COMSATS Institute of Information Technology
Virtual campus
Islamabad
Dr. Nasim Zafar
Electronics 1
EEE 231 – BS Electrical Engineering
Fall Semester – 2012
Lecture No: 7
IV Characteristics of PN Junctions
Kwangwoon
University
Semiconductor device lab.
Semiconductor Devices.
PN Junction
Ideal IV Characteristics: Assumptions
1)
The spacecharge region boundaries represent an a step junction.
2)
The abrupt depletion layer approximation applies.
abrupt boundaries & neutral outside of the depletion region
5)
No carriers exist in the spacecharge region.
6)
In the bulk of the diode outside the depletion region, the semiconductor is neutral.
7)
Diode operation is considered at a temperature at which all impurity atoms are ionized.
8)
Perfect ohmic contacts are made to the ends of the p and n regions.
Qualitative Description of Current Flow
Equilibrium
Reverse bias
Forward bias
v
CurrentVoltage Relationship
Quantitative Approach
Kwangwoon
University
Semiconductor device lab.
Semiconductor Devices.
CurrentVoltage Characteristics
THE IDEAL DIODE
Positive voltage yields finite current
Negative voltage yields zero current
REAL DIODE
VoltageCurrent Characteristics of a PN Junction
BuiltinPotential
Vbi
Na Nd
Vt ln
(Vbi : built in potential barrier )
ni
Boundary Conditions:
If forward bias is applied to the PN junction
np
Pn
eVa
n po exp(
)
kT
eVa
Pno exp(
)
kT
The Steady state :
• Under the idealized assumptions, no current is generated within the
depletion region; all currents come from the neutral regions.
•In the neutral n region, there is no electric field , thus in the steadystate
the solution of the continuity equation, with the boundary conditions gives:
Va
x x
) 1] exp( n
)
Vt
Ln
pn ( x )
pno [exp(
n p ( x)
xp x
eVa
n po [exp(
) 1] exp(
)
kT
Ln
Minority Carrier Distribution
( Pn ( x))
0, g ' 0, E
0
t
<nregion>
pn ( x )
V
x x
pno [exp( a ) 1] exp( n
)
Vt
Ln
n p ( x)
xp x
eVa
n po [exp(
) 1] exp(
)
kT
Ln
Steady state condition :
Steady
state
condition
:
Semiconductor Devices
Ideal PN Junction Current
J p ( xn )
eD p
dpn ( x)
dx x
eD p pno
J p ( xn )
Lp
[exp(
xn
Va
) 1]
Vt
Similarly ,
J n ( x p ) eDn
Jn ( xp )
J
dn p ( x)
dx
eDn p po
Ln
x
[exp(
xp
Va
) 1]
Vt
J n ( x p ) J p ( xn )
Js
(
J s (eVa
Vt
1)
eD p pno
eDn n po
Lp
Ln
)
Semiconductor Devices
Effect of Temperature on diode Curves:
•
Doping Levels
•
Junction Area
•
The Junction Temperature.
All other factors may be regarded as being constant. However,
temperature dependence is very strong.
Total PN Junction Current
J p ( x)
J n ( x)
eD p Pno
Lp
eDn n po
Ln
[exp(
( x xn )
eVa
) 1] exp[
], ( x
kT
Lp
x xp
eVa
[exp(
) 1] exp[
], ( x
kT
Ln
xn )
xp )
Semiconductor Devices
Semiconductor Devices
Temperature Effect
J
Js
eVa
J s exp(
1)
kT
eD p pno eDn n po
(
)
Lp
Ln
steady state : pno
ni2
, n po
Nd
ni2
Na
Js : strong function of temperature
Js
2
i
n
exp(
Eg
kT
)
Semiconductor Devices
Semiconductor Devices
Reverse BiasGeneration Current
Recombination rate of excess carriers
(ShockleyReadHall model)
Total reverse bias current density, JR
JR
In depletion region, n=p=0
Js
Et
po
2
R
R
CnC p N t (np ni )
C n ( n n' ) C p ( p
Cn C p N t ni
p' )
2
Cn n' C p p '
G
R
J gen
Js
eD p pno
eDn n po
Lp
Ln
Ei??
no
n
p
J gen
ni
e W
2 o
J gen
ni
? ?
o
ni
2 o
e Rdx
ni
e W
2 o
G
Semiconductor Devices
Forward Bias Recombination Current
Recombination rate of excess carriers
(ShockleyReadHall model)
2
R
R
CnC p N t (np ni )
C n ( n n' ) C p ( p
p' )
(np ni2 )
n ) no ( p
po ( n
p)
R = Rmax at x=o
Rmax
J rec
J rec
ni
eV
exp( a )
2 0
2kT
w
0
eRdx
eWni
eV
exp( a )
2 o
2kT
J ro exp(
eVa
)
2kT
Semiconductor Devices
Total Forward Bias Current
Total forward bias current density, J
J J rec
J rec
J
ln J rec
JD
J ro exp(
ln J D
ln J ro
ln J s
eVa
)
2kT
eVa
2kT
eVa
kT
eVa
J s exp[
1]
kT
In general, (n : ideality factor)
I
I S [exp(
eVa
) 1], (1
nkT
n
Semiconductor Devices
2)
SUMMARY
Junction Break Down
v
Breakdown Characteristics
* Zener Breakdown
* Avalanche Breakdown
Kwangwoon
University
Semiconductor device lab.
Semiconductor Devices.
Zener Breakdown
v
Highly doped junction ( narrow W)
v
Mechanism is termed tunneling or Zener breakdown
Zener effect
Doping level > 1018/Cm3
Ec
n
P
Ef
Ev
h+
x
eEc
Ef
Ev
Semiconductor Devices
Zener Effect
•
Zener Break Down: VD <= VZ:
VD = VZ, ID is determined by the circuit.
•
•
In case of standard diode the typical values of the break
down voltage VZ of the Zener effect 20 ... 100 V
Zener Diode
–
Utilization of the Zener effect
–
Typical break down values of VZ :4.5 ... 15 V
Avalanche Breakdown
v
Impact Ionization Mechanism
Mechanism
In(w) = M *
Ino
Total current during
avalanche multiplication
Critical Electric Field & Voltage at Breakdown
VB
2
E
crit
s
2eN B
Critical electric field at breakdown
in a onesided junction
The breakdown voltage will decrease
for a linearly graded junction
v
Total current during
avalanche multiplication
Semiconductor Devices