Tải bản đầy đủ (.pdf) (5 trang)

de kscl toan 10 lan 2 nam 2019 2020 truong nguyen viet xuan vinh phuc

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (198.81 KB, 5 trang )

ĐỀ THI KSCL LẦN 2

SỞ GD&ĐT VĨNH PHÚC
TRƯỜNG THPT NGUYỄN VIẾT XUÂN

Môn: TOÁN 10
Thời gian làm bài: 90 phút;
(50 câu trắc nghiệm)

U

Mã đề thi 102

 
Câu 1: Cho hình vuông ABCD cạnh 2a . Khi đó AB. AC bằng:
A. 8a 2 .
B. 2a 2 .
C. a 2 .

D. 4a 2 .

Câu 2: Có bao nhiêu giá trị thực của m để phương trình ( 2m 2 − 3m ) x = 5 x + m 2 − 1 vô nghiệm?
A. Đáp án khác.

B. 1 .

C. 2 .

D. 3 .

1


C.   .
2

1
D.  −∞;  .
3


Câu 3: Giải phương trình 1 − 3 x − 3 x + 1 =0 .
1
A.  ; +∞  .
3


1
B.  ; +∞  .
3


Câu 4: Cho hàm số f ( x=
) x 2 − x . Khẳng định nào sau đây là đúng?
A. Đồ thị của hàm số f ( x ) đối xứng qua trục hoành.
B. Đồ thị của hàm số f ( x ) đối xứng qua gốc tọa độ.
C. f ( x ) là hàm số chẵn.
D. f ( x ) là hàm số lẻ.

 
Câu 5: Cho tam giác đều ABC cạnh 2a có G là trọng tâm. Khi đó AB − GC là

2a

2a 3
4a 3
.
C.
.
D.
.
3
3
3
x + y = m +1
. Tìm tất cả các giá trị của m để hệ phương trình có
Câu 6: Cho hệ phương trình  2
2
2
2
x
y
xy
m
+
+
=
+

nghiệm :
m ≤ 1
m = 1
A. 
.

B. m ≥ 1 .
C. m ≤ 5 .
D. 
.
m ≥ 5
m = 5
A.

a 3
.
3

B.

0 có nghiệm.
Câu 7: Có bao nhiêu giá trị m nguyên để phương trình x + 2 + 2 − x + 2 − x 2 + 4 + 2m + 3 =
B. 1 .
C. 3 .
D. 0 .
A. 2 .
Câu 8: Xác định phương trình của Parabol có đỉnh I ( 0; − 1) và đi qua điểm A ( 2;3) .
A. =
y x2 + 1.

B. =
y

( x + 1)

2


.

C. =
y

( x − 1)

2

.

D. =
y x2 −1.

Câu 9: Số giá trị nguyên của m thuộc đoạn m ∈ [ −2019; 2019] để phương trình
nghiệm là
A. 2020 .

B. 2018 .

C. 2019 .

Câu 10: Phương trình x + 4 x − 5 =
0 có bao nhiêu nghiệm thực?
A. 2 .
B. 4 .
C. 3 .
1
Câu 11: Tìm tập xác định D của hàm số f ( x )= x + 1 + .

x
D  \ {−1;0} .
A. D =  \ {0} .
B. D = [ −1; +∞ ) .
C.=
4

x −1 +

x−m
2m

=
x −1
x −1

D. 2021 .

2

x2 − 4 x + 2
=
Câu 12: Cho phương trình
x−2

D. 1 .

D. D =

[ −1; +∞ ) \ {0} .


x − 2 . Số nghiệm của phương trình này là
Trang 1/4 - Mã đề thi 102


A. 4 .

B. 2 .

C. 1 .

D. 0 .

−2 ( x − 3) khi −1 ≤ x ≤ 1
Câu 13: Cho hàm số: f ( x ) = 
. Giá trị của f ( −1) ; f (1) lần lượt là
2
 2 x − 1 khi x > 1
A. 0 và 0 .
B. 8 và 0 .
C. 0 và 8 .
D. 8 và 4 .
Câu 14: Trong các đẳng thức sau, đẳng thức nào sai?
A. cos1550 + sin 250 =
B. sin1350 = sin 450 .
1.
D. cos1120 + cos 680 =
C. cos1350 = − cos 450 .
0.


Câu 15: Cho phương trình ( x 2 + 4 ) ( x – 2 )( x + 1) =
0 . Phương trình nào sau đây tương đương với phương trình
đã cho?
A. x 2 + 4 =
0.

0.
B. ( x – 2 )( x + 1) =

0.
0.
C. x − 2 =
D. x + 1 =
 

  
Câu 16: Cho ∆ABC . Tìm tập hợp các điểm M sao cho: MA + 3MB − 2 MC = 2 MA − MB − MC .
A. Tập hợp các điểm M chỉ là một điểm trùng với A .
B. Tập hợp các điểm M là một đường tròn.
C. Tập hợp các điểm M là tập rỗng.
D. Tập hợp của các điểm M là một đường thẳng.


   
0.
Câu 17: Cho tam giác ABC . Gọi I , J là hai điểm xác định bởi IA = 2 IB , 3 JA + 2 JC =
Hệ thức nào đúng?
 2  
 5  
 5  

 2  
IJ
AC − 2 AB .
IJ
AC − 2 AB .
IJ
AB − 2 AC .
IJ
AB − 2 AC .
B.=
C.=
D.=
A.=
5
2
2
5
Câu 18: Hãy chỉ ra phương trình bậc nhất trong các phương trình sau:
1
2.
0.
A. + x =
B. x. ( x + 5 ) =
C. 2 x − 7 =
D. − x 2 + 4 =
0.
0.
x
 
Câu 19: Cho tam giác OAB vuông cân tại O , cạnh OA = 4 . Tính 2OA − OB .

 
 
 
A. Đáp án khác.
B. 2OA − OB =
C. 2OA − OB =
D. 2OA − OB =
4.
12 .
4 5.

1
2 x − 3 y =
Câu 20: Nghiệm của hệ phương trình 
là:
6
x + 4 y =
A. ( 2;1) .
B. (1; −2 ) .
C. (1;2) .

D. ( 2; −1) .

Câu 21: Số nghiệm của phương trình:
B. 3 .
A. 1 .

3 + x là
C. 2 .


D. 0 .

C. 1 .

D. 0 .

x2 + 5x − 2 =

Câu 22: Phương trình ( x + 5 x + 4 ) x + 3 =
0 có bao nhiêu nghiệm?
2

A. 2 .

B. 3 .

Câu 23: Tìm tất cả các giá trị của tham số m để đường thẳng d : =
y 2 x + 3 cắt parabol y = x 2 + ( m + 2 ) x − m
tại hai điểm phân biệt nằm cùng phía với trục tung Oy.
A. m < 0 .
B. m > 3 .
C. m < −3 .
D. m > −3 .
Câu 24: Phương trình 10 x 2 + 3 x + 1=

( 6 x + 1)

và 0 < d < 5 . Tính S = a + b + c + d .
A. S = 7 .
B. S = 15 .


x 2 + 3 ( ∗) có hai nghiệm x = a và x =
C. S = 12 .

b +c
với a, b, c, d ∈ 
d

D. S = 9 .

 
Câu 25: Gọi G là trọng tâm tam giác vuông ABC với cạnh huyền BC = 12 . Tổng hai véctơ GB + GC có độ
dài bằng bao nhiêu?
A. 4 .
B. 2 .
C. 2 3 .
D. 8 .

Câu 26: Số nghiệm nguyên của phương trình:

x −3 + 7=

5 − x + x là
Trang 2/4 - Mã đề thi 102


A. 1 .

C. 2 .


B. 0 .

Câu 27: Điều kiện xác định của phương trình
A. x ≥ 2 .
B. x ≥ 4 .

D. 3 .

x − 1 + x − 2=
x − 4 là
C. x > 4 .

D. x ≥ 1 .

Câu 28: Cho tam giác ABC vuông tại B và điểm M trên cạnh BC sao cho MA2 + MB 2 + MC 2 đạt giá trị nhỏ
S
nhất. Tính tỉ số diện tích S = ∆ABM .
S ∆ABC
1
2
1
3
A. .
B. .
C. .
D. .
3
3
4
2

Câu 29: Cho hàm số y = ax 2 + bx + c có đồ thị như hình bên dưới. Khẳng định nào sau đây đúng?
y
x
O

`
A. a < 0, b < 0, c < 0 .
B. a > 0, b < 0, c < 0 .
C. a > 0, b < 0, c > 0 .
D. a > 0, b > 0, c > 0 .
 
 




 
Câu 30: Cho 2 vectơ a, b biết=
| a | 2,=
| b | 1 và | a + 2b |=
2 . Tính góc giữa 2 vectơ a + b và a − 2b .
A. 150° .
B. 120° .
C. 60° .
D. 30° .
 2x + y + x − 2 y =
3

Câu 31: Cho hệ phương trình 
1

m
 2 x + y + 5x − 5 y + =
16

Số giá trị nguyên của m để hệ phương trình có nghiệm ( x; y ) duy nhất là
A. 16
B. 17
C. 14
Câu 32: Cho tan α = 2 . Giá trị biểu thức A =
A.

7
.
3

B.

−7
.
3

D. 15

4sin 2 α + 3cos α .sin α
bằng bao nhiêu?
5sin 2 α − 2 cos 2 α
C.

Câu 33: Cho hàm số: y = x 2 − 2 x − 1 , mệnh đề nào sai:


11
.
9

D. 

11
.
9

A. Đồ thị hàm số nhận I (1; −2 ) làm đỉnh.

B. Hàm số nghịch biến trên khoảng ( −∞;1) .

C. Đồ thị hàm số có trục đối xứng: x = −2

D. Hàm số đồng biến trên khoảng (1; +∞ ) .

Câu 34: Số giá trị nguyên của tham số m thuộc [ −5;5] để phương trình x 2 + 4mx + m 2 =
0 có hai nghiệm âm
phân biệt là
A. 10 .
B. 6 .
C. 5 .
D. 11
Câu 35: Cho một hình chữ nhật. Khi ta tăng chiều dài và chiều rộng lên 2 cm thì diện tích hình chữ nhật tăng
thêm 22 cm2 . Nếu giảm chiều dài 3 cm và chiều rộng 2 cm thì diện tích hình chữ nhật giảm 16 cm2 . Tính
diện tích của hình chữ nhật ban đầu.
A. 40 cm2 .
B. 50 cm 2 .

C. 60 cm 2 .
D. 20 cm 2 .
Câu 36: Cho các tập hợp A =

( −∞; m − 1)

và B =[ 2m − 3; 2m + 3] . Có bao nhiêu giá trị nguyên

m ∈ [ −2019; 2019] thỏa mãn A ⊂ C B .
A. 2019 .
B. 2018 .
C. 2021 .
Câu 37: Véctơ có điểm đầu là A , điểm cuối là B được kí hiệu là


A. BA .
B. AB .
C. AB .
Câu 38: Cho các tập hợp M =

[ −3; 6] và

N=

( −∞; − 2 ) ∪ ( 3; + ∞ ) . Khi đó

D. 2020 .

D. AB .


M ∩ N là
Trang 3/4 - Mã đề thi 102


A. ( −3; − 2 ) ∪ ( 3; 6 ) .
B. ( −∞; − 2 ) ∪ [3; + ∞ ) . C. ( −∞; − 2 ) ∪ [3; 6] .
D. [ −3; − 2 ) ∪ ( 3; 6] .



Câu 39: Cho a và b là hai vecto đều khác vecto 0 . Trong các kết quả sau hãy chọn kết quả đúng:

 
 
  
 
A. a.b = − a . b .sin a , b .
B. a.b = a . b .cos a , b .

 
 
  
 
C. a.b = − a . b .cos a , b .
D. a.b = a . b .sin a , b .

( )
( )

( )

( )

Câu 40: Cho các số thực x , y thỏa mãn: 2 ( x 2 + y 2 ) =
1 + xy . Giá trị lớn nhất và giá trị nhỏ nhất của biểu thức
P = 7 ( x 4 + y 4 ) + 4 x 2 y 2 có tổng là

A.

68
.
25

B.

2344
.
825

C. Một đáp án khác.

136
.
33

D.

Câu 41: Tìm tất cả các giá trị của tham số m để hàm số y =( m − 2 ) x + 2m 2 + 1 đồng biến trên  .
A. m ≤ 2 .

B. m > 2 .


C. m < 2 .

D. m ≥ 2 .

Câu 42: Cho mệnh đề: “ ∀x ∈ , x 2 + 3 x + 5 > 0 ”. Mệnh đề phủ định của mệnh đề trên là
A. ∃x ∈ , x 2 + 3 x + 5 ≤ 0 .
B. ∃x ∈ , x 2 + 3 x + 5 > 0 .
C. ∀x ∈ , x 2 + 3 x + 5 < 0 .
D. ∀x ∈ , x 2 + 3 x + 5 ≤ 0 .
Câu 43: Gọi x1 , x2 là 2 nghiệm của phương trình 2 x 2 + 2(m + 1) x + m 2 + 4m + 3 =
0 . Giá trị lớn nhất của
a a
(
là phân số tối giản, a, b ∈ * ). Khi đó a + b bằng
A = x1 x2 − 2 ( x1 + x2 ) bằng
b b
A. 11
B. 4 .
C. 8 .
D. 9 .
Câu 44: Cho tập
A. {0; 2;8} .

A = {0; 2; 4;6;8} B = {3; 4;5;6;7}
;
. Tập A \ B là
B. {0; 2} .
C. {0;6;8} .


D. {3;6;7} .

Câu 45: Gọi T là tập các giá trị nguyên của m để phương trình 16 x + m − 4 = 4 x 2 − 18 x + 4 − m có 1 nghiệm.
Tính tổng các phần tử của T.
B. −20 .
C. 20 .
D. 0 .
A. 10 .
A

Câu 46: Trong mặt phẳng với hệ tọa độ Oxy cho các điểm A (1;3) , B ( −2;3) , C ( −2;1) . Điểm M ( a ; b ) thuộc trục
  
Oy sao cho: MA + 2 MB + 3MC nhỏ nhất, khi đó a + b bằng?
A. 1 .

B. 12 .

Câu 47: Trong hệ tọa độ Oxy, cho =
a
 
 
A. a + b = ( 2; −2 ) .
B. a + b =


( 3; −4 ) , b =

( 4; −6 ) .

D. 2 .

 
( −1; 2 ) . Tìm tọa độ của a + b .
 
 
C. a + b =( −4;6 ) .
D. a + b =( −3; −8 ) .
C. 3 .

Câu 48: Cho hàm số y = x 2 − 4 x + 1 . Giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên [ −1;1] lần lượt là y1 , y2
thỏa mãn y1 − y2 =
m . Khi đó giá trị của m là
A. 4 .
B. 2 .

C. 3 .
D. 8 .
     


Câu 49: Cho ∆ABC . Gọi M , N là các điểm thỏa mãn: MA + MB =
0 , 2 NA + 3 NC =
0 và BC = k BP . Tìm
k để ba điểm M , N , P thẳng hàng.
1
3
2
A. k = .
B. k = .
C. k = 3 .
D. k = .

3
5
3
Câu 50: Phương trình x 2 − 2mx + 1 + m =0 có một nghiệm x = 3 thì
A. m = −1 .
B. m = 1 .
C. m = 2 .

D. m = −2 .

-----------------------------------------------

----------- HẾT ---------- />Giám thị coi thi không giải thích gì thêm. Thí sinh không được sử dụng tài liệu.
Họ tên thí sinh: ………………………………………………… SBD: …………
Trang 4/4 - Mã đề thi 102


102
102
102
102
102
102
102
102
102
102
102
102
102

102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102
102

102
102
102
102
102
102
102

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

D

B
A
C
D
D
C
D
C
A
D
C
D
A
B
B
A
C
D
A
A
A
C
D
A
B
B
C
B
C
A

C
C
C
D
B
B
D
B
B
B
A
A
A
B
D
A
D
B
C



×