 55
2.1Introduction............................................................................................................................ 55
2.1.1
Series Controllers.................................................................................................. 56
2.1.2
Shunt Controllers—STATCOM............................................................................ 56
2.1.3
Combined Shunt and Series Controllers............................................................... 57
2.1.3.1 Unified Power Flow Controller............................................................. 57
2.1.3.2 Interline Power Flow Controller........................................................... 57
2.2 Application of FACTS Controllers in Distribution Systems................................................. 57
2.3 Introduction to Long-Duration Voltage Variations............................................................... 58
2.3.1
Observation of System Performance..................................................................... 58
2.3.2
Principle of Regulating Voltage............................................................................ 58
2.4 Devices for Voltage Regulation............................................................................................. 59
2.4.1
Electronic Voltage Regulator................................................................................ 59
Zener-Controlled Transistor Voltage Regulator.................................................... 59
2.4.2
2.4.3
Zener-Controlled Transistor Series Voltage Regulator......................................... 59
2.4.3.1Operation.............................................................................................. 60

2.4.3.2Limitations............................................................................................ 60
2.4.4
Zener-Controlled Transistor Shunt Voltage Regulator.......................................... 60
2.4.4.1Operation.............................................................................................. 60
2.4.4.2Limitations.............................................................................................61
2.4.5
Discrete Transistor Voltage Regulator...................................................................61
2.4.5.1 Limitations of Transistor Voltage Regulators...................................... 62
2.4.6
Electromechanical Regulator................................................................................ 63
2.4.7
Automatic Voltage Regulator................................................................................ 63
2.4.8
Constant Voltage Transformer............................................................................... 63
2.4.9
Utility Voltage Regulator Application................................................................... 63
2.5 Step-Voltage Regulator Basic Operation............................................................................... 64
2.5.1
Voltage Regulator Applications............................................................................. 66
2.5.2
Voltage Regulator Sizing and Connection............................................................ 66
2.5.3
Capacitor Selection Is Key to Good Voltage Regulator Design............................ 67
2.5.4
Dealing with EMI.................................................................................................. 67
2.5.5
The L-C Output Filter........................................................................................... 69
Seeking Guidance.................................................................................................. 70
2.5.6
2.5.7

A Critical Part of Power Supply Design................................................................ 71
2.5.8
End-User Capacitor Application........................................................................... 71
2.5.9
Energy Storage Device.......................................................................................... 71
2.5.10 Pulsed Power and Weapons................................................................................... 72


Contents

vii

2.5.11 Power Conditioning............................................................................................. 72
2.5.12 Power Factor Correction...................................................................................... 72
2.5.13 Motor Starters..................................................................................................... 72
2.5.14 Signal Processing................................................................................................ 73
2.5.15 Tuned Circuits..................................................................................................... 73
2.5.16 Regulating Utility Voltage with Distributed Resources...................................... 73
2.5.17Flicker.................................................................................................................. 74
2.5.17.1 Standards and Regulation................................................................. 75
2.6
Introduction to Voltage Sag................................................................................................. 76
2.6.1
Voltage Sag.......................................................................................................... 76
2.6.2
Voltage Sag Magnitude....................................................................................... 77
2.6.3
Voltage Sag Duration.......................................................................................... 78
2.6.3.1
Three-Phase Unbalance.................................................................... 80

2.6.3.2
Phase Angle Jumps........................................................................... 80
2.6.3.3
Magnitude and Phase-Angle Jumps for Three-Phase
Unbalanced Sags............................................................................. 81
2.6.3.4
Other Characteristics of Voltage Sags.............................................. 83
2.6.3.5
Load Influence on Voltage Sags....................................................... 83
2.6.4
Equipment Behavior............................................................................................ 84
2.6.4.1
Voltage-Tolerance Curves................................................................. 84
Voltage-Tolerance Tests.................................................................... 84
2.6.4.2
2.6.5
Computers and Consumer Electronics................................................................ 86
Estimation of Computer Voltage Tolerance...................................... 86
2.6.5.1
2.6.6
Adjustable AC Drive System............................................................................... 87
2.6.7
Adjustable DC Drives.......................................................................................... 88
2.6.7.1
Other Sensitive Loads....................................................................... 89
2.7
Stochastic Assessment of Voltage Sag................................................................................. 89
Compatibility between Equipment and Supply................................................... 89
2.7.1
2.7.1.1

Presentation of Results: Voltage Sag Co-ordination Chart.............. 91
2.8 Mitigation of Voltage Sag...................................................................................................... 93
2.8.1
From the Fault to Trip......................................................................................... 93
2.8.2
Reducing the Number of Faults........................................................................... 94
Reducing the Fault-Clearing Time...................................................................... 95
2.8.3
2.8.4
Including Changes in Power System................................................................... 96
Installing Mitigation Equipment......................................................................... 97
2.8.5
2.8.6
Improvising Equipment Immunity...................................................................... 97
2.9
Different Events and Mitigation Methods........................................................................... 98
2.10 Voltage Imbalance and Voltage Fluctuation........................................................................ 98
2.10.1 Voltage Imbalance............................................................................................... 98
2.10.2 Voltage Fluctuation............................................................................................. 99
2.10.2.1 Causes of Voltage Fluctuations......................................................... 99
2.10.2.2 Sources of Voltage Fluctuations..................................................... 100
2.10.2.3 Mitigation of Voltage Fluctuations in Power Systems.................... 100
2.10.3 Voltage Stabilization Solutions...........................................................................101
2.11 Waveform Distortion..........................................................................................................101
2.11.1 Power Frequency Variation............................................................................... 102
2.11.1.1 Variation from Rated Voltage......................................................... 102
2.11.1.2 Variation from Rated Frequency.................................................... 102
2.11.1.3 Combined Variation of Voltage and Frequency............................. 102
2.11.1.4 Effects of Variation of Voltage and Frequency upon the
Performance of Induction Motors................................................... 103



viii

Contents
2.11.1.5

Operation of General-Purpose Alternating-Current Polyphase
2-, 4-, and 8-Pole, 60 Hz Integral-Horsepower Induction
Motors Operated on 50 Hz............................................................. 103
2.11.1.6
Effects of Voltages over 600 V on the Performance of
Low-Voltage Motors....................................................................... 104
2.11.2 Electrical Noise.................................................................................................... 104
2.11.2.1
Internal Noise.................................................................................. 104
2.11.2.2
External Noise................................................................................. 104
2.11.2.3
Frequency Analysis of Noise.......................................................... 108
2.11.3 Overvoltage and Undervoltage.............................................................................110
2.11.3.1Overvoltage......................................................................................110
2.11.3.2Lightning..........................................................................................112
2.11.3.3
Surges Induced by Equipment.........................................................112
2.11.3.4
Effects of Overvoltages on Power System.......................................114
2.11.3.5Undervoltage....................................................................................114
2.11.3.6Outage..............................................................................................115
2.11.4Harmonics.............................................................................................................115

2.11.4.1
Harmonic Number (h)......................................................................115
2.11.4.2
Harmonic Signatures........................................................................116
2.11.4.3
Effect of Harmonics on Power System Devices..............................116
Guidelines for Harmonic Voltage and Current Limitation..............119
2.11.4.4
2.11.4.5
Harmonic Current Cancellation...................................................... 120
Harmonic Filters............................................................................. 120
2.11.4.6
2.11.4.7
Cures for Low-Frequency Disturbances..........................................121
2.11.4.8
Isolation Transformers.................................................................... 122
2.11.4.9
Voltage Regulators.......................................................................... 122
2.11.4.10 Static Uninterruptible Power Source Systems................................ 123
2.11.4.11 Rotary Uninterruptible Power Source Units................................... 127
2.11.4.12 Voltage Tolerance Criteria.............................................................. 128
2.11.5 Harmonic Distortion............................................................................................ 129
2.11.5.1
Total Harmonic Distortion.............................................................. 130
2.11.5.2
The Usual Suspects..........................................................................131
Importance of Mitigating THD........................................................131
2.11.5.3
2.11.5.4
Voltage vs. Current Distortion.........................................................132

Current Measurement with Harmonics............................................132
2.11.5.5
2.11.5.6
Voltage Measurement with Harmonics............................................133
2.11.5.7
Effects of Current Distortion...........................................................133
2.11.5.8
Effects of Voltage Distortion........................................................... 134
2.11.5.9
Harmonics vs. Transients................................................................ 134
2.11.5.10 Sources of Current Harmonics........................................................ 134
2.11.5.11 Voltage and Current Harmonics......................................................135
2.11.6 Harmonic Indices..................................................................................................135
2.11.6.1
Single Site Indices............................................................................135
2.11.6.2
System Indices................................................................................. 139
Harmonic Sources from Commercial Loads...................................143
2.11.6.3
2.11.7Interharmonics..................................................................................................... 154
2.11.7.1
Description of the Phenomenon...................................................... 154
3. A Voltage-Controlled DSTATCOM for Power Quality Improvement......................................163
3.1Introduction...........................................................................................................................163
3.2DSTATCOM.........................................................................................................................163
3.3 Design of DSTATCOM........................................................................................................165


Contents


ix

3.4
Control Circuit Design and Reference Terminal Voltage Generation............................... 166
3.5Simulation.......................................................................................................................... 166
4. Power Quality Issues and Solutions in Renewable Energy Systems.........................................173
4.1Introduction.........................................................................................................................173
4.2
Power Quality in Electrical Systems..................................................................................173
4.3
Solutions to Power Quality Problems��������������������������������������������������������������������������������174
4.4
Multilevel Inverters and Their Structures�������������������������������������������������������������������������175
4.4.1
Diode-Clamped Multilevel Inverter������������������������������������������������������������������176
4.4.2
Flying Capacitor Multilevel Inverter�����������������������������������������������������������������177
4.4.3
Cascaded H Bridge Multilevel Inverter (CHBMLI)�����������������������������������������178
4.4.4
Reduced Order Multilevel Inverter�������������������������������������������������������������������179
Comparison of Multilevel Inverters����������������������������������������������������������������� 180
4.4.5
4.4.6
Applications of Multilevel Inverters����������������������������������������������������������������� 180
4.4.7
Integration of MLI with Solar PV Systems������������������������������������������������������ 180
4.5
Power Quality Improvement Techniques for a Solar-Fed CMLI��������������������������������������182
4.5.1

Intelligent Techniques���������������������������������������������������������������������������������������182
4.5.2
Problem Statement���������������������������������������������������������������������������������������������183
4.6
Literature Review��������������������������������������������������������������������������������������������������������������183
4.7
Modeling of Solar Panel��������������������������������������������������������������������������������������������������� 184
Design Specifications���������������������������������������������������������������������������������������������������������188
4.8
4.9
Experimental Setup���������������������������������������������������������������������������������������������������������� 190
4.10 Selective Harmonic Elimination�������������������������������������������������������������������������������������� 193
4.10.1 Problem Statement�������������������������������������������������������������������������������������������� 194
4.10.2 Optimal Harmonic Stepped Waveform������������������������������������������������������������ 194
4.10.3 Artificial Neural Network�������������������������������������������������������������������������������� 199
4.10.4 Data Set Collection������������������������������������������������������������������������������������������� 199
4.10.5 ANN Architecture�������������������������������������������������������������������������������������������� 200
4.11 Optimization Techniques�������������������������������������������������������������������������������������������������� 201
4.11.1 Problem Formulation���������������������������������������������������������������������������������������� 201
4.11.2 Genetic Algorithm�������������������������������������������������������������������������������������������� 203
4.11.3 Computation of Switching Angles������������������������������������������������������������������� 203
4.11.3.1 Generation of Initial Chromosomes���������������������������������������������� 203
4.11.3.2Population�������������������������������������������������������������������������������������� 203
4.11.3.3 Fitness Function����������������������������������������������������������������������������� 203
4.11.3.4 Crossover Operation���������������������������������������������������������������������� 204
4.11.3.5 Mutation Operation������������������������������������������������������������������������ 204
4.11.3.6Termination������������������������������������������������������������������������������������ 204
4.11.4 Particle Swarm Optimization��������������������������������������������������������������������������� 204
4.11.5 Bees Optimization�������������������������������������������������������������������������������������������� 205
4.11.6 Natural World of Bees�������������������������������������������������������������������������������������� 206

4.11.7 Computation of Switching Angles������������������������������������������������������������������� 206
4.12 Simulation Results������������������������������������������������������������������������������������������������������������ 207
4.12.1 Optimal Harmonic Stepped Waveform������������������������������������������������������������ 207
4.12.2 Artificial Neural Networks������������������������������������������������������������������������������� 209
4.12.3 Optimization Techniques����������������������������������������������������������������������������������212
4.13 Experimental Results���������������������������������������������������������������������������������������������������������215
4.14 Lower Order Harmonics Mitigation in a PV Inverter�������������������������������������������������������219
4.14.1Methodology����������������������������������������������������������������������������������������������������� 220
4.14.2 Origin of Lower Order Harmonics and Fundamental Current Control����������� 221
4.14.3 Origin of Lower Order Harmonics������������������������������������������������������������������� 221
4.14.3.1 Odd Harmonics������������������������������������������������������������������������������ 221
4.14.4 Even Harmonics����������������������������������������������������������������������������������������������� 221


x

Contents
4.15 Fundamental Current Control������������������������������������������������������������������������������������������ 222
4.16 Design of PRI Controller Parameters������������������������������������������������������������������������������� 223
4.17 Adaptive Harmonic Compensation���������������������������������������������������������������������������������� 223
4.18 Simulink Model���������������������������������������������������������������������������������������������������������������� 226
References........................................................................................................................................231

5. Review of Control Topologies for Shunt Active Filters............................................................. 233
5.1Background........................................................................................................................ 233
5.1.1 Nonlinear Load Types: Current Source or Voltage Source................................ 237
5.1.1.1 Current Source Load Type.................................................................. 237
5.1.1.2 Voltage-Source-Type Load................................................................. 238
5.2
Three-Phase Three-Wire Systems..................................................................................... 240

Design of Transformer, Passive Filters, IGBT................................................................... 243
5.3
5.3.1 Design of Transformers....................................................................................... 243
5.3.1.1 Zigzag Transformer............................................................................. 244
5.3.1.2 T-Connected Transformer................................................................... 245
5.3.1.3 Star/Delta (Y–Δ) Transformer............................................................. 248
5.3.1.4 Star/Hexagon Transformer.................................................................. 248
5.4
Design of Capacitors for VSC........................................................................................... 250
5.5
Topologies-Design Consideration...................................................................................... 250
Three Phase Four Wire Systems........................................................................................251
5.6
5.7
Effect of Neutral and Grounding Practices for Power Quality Improvement................... 265
5.7.1 Reduction of Neutral Current Carried by Existing Problem Conductor............. 269
5.7.2 Scheme to Cancel Neutral Current along Parts of Bus Bars............................... 270
Advantages with Three Phase Four Wire System............................................................. 270
5.8
5.9
Topologies-Design Consideration...................................................................................... 270
5.9.1 Topology with Three-Leg VSC-Based with Zigzag........................................... 272
5.9.2 Topology with Three-Leg Split Capacitor with Star–Delta................................ 272
5.9.3 Topology with Three Leg with T-Connected...................................................... 273
5.9.4 Topology with Three Leg with Star–Hexagon Connected................................. 273
5.10 Comparison of Topologies..................................................................................................274
5.11Summary........................................................................................................................... 277
References....................................................................................................................................... 279
6. Control Topologies for Series Active Filters............................................................................... 287
6.1Background........................................................................................................................ 287

6.2
Advantages and Comparison with Shunt Active Filters.................................................... 296
6.3
Design of Series Active Filter Components...................................................................... 297
6.4Topology............................................................................................................................ 298
6.4.1 Thyristor Bridge Low-Pass Filter........................................................................ 304
6.4.2 Angle Control Unit.............................................................................................. 305
6.4.3 Voltage-Boost or Buck Rate Limit and Quantization......................................... 305
6.4.4 Dynamic Saturation............................................................................................. 305
6.4.5 Series DC Active Filter Controller...................................................................... 305
6.4.5.1 The Traditional SHAPF...................................................................... 308
6.4.5.2 The Series-in SHAPF..........................................................................310
6.4.5.3 The SHAPF..........................................................................................310
6.5
Comparison of Topologies..................................................................................................312
6.6Summary............................................................................................................................313
References........................................................................................................................................315


Contents

xi

7. Control Strategies for Active Filters.............................................................................................321
7.1Background.........................................................................................................................321
7.1.1 Control Strategy.................................................................................................. 322
7.1.1.1 Signal Conditioning............................................................................ 323
7.1.1.2 Derivation of Compensating Signals.................................................. 323
7.1.1.3 Generation of Gating Signals to Compensating Devices................... 323
7.2

Control Strategy for Shunt Active Three-Phase Three-Wire System............................... 323
7.3
Three-Phase Four-Wire Shunt Active Filter...................................................................... 328
7.4
Capacitor Charging in Active Filters................................................................................. 336
7.4.1 Design of VSC..................................................................................................... 336
7.5
Applications of Compensating Devices............................................................................ 337
7.5.1 Reference Signal Extraction Techniques............................................................. 338
7.5.1.1 Frequency-Domain Methods.............................................................. 338
7.5.1.2 Time-Domain Methods...................................................................... 340
7.5.1.3 Other Algorithms................................................................................ 345
7.5.2 Current Control Techniques................................................................................. 345
7.5.2.1 Open Loop PWM Methods................................................................ 346
7.5.2.2 Closed Loop PWM Methods: Hysteresis Controller.......................... 348
7.5.2.3 Selective Harmonic Elimination PWM.............................................. 349
7.5.3 Main Circuits....................................................................................................... 350
7.5.3.1 Space-Vector Modulation....................................................................351
7.5.4 Control Systems................................................................................................... 354
7.6Summary............................................................................................................................355
References....................................................................................................................................... 356
8. An Active Power Filter in Phase Coordinates for Harmonic Mitigation..................................371
8.1
Active Power Filter.............................................................................................................371
Synchronous Current Detection.........................................................................................371
8.2
8.3
Least-Squares Fitting..........................................................................................................371
Phase-Lock Technique...................................................................................................... 373
8.4

8.5
Determination of Phase Reference Currents..................................................................... 373
8.6
Simulation Model.............................................................................................................. 373
9. Line Harmonics Reduction in High-Power Systems.................................................................. 377
9.1Introduction....................................................................................................................... 377
9.2
Square Wave Inverter........................................................................................................ 378
9.3
Modified Sine Wave.......................................................................................................... 378
9.4
Pure Sine Wave.................................................................................................................. 379
9.5
Pulse-Width Modulation................................................................................................... 379
Bipolar Switching.............................................................................................................. 380
9.6
9.7
Unipolar Switching............................................................................................................ 380
Modified Unipolar Switching.............................................................................................381
9.8
9.9
Voltage Source Inverter..................................................................................................... 382
9.10 Three-Phase Voltage Source Inverter................................................................................ 383
9.11 Simulation and Results...................................................................................................... 383
10. AC–DC Boost Converter Control for Power Quality Mitigation............................................. 389
10.1Introduction....................................................................................................................... 389
10.2 Unidirectional AC to DC Boost Converter....................................................................... 389
10.3 PFC Control........................................................................................................................391



xii

Contents
10.4
Control Strategy of PFC Control......................................................................................391
10.5
Reactive Power Compensation Control Mode................................................................. 393
10.6
Harmonic Current Compensation Control Mode............................................................ 395
10.7
HCC and RPC Combined Control Strategy.................................................................... 396
10.8Simulations...................................................................................................................... 397

11. Harmonic and Flicker Assessment of an Industrial System with Bulk Nonlinear Loads..... 401
11.1
Single Line Diagram of the System................................................................................. 401
11.2
System Modeling............................................................................................................. 401
11.3
EAF Load Model............................................................................................................. 401
11.4
SVC Model...................................................................................................................... 401
11.5
Thyristor Bridge Rectifier (6-Pulse)................................................................................ 402
Simulink Model............................................................................................................... 403
11.6
11.7Waveforms....................................................................................................................... 407
12. LCL Filter Design for Grid-Interconnected Systems................................................................ 409
12.1Introduction..................................................................................................................... 409
12.2

Block Diagram................................................................................................................. 409
12.3
LCL Filter.........................................................................................................................410
12.4
LCL Filter Design.............................................................................................................410
12.5
Filter Design Specifications..............................................................................................411
12.6Simulation.........................................................................................................................412
13. Harmonics Mitigation in Load Commutated Inverter Fed Synchronous Motor Drives........417
13.1Introduction......................................................................................................................417
13.2
Synchronous Motor Drives...............................................................................................417
13.3
Load-Commutated Inverters............................................................................................417
Converter Configuration...................................................................................................418
13.4
13.5
Requirements for the 18- and 24-Pulse Converters.........................................................418
13.6Operation..........................................................................................................................419
13.6.1
6-Pulse Converters..........................................................................................419
13.6.2
12-Pulse Converters........................................................................................419
Design of Filters...............................................................................................................421
13.7
13.8Specifications....................................................................................................................421
Simulation and Results.................................................................................................... 422
13.9
13.9.1
MATLAB Blocks........................................................................................... 422

13.9.2
6-Pulse Converter without Filter Circuit....................................................... 422
13.9.3
6-Pulse Converter with Passive Filter Circuit................................................ 422
13.9.4
12-Pulse Converter without Filter.................................................................. 425
13.9.5
12-Pulse Converter with Passive Filter.......................................................... 425
13.9.6
FFT Analysis................................................................................................. 425
13.10 Graphical Results............................................................................................................. 425
13.10.1 6-Pulse Converter without Filter................................................................... 425
13.10.2 6-Pulse Converter Using Passive Filter......................................................... 425
13.10.3 12-Pulse Converter without Filter.................................................................. 425
13.10.4 12-Pulse Converter Using Filter.....................................................................431
13.10.5 18-Pulse Converter..........................................................................................431
14. Power-Quality Improvements in Vector-Controlled Induction Motor Drives.........................435
14.1
Scalar Control...................................................................................................................435
14.2
Vector Control ................................................................................................................ 436
14.3
Representation of the System.......................................................................................... 436


Contents

xiii

14.4MATLAB Simulation...................................................................................................... 437

14.5
Simulink Model of Vector-Controlled Induction Motor Drive....................................... 438
14.6
Subsystem Model of VCIMD.......................................................................................... 439
14.7
Simulation Results of VCIMD........................................................................................ 440
14.8
Speed Waveform.............................................................................................................. 440
14.9
Torque Waveform............................................................................................................ 441
14.10 6-Pulse Converter with VCIMD...................................................................................... 441
14.11 12-Pulse Converter........................................................................................................... 443
14.12 18-Pulse Converter........................................................................................................... 445
14.13 24-Pulse Converter.......................................................................................................... 447
14.14 Results and Conclusion.................................................................................................... 447
Index........................................................................................................................................................451



Preface
Power Quality has been a problem bristling with snags ever since electrical power was invented. It has
become a well-researched area of interest in recent years because of the electrical appliances (load) it
affects. The electric current that the customers’ appliances draw from the supply network flows through
the impedances of the supply system and causes a voltage drop, which affects the voltage delivered to the
customer. Hence, both the voltage quality and the current quality are important. The power distribution
supplier is responsible for the voltage quality and the customer is accountable for the quality of electric
current that they draw from the utility. The power system electromagnetic phenomena that affect the
power quality are categorized as transient, short-duration variations, long-duration variations, and waveform distortions. A waveform distortion is defined as a steady state deviation from an ideal sine wave of
a power frequency that is principally characterized by the spectral content of the deviation.
Power Quality is intended as a useful text for undergraduate, postgraduate, and research students. It

is also useful for practitioner engineers and industrial personnel. Power quality improvement techniques
are vital to ensure the equipment safety and cost reduction sought in the electrical system. Hence, in lieu
of a conventional system, intelligent and more advanced techniques are required for the improvement
of power quality. The main objective of the book is to prove to the readers the need for power quality
improvement in real-time systems. Keeping this fact in mind, a detailed review is presented for the
power quality indices along with detailed description, algorithm formulation, simulation results, and
corresponding analysis and experimental study. The techniques covered extensively in this book provide
a platform for students and researchers to understand the problems and the path to be travelled in alleviating those problems.
L. Ashok Kumar
S. Albert Alexander
MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc. For product information,
please contact:
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail:
Web: www.mathworks.com

xv



Acknowledgments
The authors are always thankful to the Almighty for their perseverance and achievements. The
authors owe their gratitude to Shri L. Gopalakrishnan, Managing Trustee, PSG Institutions, and all
the ­trustees of Kongu Vellalar Institute of Technology Trust, Perundurai. The authors also owe their
­g ratitude to Dr.  R.  Rudramoorthy, Principal, PSG College of Technology, Coimbatore, India, and
Prof. S. Kuppuswami, Principal, Kongu Engineering College, Perundurai, India, for their wholehearted

cooperation and great encouragement in this successful endeavor.
I, Dr. L. Ashok Kumar would like to take this opportunity to acknowledge those people who helped
me in completing this book. I am thankful to all my research scholars and students who are doing their
project and research work with me. But the writing of this book is possible mainly because of the support
of my family members, parents, and sisters. Most importantly, I am very grateful to my wife, Y. Uma
Maheswari, for her constant support during writing. Without her, all these things would not be possible.
I would like to express my special gratitude to my daughter, A. K. Sangamithra, for her smiling face and
support; it helped a lot in completing this work.
I, Dr. S. Albert Alexander would like to take this opportunity to acknowledge those people who
helped me in completing this book. I am thankful to all my research scholars and students who are
doing their project and research work with me. But the writing of this book is possible mainly because
of the s­ upport of my family members, parents, and brothers. Most importantly, I am very grateful to my
wife, A. Lincy Annet, for her constant support during writing. Without her, all these things would not
be p­ ossible. I would like to express my special gratitude to my son, A. Albin Emmanuel, for his smiling
face and support; it helped a lot in completing this work.

xvii



Authors
L. Ashok Kumar is a Postdoctoral Research Fellow from San Diego State University, California.
He  is  a recipient of the BHAVAN fellowship from the Indo-US Science and Technology Forum and
SYST Fellowship from DST, Government of India. His current research focuses on integration of renewable energy systems in the smart grid and wearable electronics. He has 3 years of industrial experience
and 19 years of academic and research experience. He has published 167 technical papers in international and national journals and presented 157 papers at national and international conferences. He
has completed 23 Government of India-funded projects, and currently 5 projects are in progress. His
PhD work on wearable electronics earned him a National Award from ISTE, and he has received 24
awards on the national level. Ashok Kumar has seven patents to his credit. He has guided 92 graduate
and postgraduate projects. He is a member and in prestigious positions in various national forums. He
has visited many countries for institute/industry collaboration and as a keynote speaker. He has been

an invited speaker in 178 programs. Also, he has organized 72 events, including conferences, workshops, and seminars. He completed his graduate program in Electrical and Electronics Engineering
from the University of Madras; his post-graduate program from PSG College of Technology, India; and
his Master’s in Business Administration from IGNOU, New Delhi. After completion of his graduate
degree, he joined as project engineer for Serval Paper Boards Ltd., Coimbatore (now ITC Unit, Kovai).
Presently, he is working as a Professor and Associate HoD in the Department of EEE, PSG College of
Technology and also doing research work in wearable electronics, smart grids, solar PV, and wind energy
systems. He is also a Certified Chartered Engineer and BSI-Certified ISO 500001 2008 Lead Auditor.
He has authored the following books in his areas of interest: (1) Computational Intelligence Paradigms
for Optimization Problems Using MATLAB®/SIMULINK®, CRC Press; (2) Solar PV and Wind Energy
Conversion Systems—An Introduction to Theory, Modeling with MATLAB/SIMULINK, and the Role of
Soft Computing Techniques—Green Energy and Technology, Springer, USA; (3) Electronics in Textiles
and Clothing: Design, Products and Applications, CRC Press; (4) Power Electronics with MATLAB,
Cambridge University Press, London; and (5) Automation in Textile Machinery: Instrumentation and
Control System Design Principles—CRC Press, Taylor & Francis Group, USA, ISBN 9781498781930,
April 2018. He has also published the following monographs: (1) Smart Textiles, (2) Information
Technology for Textiles, and (3) Instrumentation & Textile Control Engineering.
S. Albert Alexander is a Postdoctoral Research Fellow from Northeastern University, Boston,
Massachusetts. He is a recipient of Raman Research Fellowship from the University Grants Commission
(Government of India). His current research focuses on fault diagnostic systems for solar energy conversion systems and smart grids. He has 12 years of academic and research experience. He has published
15 technical papers in international and national journals and presented 19 papers at national and international conferences. He has completed 4 Government of India-funded projects. His PhD work on power
quality earned him a National Award from ISTE, and he has received 20 awards on the national level. He
has guided 33 graduate and postgraduate projects. He is a member and in prestigious positions in various national forums. He has been an invited speaker in 150 programs. Also, he has organized 15 events,
including faculty development programs, workshops, and seminars. He completed his graduate program
in Electrical and Electronics Engineering from Bharathiar University and his postgraduate program from
Anna University, India. Presently he is working as an Associate Professor in the Department of EEE,
Kongu Engineering College and also doing research work in smart grids, solar PV, and power quality improvement techniques. He has authored the following books in his areas of interest: (1) Basic
Electrical, Electronics and Measurement Engineering and (2) Special Electrical Machines.

xix




Abbreviations
IEEE
ANSI
CW
ESD
NEMP
RMS
UPS
EFT
TVSS
SVC
PCC
SMPS
THD
TDD
EMI
pu
MOV
PIV
SCR
TVSS
MCOV
LIPC
LPS
BIL
DSTATCOM
VSI
CSI

PWM
DVR
FACTS
MATLAB
UPF
RES
MLI
PV
NPC
DCMLI
FCMLI
CMLI
FC
SDCs
MPPT
ANN

The Institute of Electrical and Electronics Engineers
American National Standards Institute
continuous wave
Electrostatic discharge
Nuclear electromagnetic pulse
Root mean square
Uninterruptible power supply
Electrical Fast Transient
Transient voltage surge suppression
static VAR controller
point of common coupling
switched-mode power supplies
total harmonic distortion

Total demand distortion
electromagnetic interference
per unit
metal-oxide varistor
peak inverse voltage
silicon-controlled rectifier
transient voltage surge suppressors
maximum continuous operating voltage
Low-impedance power conditioner
Utility System Lightning Protection
basic impulse insulation level
Distribution static compensator
Voltage source inverter
Current source inverter
Pulse width modulation
Dynamic voltage restorer
Flexible AC transmission system
Matrix laboratory
Unity power factor
Renewable Energy Systems
Multilevel inverter
photovoltaic
neutral point-clamped
diode-clamped multilevel inverter
flying capacitor multilevel inverter
Cascaded multilevel inverter
flying capacitor
separate DC sources
Maximum power point tracking
Artificial neural networks


xxi


xxii
FLC
GA
PSO
BO
MMC
SHE
NR
OPWM
STC
LMBPN
BPN
PPG
FFT
DDR
PQA
LMS
PLL
ShAPF
APQC
APLC
IRPC
ACO
SRF
CCM
DCM

MMF
IGBT
NEC
DG
CSC
VSC
NTSHAPF
VFD
SRF
SCD
LVD
CVD
ADALINE
PMSG
BESS
DCC
ICC
LQR
SVM
EAF
TCR
LCI
SCR
TCSC

Abbreviations
fuzzy logic controller
Genetic algorithm
particle swarm optimization
bees optimization

modified multilevel converter
Selective harmonic elimination
Newton–Raphson
Optimal pulse-width modulation
standard test conditions
Levenberg Marquart back-propagation
back propagation
programmable pulse generator
Fast Fourier transform
double data rate
power quality analyzer
least mean square
phase-locked loop
shunt active power filter
Active power quality conditioners
active power line conditioners
instantaneous reactive power compensator
ant colony optimization
synchronous reference frame
Continuous conduction mode
Discontinuous conduction mode
Magneto motive force
insulated-gate bipolar transistors
National Electrical Code
Distributed generation
Current source converter
Voltage source converter
novel type series hybrid active power filter
Variable frequency drive
synchronous reference frame theory

Source current detection
Load voltage detection
Current and voltage detection
Adaptive linear neuron
permanent magnet synchronous generator
battery energy storage system
direct current control
indirect current control
Linear Quadratic Regulator
Space-Vector Modulation
electric arc furnaces
thyristor-controlled reactors
load-commutated inverter
silicon-controlled rectifier
thyristor-controlled series capacitor or compensator


xxiii

Abbreviations
TCPST
IPFC
UPFC
STATCOM
SSSC
EMP
UNIPEDE

thyristor-controlled phase-shifting transformer
Interline power flow controller

Unified power flow controller
Static synchronous compensator
Static synchronous series compensator
Electromagnetic pulses
Union Internationale des Producteurs et Distributeurs d’Energie Electrique



×