Tải bản đầy đủ (.pdf) (591 trang)

Smart sensors for industrial applications by krzysztof iniewski

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (14.72 MB, 591 trang )

SMART
SENSORS
INDUSTRIAL
APPLICATIONS

FOR

Edited by

Krzysztof Iniewski

www.Techbooksyard.com


www.Techbooksyard.com


SMART
SENSORS
INDUSTRIAL
APPLICATIONS

FOR

www.Techbooksyard.com


Devices, Circuits, and Systems
Series Editor
Krzysztof Iniewski
CMOS Emerging Technologies Inc., Vancouver, British Columbia, Canada



PUBLISHED TITLES:
Atomic Nanoscale Technology in the Nuclear Industry
Taeho Woo
Biological and Medical Sensor Technologies
Krzysztof Iniewski
Electrical Solitons: Theory, Design, and Applications
David Ricketts and Donhee Ham
Electronics for Radiation Detection
Krzysztof Iniewski
Graphene, Carbon Nanotubes, and Nanostuctures:
Techniques and Applications
James E. Morris and Kris Iniewski
High-Speed Photonics Interconnects
Lukas Chrostowski and Kris Iniewski
Integrated Microsystems: Electronics, Photonics, and Biotechnology
Krzysztof Iniewski
Internet Networks: Wired, Wireless, and Optical Technologies
Krzysztof Iniewski
Low Power Emerging Wireless Technologies
Reza Mahmoudi and Krzysztof Iniewski
MEMS: Packaging and Technology
Vikas Choudhary and Krzysztof Iniewski
Nano-Semiconductors: Devices and Technology
Krzysztof Iniewski
Optical, Acoustic, Magnetic, and Mechanical Sensor Technologies
Krzysztof Iniewski
Radiation Effects in Semiconductors
Krzysztof Iniewski
Semiconductor Radiation Detection Systems

Krzysztof Iniewski
Smart Sensors for Industrial Applications
Krzysztof Iniewski
Telecommunication Networks
Eugenio Iannone

www.Techbooksyard.com


FORTHCOMING TITLES:
Novel Advances in Microsystems Technologies and their Applications
Laurent A. Francis and Krzysztof Iniewski
Nanoelectronic Device Applications Handbook
James E. Morris and Krzysztof Iniewski
Nanoscale Semiconductor Memories: Technology and Applications
Santosh K. Kurinec and Krzysztof Iniewski
Radio Frequency Integrated Circuit Design
Sebastian Magierowski
Nanoelectronics: Devices, Circuits, and Systems
Nikos Konofaos
Medical Imaging: Technology and Applications
Troy Farncombe and Krzysztof Iniewski
Wireless Sensors Technologies
Ioanis Nikolaidis and Krzysztof Iniewski
Energy Harvesting with Functional Materials and Microsystems
Madhu Bhaskaran, Sharath Sriram, and Krzysztof Iniewski
Nanoplasmonics: Advanced Device Applications
James W. M. Chon and Krzysztof Iniewski
CMOS: Front-End Electronics for Radiation Sensors
Angelo Rivetti

Embedded and Networking Systems: Design, Software, and Implementation
Gul N. Khan and Krzysztof Iniewski
MIMO and Multi-User Power Line Communications
Lars Torsten Berger

www.Techbooksyard.com


www.Techbooksyard.com


SMART
SENSORS
INDUSTRIAL
APPLICATIONS

FOR

Edited by

Krzysztof Iniewski

Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

www.Techbooksyard.com



MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy
of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB®
software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business
No claim to original U.S. Government works
Version Date: 20130401
International Standard Book Number-13: 978-1-4665-6811-2 (eBook - PDF)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to
publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials
or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.
Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any
form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming,
and recording, or in any information storage or retrieval system, without written permission from the publishers.
For permission to photocopy or use material electronically from this work, please access www.copyright.com ( or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.
Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.
Visit the Taylor & Francis Web site at

and the CRC Press Web site at


www.Techbooksyard.com



Contents
List of Figures....................................................................................................................................xi
Preface..........................................................................................................................................xxvii
Editor.............................................................................................................................................xxix
Contributors...................................................................................................................................xxxi

Part I  Photonic and Optoelectronics Sensors
Chapter 1 Optical Fiber Sensors: Devices and Techniques...........................................................3
Rogério Nunes Nogueira, Lúcia Maria Botas Bilro, Nélia Jordão Alberto,
Hugo Filipe Teixeira Lima, and João de Lemos Pinto
Chapter 2 Microstructured and Solid Polymer Optical Fiber Sensors........................................ 17
Christian-Alexander Bunge and Hans Poisel
Chapter 3 Optical Fiber Sensors and Interrogation Systems for Interaction Force
Measurements in Minimally Invasive Surgical Devices............................................. 31
Ginu Rajan, Dean Callaghan, Yuliya Semenova, and Gerald Farrell
Chapter 4 Recent Advances in Distributed Fiber-Optic Sensors Based on the Brillouin
Scattering Effect.......................................................................................................... 47
Alayn Loayssa, Mikel Sagues, and Ander Zornoza
Chapter 5 Silicon Microring Sensors........................................................................................... 65
Zhiping Zhou and Huaxiang Yi
Chapter 6 Laser Doppler Velocimetry Technology for Integration and Directional
Discrimination............................................................................................................. 81
Koichi Maru and Yusaku Fujii
Chapter 7 Vision-Aided Automated Vibrometry for Remote Audio–Visual Range Sensing......97
Tao Wang and Zhigang Zhu
Chapter 8 Analytical Use of Easily Accessible Optoelectronic Devices: Colorimetric
Approaches Focused on Oxygen Quantification....................................................... 113
Jinseok Heo and Chang-Soo Kim


vii

www.Techbooksyard.com


viii

Contents

Chapter 9 Optical Oxygen Sensors for Micro- and Nanofluidic Devices.................................. 129
Volker Nock, Richard J. Blaikie, and Maan M. Alkaisi
Chapter 10 Multidirectional Optical Sensing Using Differential Triangulation......................... 155
Xian Jin and Jonathan F. Holzman

Part II  Infrared and Thermal Sensors
Chapter 11 Measurement of Temperature Distribution in Multilayer Insulations between
77 and 300 K Using Fiber Bragg Grating Sensor..................................................... 179
Rajini Kumar Ramalingam and Holger Neumann
Chapter 12 Thin Film Resistance Temperature Detectors.......................................................... 195
Fred Lacy
Chapter 13 The Influence of Selected Parameters on Temperature Measurements Using
a Thermovision Camera............................................................................................207
Mariusz Litwa
Chapter 14 Adaptive Sensors for Dynamic Temperature Measurements.................................... 227
Paweł Jamróz and Jerzy Nabielec
Chapter 15 Dual-Band Uncooled Infrared Microbolometer........................................................ 243
Qi Cheng, Mahmoud Almasri, and Susan Paradis
Chapter 16 Sensing Temperature inside Explosions.................................................................... 257
Joseph J. Talghader and Merlin L. Mah


Part III  Magnetic and Inductive Sensors
Chapter 17 Accurate Scanning of Magnetic Fields..................................................................... 273
Hendrik Husstedt, Udo Ausserlechner, and Manfred Kaltenbacher
Chapter 18 Low-Frequency Search Coil Magnetometers............................................................ 289
Asaf Grosz and Eugene Paperno
Chapter 19 Inductive Coupling–Based Wireless Sensors for High-Frequency Measurements...... 305
H.S. Kim, S. Sivaramakrishnan, A.S. Sezen, and R. Rajamani

www.Techbooksyard.com


ix

Contents

Chapter 20 Inductive Sensor for Lightning Current Measurement Fitted in Aircraft Windows..... 323
A.P.J. van Deursen
Chapter 21 Technologies for Electric Current Sensors................................................................ 339
G. Velasco-Quesada, A. Conesa-Roca, and M. Román-Lumbreras
Chapter 22 Ferrofluids and Their Use in Sensors........................................................................ 355
B. Andò, S. Baglio, A. Beninato, and V. Marletta

Part IV  Sound and Ultrasound Sensors
Chapter 23 Low-Cost Underwater Acoustic Modem for Short-Range Sensor Networks............ 371
Bridget Benson and Ryan Kastner
Chapter 24 Integrating Ultrasonic Standing Wave Particle Manipulation into Vibrational
Spectroscopy Sensing Applications.......................................................................... 391
Stefan Radel, Johannes Schnöller, and Bernhard Lendl
Chapter 25 Wideband Ultrasonic Transmitter and Sensor Array for In-Air Applications.......... 411

Juan Ramon Gonzalez, Mohamed Saad, and Chris J. Bleakley
Chapter 26 Sensing Applications Using Photoacoustic Spectroscopy........................................ 433
Ellen L. Holthoff and Paul M. Pellegrino

Part V  Piezoresistive, Wireless, and Electrical Sensors
Chapter 27 Piezoresistive Fibrous Sensor for On-Line Structural Health Monitoring of
Composites................................................................................................................ 455
Saad Nauman, Irina Cristian, François Boussu, and Vladan Koncar
Chapter 28 Structural Health Monitoring Based on Piezoelectric Transducers: Analysis
and Design Based on the Electromechanical Impedance......................................... 471
Fabricio G. Baptista, Jozue Vieira Filho, and Daniel J. Inman
Chapter 29 Microwave Sensors for Non-Invasive Monitoring of Industrial Processes............... 485
B. García-Baños, Jose M. Catalá-Civera, Antoni J. Canós,
and Felipe L. Peñaranda-Foix
Chapter 30 Microwave Reflectometry for Sensing Applications in the Agrofood Industry........ 501
Andrea Cataldo, Egidio De Benedetto, and Giuseppe Cannazza

www.Techbooksyard.com


x

Contents

Chapter 31 Wearable PTF Strain Sensors................................................................................... 517
Sari Merilampi
Chapter 32 Application of Inertial Sensors in Developing Smart Particles................................ 533
Ehad Akeila, Zoran Salcic, and Akshya Swain
Index���������������������������������������������������������������������������������������������������������������������������������������������� 553


www.Techbooksyard.com


List of Figures
FIGURE 1.1   Schematic diagrams of different sensing methods for spectrally based sensors......... 5
FIGURE 1.2    Illustration of the four main interferometer configurations.....................................7
FIGURE 1.3   Schematic representation of an FBG........................................................................8
FIGURE 1.4   Schematic representation of a TFBG.......................................................................9
FIGURE 1.5   Schematic representation of an LPG...................................................................... 10
FIGURE 1.6   E
 xperimental setup for strain–temperature discrimination using a
­dual-wavelength FBG............................................................................................. 11
FIGURE 1.7   I llustration of a tapered FBG (up) and tapered FBG after positive
strain (down)......................................................................................................... 11
FIGURE 1.8   Schematic representation of grating inscription techniques................................... 12
FIGURE 1.9   Schematic representation of an FBG interrogation setup....................................... 13
FIGURE 1.10  Principle of operation of the edge filter interrogation method............................... 13
FIGURE 2.1   Classification of most common sensor concepts.................................................... 18
FIGURE 2.2   S
 train results using an LPG in a mPOF, in which the strain removed rapidly
after application......................................................................................................20
FIGURE 2.3   Liquid sensing is possible in liquid-filled mPOF...................................................20
FIGURE 2.4   ( A) Light rays totally reflected due to air outside the core. (B) TIR no longer
possible due to the presence of absorbing material................................................ 22
FIGURE 2.5   P
 OF pedestrian impact sensor principle currently in use in several
European cars......................................................................................................... 23
FIGURE 2.6   Schematic of the quasi distributed level sensor (one fiber/detector)....................... 23
FIGURE 2.7   Experimental loss obtained as a function of turns immersed in water..................24
FIGURE 2.8   Schematics of the displacement sensor..................................................................24

FIGURE 2.9   Schematic of the phase-measurement set up..........................................................26
FIGURE 2.10  Application of the MFR in a Kinotex sensor mat.................................................. 27
FIGURE 3.1   Minimally invasive robotic surgical system........................................................... 33
FIGURE 3.2   Spectral responses of the hole-collapsed and the tapered interferometers............34
FIGURE 3.3   (a) Wavelength shift observed for the PCF interferometers with applied
strain. (b) Plot showing the temperature dependence of the tapered and the
hole-collapsed PCF interferometers....................................................................... 35
FIGURE 3.4   Strain distribution along the FBG for different bonding lengths........................... 37
FIGURE 3.5   Schematic

of the FBG interrogation system using macrobend fiber filter
ratiometric systems................................................................................................. 38

xi

www.Techbooksyard.com


xii

List of Figures

FIGURE 3.6   (a)
 Applied load vs. direct strain measurement at different locations in the
blade. (b) Impact of lateral load on the direct strain measurements......................40
FIGURE 3.7   (a)
 Comparison of the strain measured using FBG sensor and strain
gauge at the tip of the blade. (b) Comparison of measured strain using
a ­macrobend fiber filter interrogation system and a commercial FBG
interrogation system............................................................................................. 41

FIGURE 3.8   Force

sensitivity values and calibration ratio for the FBG-sensorized
scissor blade............................................................................................................ 42
FIGURE 3.9   (a)
 Spectral shift observed with the hole-collapsed PCF interferometer
attached to the surgical scissor blade with an applied load of 25 N.
(b) Measured average strain in the scissor blade for different applied loads
and its comparison with the calculated average strain........................................... 43
FIGURE 3.10  (a) Spectral shift observed with the tapered PCF interferometer attached
to the laparoscopic blade with an applied load of 14 N. (b) Strain/force
sensitivity of the sensorized laparoscopic blade for different locations along
the length of the blade............................................................................................44
FIGURE 4.1   Fundamentals of BOTDA....................................................................................... 50
FIGURE 4.2   Experimental

setup of a simplified BOTDA sensing scheme featuring high
ER pulses................................................................................................................ 52
FIGURE 4.3   Fundamentals of the RF shaping of optical pump pulses...................................... 52
FIGURE 4.4   Evolution

of the (a) Brillouin spectra and the (b) measured Brillouin
frequency shift in the fiber under test..................................................................... 54
FIGURE 4.5   Fundamentals

of the Brillouin spectral scanning method using wavelength
tuning...................................................................................................................... 55
FIGURE 4.6   Distributed

measurement of the Brillouin gain for every pump wavelength

and (inset) distributed temperature......................................................................... 56
FIGURE 4.7   Experimental

setup of the hybrid sensor network with point and distributed
optical sensors........................................................................................................ 58
FIGURE 4.8   Measurement

of the (a) Brillouin gain spectra and (b) Brillouin frequency
shift along the fiber network................................................................................... 59
FIGURE 4.9   Experimental setup of the self-heterodyne detection BOTDA sensor...................60
FIGURE 4.10  D
 istributed measurements of Brillouin (a) gain and (b) phase-shift spectra
along a 25 km long sensing optical fiber................................................................ 61
FIGURE 5.1   Basic microring sensor............................................................................................66
FIGURE 5.2   Spectrum shift due to the analyte change.............................................................. 67
FIGURE 5.3   (a) Maximum sensitivity to the transmission coefficient and (b) sensitivity to
the self-coupling coefficient................................................................................... 68
FIGURE 5.4   High-sensitivity Fano resonance single microring sensor...................................... 69
FIGURE 5.5   (a) SEM of single microring resonator and (b) asymmetric spectrum in
experiment.............................................................................................................. 69

www.Techbooksyard.com


xiii

List of Figures

FIGURE 5.6   (a) Output intensity change to different coupling coefficient κ, (b) Type I
sensor, and (c) Type II sensor................................................................................. 70

FIGURE 5.7   (a) Coupling coefficient change to different effective index and (b) the
corresponding intensity to different effective index............................................... 70
FIGURE 5.8   (a) Add-drop microring sensor array and (b) cascaded microring
sensor array............................................................................................................. 71
FIGURE 5.9   (a) Dual-microring MZI sensor and (b) overlapped spectrum in sensing.............. 72
FIGURE 5.10  Athermal microring sensor..................................................................................... 73
FIGURE 5.11  Real-time, label-free detection of CEA using microring resonators...................... 74
FIGURE 5.12  (a) Schematic of a racetrack resonator integrated with a cross-beam seismic
mass, (b) transmission spectra of the racetrack resonator with different
beam lengths Lb, (c) transmission spectra with different lengths Lc, and
(d) wavelength shift with the creasing acceleration................................................ 75
FIGURE 5.13  (a) Silicon electrical–optical modulator configuration and (b) spectral
change versus different applied voltages................................................................ 76
FIGURE 5.14  Cascaded silicon microring resonator.................................................................... 77
FIGURE 6.1   Basic optical circuit of AWG.................................................................................. 82
FIGURE 6.2   Optical circuit of wavelength-insensitive LDV using AWGs................................. 83
FIGURE 6.3   Deviation in FD/v⊥ for wavelength-insensitive LDV with AWGs as a
function of wavelength deviation ∆λ = λ − λ0........................................................84
FIGURE 6.4   Integrated multipoint differential LDV.................................................................. 85
FIGURE 6.5   R
 elation between relative position of measured point zmeas/∆xAWG and input
wavelength λ for various ϕ and θ. m = 2, d = 10 μm, and ψout = 10.17°................. 86
FIGURE 6.6   P
 rinciple of LDV for two-dimensional velocity measurement using
polarized beams and 90° phase shift..................................................................... 87
FIGURE 6.7   P
 olar expression of absolute value of beat frequency normalized with |v/λ|
and direction of velocity θv for various θi.............................................................. 89
FIGURE 6.8   P
 rinciple of LDV for two-dimensional velocity measurement by monitoring

beams in different directions..................................................................................90
FIGURE 6.9   D
 irectional relation among vr, vi1, and vi2 at θi = 60° and θs = 50° for
(a) θvr = 0°, (b) θvr = 45°, (c) θvr = 90°, (d) θvr = 135°, and (e) θvr = 180°.................92
FIGURE 6.10  M
 agnitudes and directions of vr, vi1, and vi2 as a function of direction of
velocity θvr.............................................................................................................. 93
FIGURE 7.1   Principle of the laser Doppler vibrometer (LDV)...................................................99
FIGURE 7.2   The multimodal sensory platform........................................................................ 101
FIGURE 7.3   Coordinate systems of the multimodal platform.................................................. 102
FIGURE 7.4   Stereo

matching of the corresponding target points, on the images of the
(a) master camera and (b) slave camera................................................................ 104

www.Techbooksyard.com


xiv

List of Figures

FIGURE 7.5   Flowchart

of adaptive sensing for laser pointing and tracking for audio and
video signature acquisition................................................................................... 105
FIGURE 7.6   Two examples of laser point tracking................................................................... 107
FIGURE 7.7   Geometry

model of laser beam from the LDV (BA ) and its reflected laser

ray (AD) after the pan (α) and tilt (β)................................................................... 107
FIGURE 7.8   (a)
 Calibrated focal lengths of the master PTZ camera and (b) the slave PTZ
camera under different zooms.............................................................................. 108
FIGURE 7.9   The

comparison of true distances and estimated distances under various
zoom factors.......................................................................................................... 108
FIGURE 7.10  T
 he cropped (320 × 240) original image (under zoom factor 48)
with a target (inside a rectangular bounding box) is shown on left........................... 109
FIGURE 7.11  T
 he cropped images (with gray circles show the image center of the original
image) include surfaces of metal cake box, door handler, and extinguisher
box (from left to right)........................................................................................... 109
FIGURE 7.12  T
 arget surfaces are selected at (a) the metal box under a tree, (b) the tape on
a poster board, and (c) the right turn sign............................................................. 110
FIGURE 8.1   S
 implified cross-sectional views of (a) color image sensor and (b) color
display devices...................................................................................................... 114
FIGURE 8.2   (a) Spectral ranges of three primary color filters of typical image sensors.
(b) Emission spectra of backlights (cold cathode fluorescent lamp and
light-emitting diode) and transmission ranges of three color filters from
typical liquid crystal display screens................................................................... 115
FIGURE 8.3   (a) Principle of luminescence quenching by molecular oxygen depicting
the luminescence process in the absence of oxygen and the deactivation
of luminophore by oxygen. (b) Stern–Volmer plot based on equation (8.1)...........119
FIGURE 8.4   (a) The emission spectra of a commercial oxygen-sensitive patch in various
dissolved oxygen concentrations. (b) Red-extracted images of the RedEye

patch (8 mm diameter) and its histogram of red color intensity........................... 121
FIGURE 8.5   Stern–Volmer plots of various methods............................................................... 121
FIGURE 8.6   Opto-fluidic dissolved oxygen sensor assembly................................................... 122
FIGURE 8.7   S
 tern–Volmer plots of the PEG oxygen sensor array with respect to
dissolved oxygen based on spectrum and red color analysis............................... 122
FIGURE 8.8   (a) The sensor imaging setup with a color CCD camera for gaseous
oxygen quantification. (b) Normalized Stern–Volmer plots to compare the
performance of the three different imaging configurations................................. 123
FIGURE 8.9   M
 apping of oxygen gradient on sensor surface (8 mm diameter) created
with a capillary tube............................................................................................. 124
FIGURE 8.10  (a) Measurement setup with an LCD monitor as excitation light source
and a color camera as photodetector. (b) Stern–Volmer image of oxygen
distribution (equivalent to I0/I). (c) Oxygen profiles at various locations
defined in (b) (V1, V2, V3, and V4), showing a nitrogen and 20% oxygen
fluxes at upper and lower branches, respectively.................................................. 125

www.Techbooksyard.com


xv

List of Figures

FIGURE 9.1   Principle of optical oxygen sensing...................................................................... 133
FIGURE 9.2   S
 chematic of the device fabrication and sensor patterning process using
soft-lithography..................................................................................................... 135
FIGURE 9.3    Results of the sensor film patterning using soft lithography................................ 137

FIGURE 9.4   S
 chematic of the oxygen sensor patterning process using optical or electron
beam lithography (EBL)....................................................................................... 138
FIGURE 9.5   Results of the sensor film patterning using electron beam lithography............... 139
FIGURE 9.6    Sensor film characterization and calibration plots.................................................. 141
FIGURE 9.7   P
 hotographs showing the microfluidic devices used to demonstrate
oxygen measurement........................................................................................... 143
FIGURE 9.8   D
 emonstration of oxygen visualization and measurement in
hydrodynamically focused flow............................................................................ 144
FIGURE 9.9   Visualization and measurement of oxygen in multistream laminar flow........... 146
FIGURE 9.10  Demonstration of oxygen visualization and measurement in cell culture............ 148
FIGURE 10.1  (a) Solid Works schematic of the integrated silicon PD retrodetector and
(b) a typical FSO experimental setup are shown with a light-emitting
device (LED) as the light source and the retrodetector shown in the inset
photograph......................................................................................................... 157
FIGURE 10.2  S
 chematics are shown for the internal reflection processes occurring in the
retrodetector for directional cosine conditions n1 < n2 < n3............................... 160
FIGURE 10.3  Theoretical photocurrents are shown as surfaces varying with ϕ and θ.............. 169
FIGURE 10.4  Experimental photocurrent surfaces varying with ϕ and θ are shown................. 172
FIGURE 11.1  C
 alculated temperatures of 24 layers between the warm wall (300 K) and
the cold wall K (77 K) considering different heat transfer mechanism................ 183
FIGURE 11.2  FBG sensor and demodulation technique............................................................. 185
FIGURE 11.3  Sensor design concept........................................................................................... 187
FIGURE 11.4  Cross section of THISTA..................................................................................... 189
FIGURE 11.5  FBG sensor array installation............................................................................... 189
FIGURE 11.6  Comparison of measured temperature and calculated temperature distribution......191

FIGURE 11.7  Axial and transverse temperature distribution in MLI......................................... 192
FIGURE 11.8  T
 he FBG sensor wavelength shift when the vacuum levels are changed
from 10 −6 to 10 −1 mbar at 77 K at cold wall (20.5th layer), 15.5th layer,
10.5th layer, and in warm end............................................................................... 192
FIGURE 11.9  (a) The measured temperature for the vacuum levels from 10 −6 to 10 −1 mbar at
77 K at cold wall (20.5th layer), 15.5th layer, 10.5th layer, and in warm end.........193
FIGURE 12.1  T
 op view of a thin film RTD constructed with a serpentine shape and pads
for power input and measurement connections.................................................... 196
FIGURE 12.2  R
 esistance measurement technique in which current I is supplied to the
RTD and the voltage drop V is measured............................................................. 197

www.Techbooksyard.com


xvi

List of Figures

FIGURE 12.3   I llustration of the finite element output of the surface temperature (with an
expanded view of a corner) for a 46.3 nm platinum film at 25°C with
1.46 mA of current............................................................................................. 197
FIGURE 12.4   R
 esistance vs. temperature for the 46.3 nm platinum film compared to
bulk platinum...................................................................................................... 199
FIGURE 12.5   Two-dimensional structure for the theoretical model........................................200
FIGURE 12.6   L
 inear response of data generated from the theoretical model for electrical

resistivity as a function of temperature for bulk conductors.............................. 201
FIGURE 12.7   R
 esistivity vs. temperature graph showing that the theoretical model can
be used to match experimental data for thin film conductors............................202
FIGURE 12.8   (a) An electrical circuit using a thin film RTD to increase the current to a
load when the temperature increases and (b) a graph of the load current
profile (as a function of temperature) for this circuit......................................... 203
FIGURE 12.9   (a) An electrical circuit using a thin film RTD to limit the current to a load
when the temperature increases and (b) a graph of the load current profile
(as a function of temperature) for this circuit.....................................................204
FIGURE 13.1   Distribution of electromagnetic radiation depending on the wavelength...........208
FIGURE 13.2   D
 istribution of blackbody radiation depending on wavelength for different
temperatures....................................................................................................... 210
FIGURE 13.3   The transmittance of the atmosphere τ depending on the wavelength λ........... 213
FIGURE 13.4   Components of the radiation measured by the infrared camera........................ 214
FIGURE 13.5   A laboratory setup used in experimental studies............................................... 215
FIGURE 13.6   T
 he influence of distance l between camera and object for object
temperature ϑz = 50°C........................................................................................ 221
FIGURE 13.7   T
 he influence of distance l between camera and object for object
temperature ϑz = 50°C........................................................................................ 221
FIGURE 13.8   T
 he influence of distance l between camera and object for object
temperature ϑz = 150°C...................................................................................... 222
FIGURE 13.9   T
 he influence of distance l between camera and object for object
temperature ϑz = 150°C...................................................................................... 222
FIGURE 13.10  T

 he influence of emissivity coefficient changing in camera on temperature
measurements for object temperature ϑz = 40°C................................................ 223
FIGURE 13.11  T
 he influence of emissivity coefficient changing in camera on temperature
measurements for object temperature ϑz = 120°C.............................................. 223
FIGURE 13.12  T
 he influence of emissivity coefficient changing in camera on temperature
measurements for object temperature ϑz = 200°C..............................................224
FIGURE 14.1   Structure of the system for the “blind” correction method................................ 228
FIGURE 14.2   Sensors for temperature measurement............................................................... 231
FIGURE 14.3   The experiment setup......................................................................................... 235
FIGURE 14.4   Exemplary signals of sensors’ responses............................................................ 235

www.Techbooksyard.com


xvii

List of Figures

FIGURE 14.5   The experimental results.................................................................................... 236
FIGURE 14.6   Deformed experimental result............................................................................ 237
FIGURE 14.7   Simulated temperature changes and responses of sensors................................. 238
FIGURE 14.8   Deformed result of simulation............................................................................ 238
FIGURE 14.9   Simulated validation of the simulation results................................................... 239
FIGURE 15.1   The schematics show the dual-band microbolometer......................................... 247
FIGURE 15.2   T
 he calculated optical absorption for the metallic phase (9.4–10.8 μm)
and semiconducting phase (8–9.4 μm) of VO2 are plotted as a function
of wavelength for cavity depths of 3.9 and 4.63 μm, respectively................. 248

FIGURE 15.3   T
 he calculated optical absorption are plotted as a function of wavelength.
VO2 is used as a ­reflector. The air gap is fixed at 3.9 μm while the SiO2
spacer layer is variable, and all other films are of fixed thickness.....................248
FIGURE 15.4   Microbolometer optical absorption is plotted versus wavelength. .................... 249
FIGURE 15.5    (a) The plots show an optimized microbolometer structure, with pixel
and support arm size of 25 × 25 μm2 and 54 × 4 μm2, with relatively little
deflection. (b) Von Mises stress distribution of the microbolometer with flat
surface.............................................................................................................................. 251
FIGURE 15.6   (a) Temperature gradient across the microbolometer structure with
pixel and support arm size of 25 × 25 μm and 54 × 4 μm. The highest
temperature (301.53 K) occurs in the pixel in steady-state simulation.
(b) Heat flux distribution across the microbolometer structure......................... 251
FIGURE 15.7   J ohnson noise, temperature fluctuation noise, background fluctuation
noise, and total noise were calculated as a function of chopper frequency........ 253
FIGURE 15.8   (a) Responsivity and detectivity and (b) NETD as a function of chopper
frequency............................................................................................................ 253
FIGURE 16.1   Conceptual diagram of measuring thermal history using microparticles.......... 258
FIGURE 16.2   Bandgap model of charge traps.......................................................................... 259
FIGURE 16.3   Temperature profile used to simulate an explosion............................................ 261
FIGURE 16.4   T
 rap population ratio as a function of cooling time for a variety of
maximum temperatures...................................................................................... 262
FIGURE 16.5   T
 rap population ratio versus maximum heating temperature for a variety
of cooling times.................................................................................................. 262
FIGURE 16.6   O
 verlapping thermoluminescent glow curves as the energy between two
traps is changed.................................................................................................. 263
FIGURE 16.7   S

 canning electron microscope images of microheaters used in luminescent
particle studies....................................................................................................264
FIGURE 16.8   E
 xperimental set-up used to test the response of thermoluminescent
Al2O3:C microparticles to rapid thermal profiles...............................................266
FIGURE 16.9   T
 he thermoluminescence glow curves of Mg2SiO4:Tb,Co microparticles
after a 190 ms explosive heating pulse...........................................................267

www.Techbooksyard.com


xviii

List of Figures

FIGURE 16.10  T
 he ratio of the height of the first TL peak of Figure 15 to the height of the
second as a function of pulse temperature for simulated and experimental data..... 268
FIGURE 17.1   S
 chematic drawing of a common setup to measure the spatial characteristic
of magnetic fields................................................................................................ 275
FIGURE 17.2   (a) Photograph and (b) schematic drawing of the setup of an MCMM...................275
FIGURE 17.3   Measurement principle of an MCMM................................................................ 276
FIGURE 17.4   S
 chematic drawing of the measurement setup including the parameters
of calibration....................................................................................................... 276
FIGURE 17.5   Photograph of the realization of an MCMM...................................................... 278
FIGURE 17.6   P
 hotograph of the entire measurement setup including the chamber

for thermal insulation.......................................................................................... 279
FIGURE 17.7   T
 wo-dimensional cut plane through the axis of focus of the optical probe
and the zm axis.....................................................................................................280
FIGURE 17.8   Taking magnetic measurement values with the MCMM................................... 281
FIGURE 17.9   Possible orientations of the conductor in the MCMM reference frame.............. 283
FIGURE 17.10  P
 hotograph of the cubic permanent magnet and the magnetic sensor
aligned (a) and totally misaligned (b).................................................................284
FIGURE 17.11  Optical measurement results of the scan of the permanent magnet. ................. 285
FIGURE 17.12   M
 agnetic field over the surface 1 of the permanent magnet in the
coordinate system of the moving axes (left) and in the coordinate system
of the magnet (right)........................................................................................... 286
FIGURE 18.1   Types of search coil cores................................................................................... 290
FIGURE 18.2   Search coil magnetometer.................................................................................. 291
FIGURE 18.3   Experimental model of the search coil magnetometer....................................... 293
FIGURE 18.4   Magnetometer optimization............................................................................... 294
FIGURE 18.5   Integration of orthogonal search coils................................................................ 296
FIGURE 18.6   Magnetometer structure.............................................................................................298
FIGURE 18.7   Magnetometer crosstalk..................................................................................... 298
FIGURE 18.8   Crosstalk due to the applied and secondary fluxes............................................ 299
FIGURE 18.9   Magnetic crosstalk as a function of frequency...................................................300
FIGURE 18.10  Shaping the magnetometer frequency response..................................................... 300
FIGURE 19.1   (a) Basic schematic of a capacitive pressure sensor and (b) simplified
electrical model...................................................................................................306
FIGURE 19.2    Schematic circuit diagram of an inductive coupling–based sensor system........307
FIGURE 19.3   E
 rror effect on (a) the proposed capacitance estimation and (b) the
resulting mutual inductance estimation.............................................................. 311

FIGURE 19.4   (a) Schematic diagram and (b) photograph of the experimental setup............... 313

www.Techbooksyard.com


xix

List of Figures

FIGURE 19.5    C
 omparison of the estimated and reference capacitances (a) with
single-frequency component at 2 cm and (b) with multiple-frequency
components at 2 cm.................................................................................................315
FIGURE 19.6   (a) Estimated capacitances with different telemetry distances from 1 to
5 cm and (b) corresponding coupling coefficient k measured according to
the telemetry distance......................................................................................... 316
FIGURE 19.7   R
 elative magnitudes of coefficients a and b normalized with respect to
a5 cm and b5 cm...................................................................................................... 317
FIGURE 19.8     C
 omparison of reference and estimated capacitances (a) with single-frequency
component and (b) with multiple-frequency components at 2 and 5 cm...................318
FIGURE 19.9    C
 omparison of reference and estimated capacitances (a) with
­single-frequency component and (b) with multiple-frequency components
at the angles of 50°, 20°, and 0°.......................................................................... 319
FIGURE 20.1   Principle of sensor windings.............................................................................. 324
FIGURE 20.2   (a) Cartesian and cylindrical coordinate system with respect to a circular
hole of radius r0 in a plane. (b) Sketch of field penetration through the
circular hole........................................................................................................ 325

FIGURE 20.3   (a) The sensor (dashed line) against the fuselage, with the central bar
shifted over the distance d and extended over the length δ. (b) The sensor
fully lifted.......................................................................................................... 327
FIGURE 20.4   S
 ensitivity of the sensor as function of shift d of the middle bar, for four
different extensions δ of the bar......................................................................... 328
FIGURE 20.5   S
 ensitivity of the sensor as function of shift d of the whole sensor, for four
different extensions δ of the sensor radius......................................................... 329
FIGURE 20.6   S
 ingle turn version of the window sensor, made by a coaxial signal cable
extending the inner lead over the hole................................................................ 329
FIGURE 20.7   C
 oupling impedance |Z12| between the excitation circuit inside the tube
and the sensor, measured by a network analyzer............................................... 330
FIGURE 20.8   M
 eshing, current density in the tube and z-component of the electric field
in the rectangular portion of the y = 0 plane near the hole................................ 331
FIGURE 20.9   A320 with 12 sensor positions indicated............................................................ 331
FIGURE 20.10  Photograph of a window sensor.......................................................................... 332
FIGURE 20.11  O
 utput of the integrator for window sensor H08 in arbitrary units,
before (lower curve, heavy due to digital noise) and after (upper
thin curve) correction for the time constants, in comparison with the
current..............................................................................................................333
FIGURE 20.12  (a) Mid-body cross section of TEM cell, with path of the sensor lead
indicated by the thin line at the bottom. (b) Bottom view of the TEM cell
with window opening......................................................................................... 334
FIGURE 20.13  M
 eshing, intensity of the electric field and current density near

the window, shown upside down........................................................................ 334

www.Techbooksyard.com


xx

List of Figures

FIGURE 20.14  T
 hree mountings of the window sensor, shown half but with correctly
scaled shape........................................................................................................ 335
FIGURE 20.15  R
 ecord of several strokes through the magnetic field (a) and electric
field (b), both in arbitrary units.......................................................................... 336
FIGURE 21.1   Several types of shunt resistors........................................................................... 341
FIGURE 21.2   Several types of metering current transformers................................................. 343
FIGURE 21.3   (a) Rogowski coil construction, (b) wound on rigid core, and (c) wound
on flexible core...................................................................................................344
FIGURE 21.4   C
 urrent sensors using magnetic field sensing devices in (a) open-loop
configuration and (b) closed-loop configuration................................................346
FIGURE 21.5   Hall effect current sensors............................................................................. 348
FIGURE 21.6   Fluxgate current sensors..................................................................................... 349
FIGURE 21.7   Fluxgate current sensors..................................................................................... 350
FIGURE 21.8   Commercial AMR current sensors..................................................................... 351
FIGURE 21.9   Commercial GMR by NVE Corporation........................................................... 351
FIGURE 21.10  Optical current sensors types commercialized by ABB..................................... 352
FIGURE 22.1   An example of a ferrofluid pattern..................................................................... 356
FIGURE 22.2   Real views of the sensor prototype....................................................................360

FIGURE 22.3   Schematization of the whole experimental set-up.............................................. 361
FIGURE 22.4   R
 esponse of the inertial sensor (a) and the laser system (b) to a frequency
sweep solicitation............................................................................................... 361
FIGURE 22.5   Frequency response of the Rosensweig inertial sensor...................................... 362
FIGURE 22.6   R
 esponse of the inertial sensor as a function of the perturbation
imposed at 6 Hz................................................................................................... 363
FIGURE 22.7   (a) The real prototype of the ferrofluid inclinometer. (b) The system
components.........................................................................................................364
FIGURE 22.8   The device response........................................................................................... 365
FIGURE 22.9   The J performance index.................................................................................... 366
FIGURE 23.1   (a) Raw PZT, (b) prepotted transducer, and (c) potted transducer...................... 374
FIGURE 23.2   Transducer figure of merit.................................................................................. 376
FIGURE 23.3   Analog transceiver.............................................................................................. 376
FIGURE 23.4   Electrical equivalent circuit model for a transducer.......................................... 378
FIGURE 23.5   Estimated power coupled into the transducer.................................................... 378
FIGURE 23.6   Overall receiver gain.......................................................................................... 379
FIGURE 23.7   Block diagram of complete digital receiver....................................................... 381
FIGURE 23.8   Digital transceiver control flow.......................................................................... 383

www.Techbooksyard.com


xxi

List of Figures

FIGURE 23.9   System test results.............................................................................................. 386
FIGURE 24.1   S

 o-called radiation forces exerted on small (compared to the sound
wavelength) particles by an USW....................................................................... 392
FIGURE 24.2   ( A) Total reflection of an IR beam at the boundary to a medium with
lower refractive index n2 < n1. (B) E0 denotes the electrical field amplitude
of the electromagnetic field at the interface, and E is the exponentially
decreasing electrical field amplitude of the evanescent field.......................... 395
FIGURE 24.3   ( A) Flow cell comprising the ATR element at the bottom and the
PZT-sandwich transducer at the top. (B) Stopped flow technique to
specifically measure the IR absorbance of suspended particles: the
suspension is pumped into the detection volume (a). When the flow is
switched off, particles settle onto the ATR surface and the spectrum
is recorded (b). After the measurement, the cell is rinsed (c). An USW
was applied to accelerate the measurement time by agglomerating the
yeasts prior to the settling (d) and to improve the cleaning by actively
lifting the sediment from the ATR prior to the rinse (e)............................ 396
FIGURE 24.4   Top: Raman microscope with light path into flow cell...................................... 398
FIGURE 24.5   C
 omparison of Raman spectra of yeast freely suspended in water (gray),
yeast cells agglomerated in the nodal plane of the ultrasonic field (black
with dots), and as reference dried yeast cells on quartz (black)......................... 399
FIGURE 24.6   R
 aman spectra of theophylline solution (gray) and freely suspended
theophylline crystals (black) in comparison to theophylline crystals
agglomerated by ultrasound (black with dots) and the theophylline solution
in a region where the crystals were depleted by the ultrasonic standing
wave (gray with dots)......................................................................................... 399
FIGURE 24.7   I nfrared spectra measured during fermentation at the beginning (black)
and after 10 h and 20 h (gray and light gray), respectively................................ 401
FIGURE 24.8   S
 pectra taken at 30 min (black), 60 min (dark gray), 90 min

(lighter gray), and 120 min (lightest gray)..................................................... 403
FIGURE 24.9   P
 rotein and carbohydrate residuals after application of the various
cleaning strategies..............................................................................................405
FIGURE 24.10  A
 cceleration of the settling process by application of an USW
(Figure 24.3d).....................................................................................................406
FIGURE 25.1   Resonant modes in piezoelectric transducers..................................................... 412
FIGURE 25.2   Piezoelectric electric equivalent circuit............................................................. 415
FIGURE 25.3   Compensated piezoelectric electric equivalent circuit....................................... 416
FIGURE 25.4   F
 requency response of compensated (thin) and non-compensated (thick)
transducer for R = 100-2k: (a) Lc = 5 mH and (b) Lc = 10 mH......................... 417
FIGURE 25.5   Compensated receiver piezoelectric electric equivalent circuit............................ 417
FIGURE 25.6   Transducer test circuit........................................................................................ 418
FIGURE 25.7   Parametric C and L values for various frequencies............................................ 418

www.Techbooksyard.com


xxii

List of Figures

FIGURE 25.8   Antenna array: (a) footprint and (b) photograph................................................ 421
FIGURE 25.9   E
 stimated modified frequency response for transducer, RL from 100 Ω to
2 kΩ, (a) 250ST180; (b) 328ET250; (c) 400ET180; and (d) 400EP900............. 423
FIGURE 25.10  M
 easured modified frequency response for transducer (a) 250ST180;

(b) 328ET250; (c) 400ET180; and (d) 400EP900............................................... 424
FIGURE 25.11  Photograph of the prototype LPS....................................................................... 426
FIGURE 25.12  Cumulative error of estimated sensor separation............................................... 428
FIGURE 25.13  Orientation estimation accuracy—Pitch............................................................ 429
FIGURE 25.14  Orientation estimation accuracy—Roll.............................................................. 429
FIGURE 25.15  Orientation estimation accuracy—Yaw.............................................................. 429
FIGURE 26.1   The basic process for signal generation with photothermal spectroscopy......... 434
FIGURE 26.2   Simplified diagram of a typical PA sensor system with microphone detection....... 436
FIGURE 26.3   O
 ptimized differential PA cell geometry with two resonator tubes and
λ/4 filters. ...........................................................................................................440
FIGURE 26.4   P
 hotograph of the internal structure of the MEMS-scale cell and complete
PA cell package..................................................................................................440
FIGURE 26.5   Dimensions of a cantilever-type pressure sensor............................................... 441
FIGURE 26.6   M
 easured (A) pulsed and (B) CW modulated laser PA spectra (—)
of DMMP............................................................................................................ 443
FIGURE 26.7   Measured laser PA spectrum (—) of Freon 116................................................. 443
FIGURE 27.1   Carbon black coated sensor with silver coated connections............................... 459
FIGURE 27.2   (a) Transversal section (SEM); (b) longitudinal section (tomography)
of the sensor........................................................................................................ 459
FIGURE 27.3   Schematic of an instrumentation amplifier connected to a Wheatstone bridge.....461
FIGURE 27.4   N
 ormalized resistance and stress against strain for the sensor outside
composite............................................................................................................ 462
FIGURE 27.5   T
 exGen® generated geometry of woven reinforcement with sensors
inserted as weft tows........................................................................................... 463
FIGURE 27.6   C

 arbon composite specimen with protruding sensor connections for
(a) tensile test and (b) bending test.....................................................................464
FIGURE 27.7   N
 ormalized resistance and stress against strain for sensor inside the
composite............................................................................................................465
FIGURE 27.8   T
 omographical images of a sensor inside a tested sample near the zone
of rupture (longitudinal section).........................................................................465
FIGURE 27.9   S
 chematic diagram of instrumentation amplifier and a data acquisition
module connected to sensors in a Wheatstone bridge configuration..................466
FIGURE 27.10  F
 orce-displacement plot against normalized resistance variation for the
two sensors inside the 3D carbon composite specimen tested until fracture
at a constant displacement rate of 3.5 mm/min.................................................. 467

www.Techbooksyard.com


xxiii

List of Figures

FIGURE 28.1   B
 asic principle of the electromechanical impedance technique; a square
PZT patch bonded to the structure to be monitored.......................................... 472
FIGURE 28.2   A
 n alternative system for the measurement of the electrical impedance
of PZT patches................................................................................................... 474
FIGURE 28.3   C

 omparison between the electrical impedance signatures of a PZT patch
obtained using a conventional impedance analyzer and the alternative
system................................................................................................................. 475
FIGURE 28.4   Theoretical analysis of the transducer loading effect........................................ 476
FIGURE 28.5   D
 ecrease observed in the RMSD index due to the transducer loading
effect using (a) the real part and (b) the imaginary part of the electrical
impedance.......................................................................................................... 477
FIGURE 28.6   T
 he electrical impedance and its derivative in relation to the mechanical
impedance of the host structure for a PZT patch with size (ℓ) of 10 mm
operating at 10 kHz............................................................................................ 479
FIGURE 28.7   T
 he electrical impedance of a PZT patch with size (ℓ) of 10 mm
as a function of the frequency and the ZS /ZT ratio.............................................480
FIGURE 28.8   T
 heoretical analysis of the sensitivity of a PZT patch to detect damage for
the appropriate frequency range selection......................................................... 481
FIGURE 28.9   C
 omparison between the theoretical sensitivity of the PZT patch
and experimental metric indices........................................................................ 482
FIGURE 29.1   E
 xamples of coaxial cells developed at ITACA for dielectric
characterization of materials at microwave frequencies.................................... 488
FIGURE 29.2   D
 ielectric characterization of some liquid samples performed
with an open-ended coaxial probe at microwave frequencies........................... 488
FIGURE 29.3   S
 ingle-post coaxial reentrant cavity sensor developed at ITACA for
dielectric materials characterization (1 mL samples in standard vials)............. 489

FIGURE 29.4   S
 ingle-post coaxial reentrant cavity sensor developed at ITACA for
dielectric materials characterization (8 mL samples in standard vials)............. 493
FIGURE 29.5   D
 ielectric characterization of water-in-oil emulsions (with vegetable
and mineral oils) performed with a single-post coaxial reentrant cavity
sensor...........................................................................................................494
FIGURE 29.6   O
 pen-ended coaxial resonator sensor developed at ITACA for monitoring
the curing process of thermoset samples............................................................ 495
FIGURE 29.7   (a) Microwave sensor response during the cure process of a polyurethane
sample. (b) Dielectric properties of the sample during cure.............................. 496
FIGURE 29.8   M
 icrowave sensor response during the cure process of some adhesive
samples............................................................................................................... 496
FIGURE 29.9   D
 ielectric characterization of quartz sand samples with different moisture
content (in % of dried weight) performed with a single-post coaxial
reentrant cavity sensor........................................................................................ 497
FIGURE 29.10  (a) Microwave sensor design (cylindrical cavity). (b) Non-intrusive
installation of the sensor in the production line................................................. 498

www.Techbooksyard.com


×