Tải bản đầy đủ (.pdf) (387 trang)

Low carbon energy in africa and latin america renewable technologies, natural gas and nuclear energy

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (12.18 MB, 387 trang )

Lecture Notes in Energy 38

Ricardo Guerrero-Lemus
Les E. Shephard

Low-Carbon
Energy in Africa
and Latin
America
Renewable Technologies, Natural Gas
and Nuclear Energy


Lecture Notes in Energy
Volume 38


Lecture Notes in Energy (LNE) is a series that reports on new developments in the
study of energy: from science and engineering to the analysis of energy policy. The
series’ scope includes but is not limited to, renewable and green energy, nuclear,
fossil fuels and carbon capture, energy systems, energy storage and harvesting,
batteries and fuel cells, power systems, energy efficiency, energy in buildings,
energy policy, as well as energy-related topics in economics, management and
transportation. Books published in LNE are original and timely and bridge between
advanced textbooks and the forefront of research. Readers of LNE include
postgraduate students and non-specialist researchers wishing to gain an accessible
introduction to a field of research as well as professionals and researchers with a
need for an up-to-date reference book on a well-defined topic. The series publishes
single and multi-authored volumes as well as advanced textbooks.

More information about this series at />



Ricardo Guerrero-Lemus
Les E. Shephard

Low-Carbon Energy
in Africa and Latin America
Renewable Technologies, Natural Gas
and Nuclear Energy

123


Les E. Shephard
Department of Civil and Environmental
Engineering
University of Texas at San Antonio
San Antonio, TX
USA

Ricardo Guerrero-Lemus
Departmento de Física
Universidad de La Laguna
La Laguna
Spain

ISSN 2195-1284
Lecture Notes in Energy
ISBN 978-3-319-52309-5
DOI 10.1007/978-3-319-52311-8


ISSN 2195-1292

(electronic)

ISBN 978-3-319-52311-8

(eBook)

Library of Congress Control Number: 2017930945
© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
Printed on acid-free paper
This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


To Inés, Claudia (pichi-pichi) and mami

To Darlene—831!


Preface

Africa and Latin America are comprised of some of the world’s most prosperous
nations and some of the world’s poorest. With more than 20% of the global population, these nations all strive to enhance their economic prosperity and to build a
social fabric and a business community that allows their citizens’ opportunities for
success in the future. For many nations, in these regions, any goals beyond basic
sustenance represent a marked improvement in the standard of living and basic
services, but all nations recognize the inextricable link between economic prosperity and energy consumption and the challenges associated with building a secure
energy future that fuels their long-term economic growth.
This book is intended to serve as an introduction and initial source of information for students, researchers, and other professionals interested in the energy
sectors for nations that comprise both Africa and Latin America (Fig. 1) with a
specific focus on low-carbon energy systems. This book coalesces information that
is often difficult to find in the published literature to provide the most current
material on how the energy sector is evolving in these countries and the challenges
they face in moving from a disaggregated, nonstandard energy sector framework to
a fully integrated, yet distributed sector. The most important up-to-date numerical
data related to energy production, capacity, efficiencies, production costs, etc., are
exposed in 14 chapters, 208 figures, and 52 tables, integrated in terms of units and
methodology. We have attempted to rely on the recent (2014–2016) technical
peer-reviewed literature in our assessments of each technology and the role they
play in these nations, but for many countries, this information is often limited and
for some nearly nonexistent. As such, we have also relied on government,
non-government, and trade organization publications where necessary to supplement insights gained from the refereed literature.
This book begins with an assessment of the current energy situation and trends in
Africa and Latin America and the significant constraints on meeting their future
energy needs with current practices. These constraints include social, political,
regulatory, financial, technical, economic, and policy considerations and challenges. We begin by examining the current energy trends in Africa and Latin

America and the constraints that current practices place on meeting future energy
vii


viii

Preface

Fig. 1 African and Latin American priority countries and other countries considered in this book

needs. Later chapters present a more detailed description and analyses of each
low-carbon energy technology and the role they play in countries that comprise
these two regions. These chapters are supported by a large number of illustrations
and data summary tables to offer valuable insights into the topics and technologies
discussed. We have integrated 94 “Case examples” from the refereed literature in
each of the chapters that identify specific examples of technology developments and
deployments or a synthesis of the challenges, successes, and deliberations related to
specific technologies and/or the complementary capability that has arisen as a result
of access to low-carbon energy resources (e.g., ethanol gel stoves). Our case
examples incorporate experiences from nearly every nation in these two regions and
are intended in part to serve as “models for success” that may be emulated elsewhere within African and Latin American countries.
This book is intended to provide a basis for understanding the energy context for
both Africa and Latin America by serving as a resource to help define strategies that
accelerate the deployment of indigenous low-carbon energy technologies in a
manner that enhances long-term economic prosperity. The authors enjoy
“real-world experience” in teaching energy concepts and principles in “emerging”
countries, and this book summarizes much of the information we use in the
classroom interactions with our students. Both of our universities draw significantly
upon students from African and Latin American countries, and our cities serve as
gateways to these regions for trade, commerce, and education. Also, we plan to use

this book as our resource for teaching classroom and online courses in the coming
years in our respective universities. The authors will be available for readers to
discuss any data or analysis published in the book (), and the
readers will be encouraged to propose any additional and recognized content that
they consider can enrich future editions. The readers who collaborate in the


Preface

ix

enrichment of future edition content will be mentioned in the acknowledgements
of the edition where this content is added.
Priority countries for this book were identified based on the available reliable
data on the energy sector.

African Countries
Algeria, Angola, Benin, Botswana, Cameroon, Congo, Democratic Republic of
Congo, Cote d’Ivore, Egypt, Eritrea, Ethiopia, Gabon, Ghana, Kenya, Libyan Arab
Jamahiriya, Morocco, Mozambique, Namibia, Nigeria, Senegal, South Africa,
Sudan (covering South Sudan), United Republic of Tanzania, Togo, Tunisia,
Zambia, Zimbabwe, and other African countries briefly considered (Burkina Faso;
Burundi; Cape Verde; Central African Republic; Chad; Comoros; Djibouti;
Equatorial Guinea; Gambia; Guinea; Guinea-Bissau; Lesotho; Liberia; Madagascar;
Malawi; Mali; Mauritania; Mauritius; Niger; Reunion; Rwanda; Sao Tome and
Principe; Seychelles; Sierra Leone; Somalia; Swaziland; Uganda; and Western
Sahara).

Latin American Countries
Argentina, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominican

Republic, El Salvador, Ecuador, Guatemala, Haiti, Honduras, Mexico, Nicaragua,
Panama, Paraguay, Peru, Uruguay, Venezuela, and other Latin American countries
briefly considered (Antigua and Barbuda; Aruba; Bahamas; Barbados; Belize;
Bermuda; British Virgin Islands; Cayman Islands; Dominica; Falkland Islands;
French Guyana; Grenada; Guadeloupe; Guyana; Jamaica; Martinique; Montserrat;
Netherlands Antilles; Puerto Rico; St. Kitts and Nevis; Saint Lucia; Saint Pierre et
Miquelon; St. Vincent and the Grenadines; Suriname; Trinidad and Tobago; and
Turks and Caicos Islands).
To discuss regional energy figures (mainly supply, capacities, and production),
we use the IEA and US EIA Statistics Databases. We consider these sources very
rigorous, but the methodology employed produces 2-year delayed data with respect
to present. To compensate this drawback, in many chapters, more updated estimations, provided by global and prestigious associations related to the specific
technology, are referred.
This book would not have been possible without the selfless support of many
that believe as we do that we must improve the economic prosperity of global
citizens everywhere and that energy is key to a prosperous future. Brooke L.E.S.
Fontenot-Amedee has been gracious with her time and insight on information
technology, and The Good Shephard Foundation has provided financial and moral


x

Preface

support from the onset. Also Prof. José Manuel Martínez-Duart and Prof. Antonio
Lecuona have provided significant content to this book.
The University of La Laguna, the University of Texas System, and the
University of Texas at San Antonio have continuously encouraged collaborative
research opportunities on renewable energy between our universities. Dr. Alfonso
“Chico” Chiscano, MD has dedicated his life to the spirit of collaboration between

San Antonio and the Canary Islands and has continuously nourished this relationship over decades.
We also want to make special mention to our image designer, Aneliya
Stoyanova, and to Oyinkansola Adeoye, who has contributed along with many
others technical support.
La Laguna, Spain
San Antonio, TX, USA
December 2016

Ricardo Guerrero-Lemus
Les E. Shephard


Contents

1

Executive Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard

1

2

General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Carbon Emissions and Climate Change . . . . . . . . . . . . . . . . . . .
2.3 Low Carbon Development Concept . . . . . . . . . . . . . . . . . . . . . .
2.4 Main Country Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Carbon Capture and Storage Systems . . . . . . . . . . . . . . . . . . . . .

2.5.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.2
State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.3
Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.4
Carbon Emissions from CCS Based Power Plants . . . .
2.6 Conclusions and Future Perspectives . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

Current Energy Context in Africa and Latin America . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Key Energy Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 Energy Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1
Renewable Energy Supply . . . . . . . . . . . . . . . . . .
3.3.2
Fossil Fuel Pipelines . . . . . . . . . . . . . . . . . . . . . .
3.3.3
Power Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.4 Energy Regulations and Jobs . . . . . . . . . . . . . . . . . . . . . . .
3.4.1
National Targets and Incentives . . . . . . . . . . . . . .
3.4.2
Investment Climate and Jobs in Clean Energies .
3.4.3

Energy Subsidies . . . . . . . . . . . . . . . . . . . . . . . . .

....

39

.
.
.
.
.
.
.
.
.
.

40
42
44
44
45
45
51
51
51
55

3


.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.

11
14
19
23
23
23
28
32
34
35
36

xi


xii

Contents

3.5 Energy Security and Trading . . . . . .
3.6 Energy Efficiency . . . . . . . . . . . . . . .
3.7 National and Regional Energy Plans .
3.8 Conclusions and Future Perspectives
References . . . . . . . . . . . . . . . . . . . . . . . . . .
4

5


.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.


.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.


.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

59
62
65
72
72

....

75

.

.
.
.

.
.
.
.

.
.
.
.

.
.
.
.

76
76
79
81

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

82
85

89
91
96
97
99
101
101
105
105
109
112
116
117

.........

121

.
.
.
.
.
.
.
.
.
.
.
.

.

122
124
125
127
131
133
136
138
138
140
143
146
147

.
.
.
.
.

.
.
.
.
.

.
.

.
.
.

.
.
.
.
.

.
.
.
.
.

Power Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Technology State of the Art . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1
Power Transmission Grids . . . . . . . . . . . . . . . . . .
4.2.2
Power Distribution Grids . . . . . . . . . . . . . . . . . . .
4.2.3
Integration of Non-dispatchable Renewable
Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.4
Rural Electrification . . . . . . . . . . . . . . . . . . . . . . .
4.2.5

Smart Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.6
Storage Systems . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.7
Distributed Generation . . . . . . . . . . . . . . . . . . . . .
4.2.8
Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.9
Net Metering and Interconnections . . . . . . . . . . .
4.3 Regional and National Perspectives on Technology . . . . . .
4.3.1
Electricity Output and Power Mix . . . . . . . . . . . .
4.3.2
Electricity Price . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.3
Electricity Trade . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.4
Electrification Ratios . . . . . . . . . . . . . . . . . . . . . .
4.3.5
Electricity Distribution Losses . . . . . . . . . . . . . . .
4.4 Conclusions and Future Perspectives . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Biomass for Heating and Power Production . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Technology State of the Art . . . . . . . . . . . . . . . . . . .
5.2.1
Energy Crops. . . . . . . . . . . . . . . . . . . . . . .
5.2.2
Cook-stoves . . . . . . . . . . . . . . . . . . . . . . . .

5.2.3
Technologies for Producing Electricity . . .
5.2.4
Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2.5
CO2 Emissions . . . . . . . . . . . . . . . . . . . . .
5.3 Regional and National Perspectives on Technology .
5.3.1
Biomass and Health . . . . . . . . . . . . . . . . . .
5.3.2
Forest and Arable Land . . . . . . . . . . . . . . .
5.3.3
Electricity from Biomass . . . . . . . . . . . . . .
5.4 Conclusions and Future Perspectives . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.


Contents

6


7

8

xiii

....

149

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.

150
150
153
154
155
156
158
159
163
165
165
169
171
172

.........

175


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.

175
181
181
183
184
186
188
190
192
193
194
198
198
201
204
205

.................

207

.
.
.
.
.


208
211
211
212
216

Photovoltaics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Technology State of the Art . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1
Wafer-Based Solar Technology . . . . . . . . . . . . . .
6.2.2
Thin Film Solar Technology . . . . . . . . . . . . . . . .
6.2.3
Third Generation Solar Cells . . . . . . . . . . . . . . . .
6.2.4
Efficiencies and Required Areas . . . . . . . . . . . . .
6.2.5
Inverters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.6
Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.7
Pico-Solar Products . . . . . . . . . . . . . . . . . . . . . . .
6.3 Regional and National Perspectives on Technology . . . . . .
6.3.1
Evolution on Electricity Produced from PV. . . . .
6.3.2
Electricity Share from PV . . . . . . . . . . . . . . . . . .

6.4 Conclusions and Future Perspectives . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Solar Thermal Energy for Heating, Cooling and Power
Ricardo Guerrero-Lemus and Les E. Shephard
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.2 Technology State of the Art . . . . . . . . . . . . . . . . . . .
7.2.1
Solar Thermal Fundamentals . . . . . . . . . . .
7.2.2
Cooling and Air Conditioning . . . . . . . . . .
7.2.3
Solar Thermal Collectors . . . . . . . . . . . . . .
7.2.4
CSP Technology . . . . . . . . . . . . . . . . . . . .
7.2.5
Thermal Storage . . . . . . . . . . . . . . . . . . . .
7.2.6
Solar Cookers . . . . . . . . . . . . . . . . . . . . . .
7.2.7
Other Solar Thermal Applications . . . . . . .
7.2.8
Thermal Insulation . . . . . . . . . . . . . . . . . . .
7.2.9
Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.3 Regional and National Perspectives on Technology .
7.3.1
Evolution on Solar Thermal Energy . . . . .
7.3.2
Evolution on CSP . . . . . . . . . . . . . . . . . . .
7.4 Conclusions and Future Perspectives . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hydropower and Marine Energy . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . .
8.2 Technology State of the Art . . . . . . . . . . .
8.2.1
Turbines . . . . . . . . . . . . . . . . . .
8.2.2
Large Hydropower Systems . . . .
8.2.3
Wave Power . . . . . . . . . . . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.


.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.


.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.

.
.
.
.
.


xiv

Contents

8.2.4
Currents . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.5
Tidal Range . . . . . . . . . . . . . . . . . . . . . . . .
8.2.6
Other Marine Technologies . . . . . . . . . . . .
8.2.7
Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.3 Regional and National Perspectives on Technology .
8.3.1
Hydropower . . . . . . . . . . . . . . . . . . . . . . . .
8.3.2
Pumping Systems . . . . . . . . . . . . . . . . . . .
8.3.3
Marine Technologies . . . . . . . . . . . . . . . . .
8.4 Conclusions and Future Perspectives . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9

.
.
.
.
.
.
.
.
.
.

221
223
224
225
230
230
236
238

239
239

Geothermal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 Technology State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2.1
High Enthalpy Technologies . . . . . . . . . . . . . . . . . . . .
9.2.2
Geothermal Heat Pumps . . . . . . . . . . . . . . . . . . . . . . .
9.2.3
Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3 Regional and National Perspectives on Technology . . . . . . . . . .
9.3.1
Evolution on Electricity Produced from Geothermal
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.3.2
Electricity Share from Geothermal Energy . . . . . . . . .
9.4 Conclusions and Future Perspectives . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

243

.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

10 Wind Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2 Technology State of the Art . . . . . . . . . . . . . . . . . . . . . . . .
10.2.1 Wind Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.2 Small Wind Turbines (SWT) . . . . . . . . . . . . . . . .
10.2.3 Offshore Wind Turbines . . . . . . . . . . . . . . . . . . .
10.2.4 Wind Resources. . . . . . . . . . . . . . . . . . . . . . . . . .
10.2.5 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.3 Regional and National Perspectives on Technology . . . . . .
10.3.1 Electricity Share from Wind Energy . . . . . . . . . .

10.3.2 Evolution on Electricity Produced from Wind
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10.4 Conclusions and Future Perspectives . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.
.

.
.
.
.
.
.
.

243
245
246
249
251
253
253
255
258
258

....

261

.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.

261
264
265
266
267
269
270
273
273

....
....
....

275
277
277


.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.


Contents

xv

11 Biofuels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2 Technology State of the Art . . . . . . . . . . . . . . . . . . .

11.2.1 Bioethanol . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.2 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . .
11.2.3 Third Generation Biofuels . . . . . . . . . . . . .
11.2.4 Ethanol as a Cooking Fuel Option . . . . . .
11.2.5 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.3 Regional and National Perspectives on Technology .
11.3.1 Supporting Policies . . . . . . . . . . . . . . . . . .
11.3.2 Biofuel Supply . . . . . . . . . . . . . . . . . . . . .
11.4 Conclusions and Future Perspectives . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.........

279

.
.
.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.

279
281
281
283
284
286
287
291
291
293
299
299

12 Waste-to-Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.2 Technology State of the Art . . . . . . . . . . . . . . . . . . .
12.2.1 Anaerobic Digestion . . . . . . . . . . . . . . . . .
12.2.2 Incineration . . . . . . . . . . . . . . . . . . . . . . . .

12.2.3 Pyrolysis and Gasification . . . . . . . . . . . . .
12.2.4 Hydrothermal Carbonization . . . . . . . . . . .
12.2.5 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.3 Regional and National Perspectives on Technology .
12.3.1 MSW Production Rates . . . . . . . . . . . . . . .
12.3.2 MSW Collection Rates . . . . . . . . . . . . . . .
12.4 Conclusions and Future Perspectives . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.........

301

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.

301
305
306
309
310
312
312
317
317
318
320
321

....

323

.
.
.
.

.
.
.

.
.
.
.
.
.
.

324
325
325
326
328
328
330

....
....
....

333
334
334

.
.

.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.

.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.

13 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2 Technology State of the Art . . . . . . . . . . . . . . . . . . . . . . . .
13.2.1 Shale Gas and Hydraulic Fracturing . . . . . . . . . .
13.2.2 Gas Turbine Power Plants . . . . . . . . . . . . . . . . . .
13.2.3 Cogeneration and Trigeneration . . . . . . . . . . . . . .
13.2.4 Combined Cycle Power Plants . . . . . . . . . . . . . .
13.2.5 Flexibility for Non-dispatchable Generation . . . .
13.2.6 Internal Combustion Engines (ICE) and Off Grid
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . .
13.2.7 Natural Gas Appliances . . . . . . . . . . . . . . . . . . . .
13.2.8 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.

.
.
.
.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.



xvi

Contents

13.3 Regional and National Perspectives on Technology .
13.3.1 Production, Consumption and Reserves . . .
13.3.2 Electricity Share from Natural Gas . . . . . .
13.4 Conclusions and Future Perspectives . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.

.
.
.
.
.

.
.
.
.
.

.

.
.
.
.

.
.
.
.
.

14 Nuclear Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ricardo Guerrero-Lemus and Les E. Shephard
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2 Technology State of the Art . . . . . . . . . . . . . . . . . . . . . . . .
14.2.1 Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.2 Conversion and Enrichment . . . . . . . . . . . . . . . . .
14.2.3 Fuel Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.4 Types of Nuclear Fuel Assemblies for Different
Reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.5 Nuclear Plants and Electricity Production . . . . . .
14.2.6 Thorium as an Alternative Fuel . . . . . . . . . . . . . .
14.2.7 Reprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.2.8 Small Modular Reactors (SMR) . . . . . . . . . . . . .
14.2.9 Nuclear Waste and Management . . . . . . . . . . . . .
14.2.10 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3 Regional and National Perspectives on Technology . . . . . .
14.3.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14.3.2 Evolution on Electricity Produced from Nuclear
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.4 Conclusions and Future Perspectives . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.
.
.
.
.

337
337
339
341
341

....

345

.
.
.
.
.

.
.
.
.
.


.
.
.
.
.

.
.
.
.
.

346
348
348
350
353

.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

355

357
360
361
361
362
363
365
365

....
....
....

366
368
369

.
.
.
.
.

.
.
.
.
.

.

.
.
.
.


Acronyms

AC
ACSR
AD
AHWR
BMP
BWR
CANDU
CAPP
CC
CCGT
CCS
CFL
CHP
COD
DM
DSO
DU
EAPP
EIA
EPA
ETC
FBR

FPC
GCR
GCV
GDP
GHG
HLW
HTC
HTGR

Alternating current
Aluminum conductor steel reinforced
Anaerobic digestion
Advanced heavy water reactor
Biochemical methane potential
Boiling water reactor
CANada Deuterium Uranium
Central African Power Pool
Combined cycle
Combined cycle gas turbine
Carbon capture and storage
Compact fluorescent light
Combined heat and power
Chemical oxygen demand
Dry matter
Distribution system operator
Depleted uranium
East African Power Pool
US Energy Information Administration
US Environmental Protection Agency
Evacuated tube collector

Fast breeder reactor
Flat plate collector
Gas-cooled reactor
Gross calorific value
Gross domestic product
Greenhouse gases
High-level waste
Hydrothermal carbonization
High-temperature gas-cooled reactor

xvii


xviii

HV
HVAC
HVDC
IAEA
ICE
IEA
IGBT
ILW
IMF
IPP
IR
IRENA
ISO
LCA
LCOE

LED
LHV
LLW
LNG
LPG
LRMC
LV
lwg
LWGR (RBMK)
LWR
MOX
MSR
MSW
MV
NEP
NG
NGO
NGV
NORM
OCGT
OTEC
PHWR
PPA
PWR
RAR
RDF
RepU
RES
RPS
RTO


Acronyms

High voltage
High-voltage alternating current
High-voltage direct current
International Atomic Energy Agency
Internal combustion engine
International Energy Agency
Insulated-gate bipolar transistor
Intermediate level waste
International Monetary Fund
Independent power producer
Inferred resources
International Renewable Energy Agency
Independent system operator
Life cycle analysis
Levelized cost of electricity
Light-emitting diode
Lower heating value
Low-level waste
Liquid natural gas
Liquified propane gas
Long-run marginal cost
Low voltage
Live weight gain
Light water gas reactor
Light water reactor
Mixed oxide
Molten salt reactor

Municipal solid waste
Medium voltage
National energy plan
Natural gas
Nongovernmental agency
Natural gas-fueled vehicles
Naturally occurring radioactive material
Open cycle gas turbine
Ocean thermal energy conversion
Pressurized heavy water reactor
Power purchase agreement
Pressurized water reactor
Reasonably assured resources
Refused derived fuel
Reprocessed uranium
Renewable energy sources
Renewable purchase standards
Regional transmission organization


Acronyms

SAPP
SHC
SMR
SRF
SRMC
STP
SWH
SWT

SWU
TPEC
TPES
TRE
TSO
UMA
USEC
VAT
VLLW
WAPP
WtE

xix

South African Power Pool
Solar heating and cooling
Small modular reactor
Solid refuse fuel
Short-run marginal cost
Standard temperature and pressure
Solar water heating
Small wind turbine
Separative work unit
Total primary energy consumption
Total primary energy supply
Tradable renewable energy
Transmission system operator
Arab Maghreb Union
United States Enrichment Corporation
Value-added tax

Very low-level waste
West African Power Pool
Waste to energy

Countries
AGO
ARG
ATG
BDI
BEN
BFA
BHS
BLZ
BMU
BOL
BRA
BRB
BWA
CAF
CHL
CIV
CMR
COD
COG
COL
COM
CPV
CRI

Angola

Argentina
Antigua and Barbuda
Burundi
Benin
Burkina Faso
Bahamas, The
Belize
Bermuda
Bolivia
Brazil
Barbados
Botswana
Central African Republic
Chile
Cote d’Ivoire
Cameroon
Congo, Dem. Rep
Congo, Rep
Colombia
Comoros
Cabo Verde
Costa Rica


xx

CUB
CUW
CYM
DJI

DMA
DOM
DZA
ECU
EGY
ERI
ETH
EU
GAB
GHA
GIN
GMB
GNB
GNQ
GTM
GUY
HND
HTI
JAM
KEN
LBR
LBY
LSO
MAR
MDG
MEX
MLI
MOZ
MRT
MUS

MWI
NAM
NER
NGA
NIC
PAN
PER
PRY
RWA
SDN
SEN

Acronyms

Cuba
Curacao
Cayman Islands
Djibouti
Dominica
Dominican Republic
Algeria
Ecuador
Egypt, Arab Rep
Eritrea
Ethiopia
European Union
Gabon
Ghana
Guinea
Gambia, The

Guinea-Bissau
Equatorial Guinea
Guatemala
Guyana
Honduras
Haiti
Jamaica
Kenya
Liberia
Libya
Lesotho
Morocco
Madagascar
Mexico
Mali
Mozambique
Mauritania
Mauritius
Malawi
Namibia
Niger
Nigeria
Nicaragua
Panama
Peru
Paraguay
Rwanda
Sudan
Senegal



Acronyms

SLE
SLV
SOM
SSD
STP
SUR
SWZ
SYC
TCD
TGO
TTO
TUN
TZA
UGA
URY
USA
VCT
VEN
ZAF
ZMB
ZWE

xxi

Sierra Leone
El Salvador
Somalia

South Sudan
São Tomé and Principe
Suriname
Swaziland
Seychelles
Chad
Togo
Trinidad and Tobago
Tunisia
Tanzania
Uganda
Uruguay
United States
St. Vincent and the Grenadines
Venezuela, RB
South Africa
Zambia
Zimbabwe


List of Case Examples

Case Example 4.1.
Case Example 4.2.
Case Example 4.3.
Case Example 4.4.
Case Example 4.5.
Case Example 4.6.
Case Example 4.7.
Case Example 4.8.

Case Example 4.9.
Case Example 4.10.
Case
Case
Case
Case

Example
Example
Example
Example

4.11.
4.12.
4.13.
5.1.

Case Example 5.2.
Case Example 5.3.
Case Example 5.4.
Case Example 5.5.

Mobile Phone Call Data as a electricity proxy
indicator in Côte d’Ivoire . . . . . . . . . . . . . . . . . . . .
Electrification planning tool applied to Ghana . . . . .
Socioeconomic impacts of access to electricity
in a Brazilian Amazon reserve . . . . . . . . . . . . . . . . .
Human behaviour in household energy efficiency
in a town in Nigeria . . . . . . . . . . . . . . . . . . . . . . . .
Flow battery for a telecommunications base

transceiver site (TBS) in Dominican Republic . . . . .
Uganda’s liberalized energy market
and energy poverty . . . . . . . . . . . . . . . . . . . . . . . . .
Battery selection for a off-grid school lighting
in Angola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Adaptation of feed-in tariff for remote mini-grids
in Tanzania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The economics of grid interconnection in Africa . . .
Simulating electricity market coupling between
Colombia and Ecuador . . . . . . . . . . . . . . . . . . . . . .
The energy poverty penalty in a rural area in Peru .
Local and national energy planning in Senegal . . . .
Rural distribution meter failures in Colombia . . . . .
Briquettes as an alternative to firewood
and charcoal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The flexible role of charcoal production in
smallholders in Mozambique . . . . . . . . . . . . . . . . . .
Household fuel mix vs. income in transition
economies, Botswana. . . . . . . . . . . . . . . . . . . . . . . .
Corn food processing and the gasification of cobs
in Cameroon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gabon land-based strategy for contributing to the
UN Framework Convention on Climate Change . . .

..
..

80
82


..

88

..

90

..

94

..

97

..

99

. . 100
. . 107
.
.
.
.

.
.
.

.

108
110
111
115

. . 126
. . 129
. . 130
. . 135
. . 137
xxiii


xxiv

List of Case Examples

Case Example 5.6.

Rwanda’s policies for reducing the impact
of using biomass for cooking . . . . . . . . . . . . . . . . .
Case Example 5.7. Positive impacts of fuelwood sourcing in Maun,
Botswana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 5.8. Fuelwood characteristics of fast-growth species
in Costa Rica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 6.1. Protection of PV systems against theft in South
Africa and Zimbabwe . . . . . . . . . . . . . . . . . . . . . . .
Case Example 6.2. Ghana’s PV development . . . . . . . . . . . . . . . . . . . .

Case Example 6.3. The lowest bid for PV worldwide in 2016: Chile . .
Case Example 6.4. Brazil auctions and currency depreciation,
and Mexico . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 6.5. The lowest bid for PV in Africa . . . . . . . . . . . . . . .
Case Example 6.6. An off-grid power kiosk in rural Zambia . . . . . . . . .
Case Example 6.7. Pay-as-you-go approaches for solar home systems
in Kenya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 6.8. Appliances adapted for African rural areas . . . . . . .
Case Example 6.9. Medium size PV-diesel-battery system for an
isolated power system in Namibia . . . . . . . . . . . . . .
Case Example 6.10. A small PV powered reverse osmosis system
for water purification in a remote
Mexican community . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 6.11. Chile’s PV plants selling electricity
in the spot market . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 7.1. Real solar adsorption refrigeration system working
in Bou-Ismail, Algeria . . . . . . . . . . . . . . . . . . . . . . .
Case Example 7.2. Solar cooking experiences in Central America . . . .
Case Example 7.3. Sun dryers in Togo . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 7.4. PROSOL program to promote solar water heating
in Tunisia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 7.5. Solar thermal refrigeration in Kenya . . . . . . . . . . . .
Case Example 7.6. Solar water heater technology transferred to rural
communities in Argentina . . . . . . . . . . . . . . . . . . . .
Case Example 7.7. CSP in Tunisia and interconnection with Europe. . .
Case Example 7.8. Integration of CSP in the Brazilian electric power
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 8.1. Designing a micro-dam reservoir
in northern Ethiopia . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 8.2. Hydropower conflicts and resettlements in Brazil . .

Case Example 8.3. Wave energy resource assessment in Uruguay . . . . .
Case Example 8.4. Beach response to wave energy converter farms
acting as coastal defense in Mexico . . . . . . . . . . . . .
Case Example 8.5. Lack of maintenance and drought effects . . . . . . . . .

. . 140
. . 141
. . 146
. . 157
. . 157
. . 160
. . 161
. . 162
. . 163
. . 164
. . 165
. . 167

. . 169
. . 170
. . 185
. . 191
. . 192
. . 194
. . 196
. . 199
. . 201
. . 201
. . 214
. . 215

. . 219
. . 220
. . 226


List of Case Examples

Case Example 8.6.
Case Example 8.7.
Case Example 8.8.
Case Example 8.9.
Case Example 8.10.
Case Example 8.11.

Case Example 9.1.
Case Example 9.2.
Case Example 9.3.
Case Example 9.4.
Case Example 9.5.
Case Example 9.6.
Case Example 9.7.
Case Example 9.8.
Case Example 10.1.
Case Example 10.2.
Case Example 10.3.
Case
Case
Case
Case


Example
Example
Example
Example

10.4.
10.5.
10.6.
10.7.

Case Example 11.1.
Case Example 11.2.
Case Example 11.3.
Case Example 11.4.
Case Example 11.5.

xxv

Potential use of water spilled for producing
hydrogen in Ecuador . . . . . . . . . . . . . . . . . . . . . . . .
Grand Inga . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
La Esperanza run-of-river hydroelectric project
in Honduras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hydropower planning in fragile and conflict states:
South Sudan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alternative use of the spilled water at Itaipu
14GW hydraulic plant in Paraguay . . . . . . . . . . . . .
Economic changes after the NGO-based
implementation of a small-scale off-grid hydropower
system in Tanzania . . . . . . . . . . . . . . . . . . . . . . . . .

Study of a solar-geothermal hybrid power plant
in northern Chile . . . . . . . . . . . . . . . . . . . . . . . . . . .
Geothermal power plants impact on surrounding
plants and soil in Kenya . . . . . . . . . . . . . . . . . . . . .
Evaluation of earth-air heat exchanger for cooling
and heating a poultry house in Morocco . . . . . . . . .
Self-powered desalination of geothermal saline
groundwater in Tunisia . . . . . . . . . . . . . . . . . . . . . .
The Corbetti Geothermal Power Plant in Ethiopia . .
KenGen and geothermal policy support in Kenya . .
San Jacinto-Tizate geothermal power plant
in Nicaragua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Geothermal energy in El Salvador . . . . . . . . . . . . . .
Social response to the installation of a wind farm
in Chile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Determinants of community acceptance of a wind
energy project in Tunisia . . . . . . . . . . . . . . . . . . . . .
Wind pumps for greenhouse microirrigation in
Ciego de Ávila, Cuba . . . . . . . . . . . . . . . . . . . . . . .
Grid parity for wind energy in Brazil . . . . . . . . . . .
Cabeolica wind farm . . . . . . . . . . . . . . . . . . . . . . . .
310 MW Lake Turkana wind farm . . . . . . . . . . . . .
The largest wind farm
in Central America (Panama) . . . . . . . . . . . . . . . . . .
Case study of a small scale ethanol production
in Brazil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Failure of many large-scale jatropha plantations in
Ethiopia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
South African Airways first flight using biofuels . . .
The sustainability of sugarcane-ethanol systems in

Guatemala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Evolution of the biofuel policy in Zimbabwe . . . . .

. . 227
. . 231
. . 232
. . 233
. . 235

. . 237
. . 247
. . 249
. . 250
. . 250
. . 254
. . 255
. . 256
. . 257
. . 263
. . 264
.
.
.
.

.
.
.
.


267
270
271
273

. . 276
. . 282
. . 284
. . 290
. . 291
. . 295


xxvi

List of Case Examples

Case Example 11.6. Impact of biofuel projects in food security
in Mozambique . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 11.7. Jatropha adoption by smallholders in Mexico . . . . .
Case Example 12.1. Landfill gas projects in Africa . . . . . . . . . . . . . . . . .
Case Example 12.2. Methane production from sanitation improvement
in Haiti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 12.3. Biogas technology and production of fertilizers
in Bolivia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 12.4. Factors affecting household’s decisions in biogas
technology adoption in northern Ethiopia . . . . . . . .
Case Example 12.5. Development of biogas technology in Colombia . . .
Case Example 12.6. Planning waste-to-energy integration in the
Venezuelan grid . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Case Example 12.7. Anaerobic digestion in a beef cattle feedlot
in Brazil and GHG emissions . . . . . . . . . . . . . . . . .
Case Example 12.8. Overview of solid waste in Libya . . . . . . . . . . . . . .
Case Example 12.9. The potential of biogas production from waste
in Uruguay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 13.1. Gas flaring and its impact on electricity generation
in Nigeria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 13.2. Toward the hybridization of gas-fired power plants
in Algeria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 13.3. Natural gas engines to power a gold mine and the
grid in the Dominican Republic . . . . . . . . . . . . . . . .
Case Example 13.4. Developing compressed natural gas for vehicles in
Africa and Latin America . . . . . . . . . . . . . . . . . . . .
Case Example 13.5. LPG’s policies in Brazil . . . . . . . . . . . . . . . . . . . . .
Case Example 13.6. Effect of low natural gas prices in Bolivia . . . . . . . .
Case Example 13.7. Diesel vs. natural gas fuelling for power distribution
in Nigeria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 13.8. The impact of natural gas consumption in Tunisia’s
output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 13.9. Decision-making tool for a LNG regasification plant
in Argentina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 14.1. Multicriteria decision analysis for the location of a
nuclear power plant in Egypt . . . . . . . . . . . . . . . . . .
Case Example 14.2. South Africa - Moving Full Cycle
on Non-Proliferation . . . . . . . . . . . . . . . . . . . . . . . .
Case Example 14.3. Argentina builds the world’s first SMR . . . . . . . . . .
Case Example 14.4. Calibration of the Nigeria Research
Reactor-1 (NIRR-1) . . . . . . . . . . . . . . . . . . . . . . . . .

. . 297

. . 298
. . 303
. . 304
. . 306
. . 307
. . 309
. . 311
. . 316
. . 319
. . 319
. . 327
. . 329
. . 331
. . 333
. . 334
. . 335
. . 336
. . 337
. . 339
. . 348
. . 350
. . 362
. . 366


×