Tải bản đầy đủ (.pdf) (32 trang)

Lecture Control system design: Feedback control system characteristics - Nguyễn Công Phương

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (311.97 KB, 32 trang )

Nguyễn Công Phương

CONTROL SYSTEM DESIGN
Feedback Control System
Characteristics


Contents
I. Introduction
II. Mathematical Models of Systems
III. State Variable Models
IV. Feedback Control System Characteristics
V. The Performance of Feedback Control Systems
VI. The Stability of Linear Feedback Systems
VII. The Root Locus Method
VIII.Frequency Response Methods
IX. Stability in the Frequency Domain
X. The Design of Feedback Control Systems
XI. The Design of State Variable Feedback Systems
XII. Robust Control Systems
XIII.Digital Control Systems
sites.google.com/site/ncpdhbkhn

2


Feedback Control System
Characteristics
1. Introduction
2. Error Signal Analysis
3. Sensitivity of Control Systems to Parameter


Variations
4. Disturbance Signals in a Feedback Control
System
5. Control of the Transient Response
6. Steady – State Error
7. The Cost of Feedback
8. Control System Characteristics Using Control
Design Software
sites.google.com/site/ncpdhbkhn

3


Introduction (1)
• An open – loop system operates without
feedback & directly generates the output in
response to an input signal.
• It is highly sensitive to disturbances & to
changes in parameters of the process.
Disturbance
Desired output
response

Controller

Actuator

Process

Output


Open – loop control system (without feedback)

sites.google.com/site/ncpdhbkhn

4


Introduction (2)
• A closed – loop system uses a measurement of the input signal & a
comparison with the desired output to generate an error signal that is used
by the controller to adjust the actuator.
• Advantages:
– Decreased sensitivity of the system to variations in the parameters of the
process.
– Improved rejection of the disturbances.
– Improved measurement noise attenuation
– Improved reduction of the steady – state error of the system.
– Easy control & adjustment of the transient response of the system.
Desired
output
response

Disturbance
Error
(–)

Controller

Actuator


Sensor

Process

Actual
output
Measurement
noise

Measurement output
Feedback
Closed – loop control system with external disturbances & measurement noise
sites.google.com/site/ncpdhbkhn

5


Feedback Control System
Characteristics
1. Introduction
2. Error Signal Analysis
3. Sensitivity of Control Systems to Parameter
Variations
4. Disturbance Signals in a Feedback Control
System
5. Control of the Transient Response
6. Steady – State Error
7. The Cost of Feedback
8. Control System Characteristics Using Control

Design Software
sites.google.com/site/ncpdhbkhn

6


Error Signal Analysis (1)
Td ( s )

R( s)

Ea ( s )

( )

Gc ( s )

G( s)

Controller

Process

H ( s)

Y ( s)
N ( s)

Sensor


E ( s)  R( s)  Y ( s)
Y ( s) 

Gc ( s )G ( s )
Gc ( s )G ( s )
G( s)
R( s) 
Td ( s ) 
N ( s)
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )

 E ( s) 

Gc ( s )G ( s )
1
G( s)
R( s) 
Td ( s ) 
N ( s)
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )
L( s )  Gc ( s )G ( s )

 E ( s) 

1
G( s)

L( s )
R( s) 
Td ( s ) 
N (s)
1  L( s )
1  L( s )
1  L( s )
sites.google.com/site/ncpdhbkhn

7


Error Signal Analysis (2)
Td ( s )

R( s)

Ea ( s )

( )

Gc ( s )

G( s)

Controller

Process

H ( s)


Y ( s)
N ( s)

Sensor

L( s )  Gc ( s )G ( s )
F ( s )  1  L( s )
S ( s) 

1
1

F ( s ) 1  L( s )

C ( s) 

L( s )
1  L( s )

E ( s )  S ( s ) R ( s )  S ( s )G ( s )Td ( s )  C ( s ) N ( s )
S ( s)  C ( s)  1
sites.google.com/site/ncpdhbkhn

8


Feedback Control System
Characteristics
1. Introduction

2. Error Signal Analysis
3. Sensitivity of Control Systems to Parameter
Variations
4. Disturbance Signals in a Feedback Control
System
5. Control of the Transient Response
6. Steady – State Error
7. The Cost of Feedback
8. Control System Characteristics Using Control
Design Software
sites.google.com/site/ncpdhbkhn

9

`


Sensitivity of Control Systems to
Parameter Variations (1)
Td ( s )

R( s)

Ea ( s )

( )

Gc ( s )

G( s)


Controller

Process

H ( s)

Y ( s)
N ( s)

Sensor

Gc ( s )G ( s )
Gc ( s )G ( s )
G( s)
Y ( s) 
R( s) 
Td ( s ) 
N ( s)
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )

Gc ( s )G ( s )  1, Td ( s )  0, N ( s )  0
 Y ( s)  R( s)
sites.google.com/site/ncpdhbkhn

10



Sensitivity of Control Systems to
Parameter Variations (2)
E ( s) 

Gc ( s )G ( s )
1
G( s)
R( s) 
Td ( s ) 
N ( s)
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )
G ( s )  G ( s )  G ( s ), Td ( s )  0, N ( s )  0

 E ( s )  E ( s ) 
 E ( s ) 

1
R( s)
1  Gc ( s )[G ( s )  G ( s )]

Gc ( s ) G ( s )
R( s)
[1  Gc ( s )G ( s )  Gc ( s ) G ( s )][1  Gc ( s ) G ( s )]

Gc ( s )G ( s )  Gc ( s ) G ( s )

 E ( s ) 


Gc ( s ) G ( s )
R( s)
2
[1  L( s )]
1  L( s )  L( s )

 E ( s )  

1 G ( s )
R( s)
L( s ) G ( s )

sites.google.com/site/ncpdhbkhn

11


Sensitivity of Control Systems to
Parameter Variations (3)
Td ( s )

R( s)

Ea ( s )

( )

Gc ( s )

G( s)


Controller

Process

H ( s)

Y ( s)
N ( s)

Sensor

Y ( s)
T ( s) 
R( s)
T ( s ) / T ( s )
T ( s ) / T ( s )  ln T
S


G ( s ) / G ( s ) G ( s ) / G ( s )  ln G
System sensitivity is the ratio of the change in the system
transfer function to the change of a process transfer function
(or parameter) for a small incremental change.
sites.google.com/site/ncpdhbkhn

12


Sensitivity of Control Systems to

Parameter Variations (4)
Td ( s )

R( s)

Ea ( s )

( )

Gc ( s )

G( s)

Controller

Process

H ( s)

Y ( s)
N ( s)

Sensor

Gc ( s )G ( s )
T ( s) 
1  Gc ( s )G ( s )
 ln T
S
 ln G

Gc
G
2
T G (1  GcG )
G
1
T
 SG 
. 
.

GcG
G T
G
1  Gc ( s )G ( s )
1  GcG
sites.google.com/site/ncpdhbkhn

13


Ex.

Sensitivity of Control Systems to
Parameter Variations (5)
vout   K a vin
T   Ka

S KT a 


vin

T K a ( 1)K a K a
.

.
1
K a T
K a
 Ka
 Ka
G
T

1  Ka  1  G

 Ka
1  Ka 
T
G 

1  T 1   Ka
1  Ka 


vin

 Ka

 Ka


vout

vout



vin

 Ka
G
1  K a (   1)

vout

 Ka
1  K a (   1)
sites.google.com/site/ncpdhbkhn

14


Sensitivity of Control Systems to
Parameter Variations (6)

Ex.

T

 Ka

G

1  Ka  1  G

vin

 Ka
G
1  K a (   1)

vout

S KT a  SGT S KGa
1
G
2
1  K a (   1)
1
T G (1  G )
G
1


STG 
. 
.

 Ka
G
1  Ka 

G T
G
1 G 1
1  K a (   1)
1 G

S KGa

1
K a
2
G K a [1  K a (   1)]

.

.
K a G
K a

 S KT a 

Ka
1

 Ka
1  K a (   1)
1  K a (   1)

1  K a (   1)
1

1
.

1  Ka 
1  K a (   1) 1  K a 
sites.google.com/site/ncpdhbkhn

15


Ex.

Sensitivity of Control Systems to
Parameter Variations (7)
S KT a

vin

1

 Ka

vout

System sensitivity is the ratio of the change in the system
transfer function to the change of a process transfer function
(or parameter) for a small incremental change.

vin


 Ka

vout



S KT a 

1
1  Ka 

vin

sites.google.com/site/ncpdhbkhn

 Ka
G
1  K a (   1)

vout

16


Feedback Control System
Characteristics
1. Introduction
2. Error Signal Analysis
3. Sensitivity of Control Systems to Parameter
Variations

4. Disturbance Signals in a Feedback Control
System
5. Control of the Transient Response
6. Steady – State Error
7. The Cost of Feedback
8. Control System Characteristics Using Control
Design Software
sites.google.com/site/ncpdhbkhn

17


Disturbance Signals
in a Feedbak Control System (1)

E ( s) 

1
G( s)
L( s )
R( s) 
Td ( s ) 
N ( s)
1  L( s )
1  L( s )
1  L( s )
R ( s )  N ( s )  0, S ( s ) 

1
1  L( s )


G( s)
 E ( s)  
Td ( s )   S ( s )G ( s )Td ( s )
1  L( s )

sites.google.com/site/ncpdhbkhn

18


Ex.

Disturbance Signals
in a Feedbak Control System (2)
Va ( s )

E ( s)

( )

1 I a ( s)
Km
Ra

Td ( s )
Tm ( s ) (  )

Motor back electromotive force
/>

1 ( s)
TL ( s ) Js  b

Kb

1
1
Js  b
E ( s) 
Td ( s ) 
Td ( s )
1
1
Js

b

K
K
/
R
b m
a
1  Kb
Km
Ra
Js  b

Td ( s )  D / s
 lim E (t )  lim sE ( s )  lim s

t 

s 0

s0


sites.google.com/site/ncpdhbkhn

1
D
.
Js  b  K b K m / Ra s

D
 0 (  )
b  K b K m / Ra
19


Ex.

Disturbance Signals
in a Feedbak Control System (3)
Va ( s )

lim E (t ) 

t 


E ( s)

( )

D
b  K b K m / Ra

1 I a ( s)
Km
Ra

Td ( s )
Tm ( s ) (  )

1 ( s)
TL ( s ) Js  b

Motor back electromotive force

R( s)

Ea ( s )

Ka

(  ) Amplifier

Km
(  ) Ra


Vt ( s )

Kb

Td ( s )
Tm ( s ) (  )

1 ( s)
TL ( s ) Js  b

Kb

Kt

1
Tachometer
 Ra
Js  b
 lim E (t ) 
D
E ( s) 
Td ( s )
t

Ka Km Kt
K K
Kb 
1 
1 a m .
K


 t

Ra Js  b 
Ka 
sites.google.com/site/ncpdhbkhn

20


Disturbance Signals
in a Feedbak Control System (4)
Td ( s )

R( s)

Ea ( s )

( )

Gc ( s )

G( s)

Controller

Process

H ( s)


Y ( s)
N ( s)

Sensor

E ( s) 

Gc ( s )G ( s )
1
G( s)
R( s) 
Td ( s ) 
N ( s)
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )
1  Gc ( s )G ( s )

sites.google.com/site/ncpdhbkhn

21


Feedback Control System
Characteristics
1. Introduction
2. Error Signal Analysis
3. Sensitivity of Control Systems to Parameter
Variations
4. Disturbance Signals in a Feedback Control
System

5. Control of the Transient Response
6. Steady – State Error
7. The Cost of Feedback
8. Control System Characteristics Using Control
Design Software
sites.google.com/site/ncpdhbkhn

22


Control of the Transient
Response (1)
T ( s)
d

Tm ( s ) (  )
Km
1 ( s) 1  ( s)
Ra
s
TL ( s ) Js  b
( )
Load
Armature
K
Back electromotive force b

Va ( s )

Km

 ( s)

Va ( s ) s[( Js  b) Ra  K b K m ]

 G( s) 

Km
( s)

Va ( s ) [( Js  b) Ra  K b K m ]

Km
Ra b  K b K m
K1


Ra J
s  1  1s  1
Ra b  K b K m
Va ( s ) 

 ( s) 

k2 E
s

K1 k2 E
.
  (t )  K1k2 E (1  e  t / 1 )
 1s  1 s

sites.google.com/site/ncpdhbkhn

23


Control of the Transient
Response (2)
T ( s)
d

 (t )  K1k2 E (1  e  t / 1 )

1 

Tm ( s ) (  )
Km
1 ( s) 1  ( s)
Ra
s
TL ( s ) Js  b
( )
Load
Armature
K
Back electromotive force b

Va ( s )

Ra J
Km

, K1 
Ra b  K b K m
Ra b  K b K m

k E
R( s)  2
s Ea ( s )

KaG( s)
( s)

R( s ) 1  K a KtG ( s )


  (t ) 

K a K1
 1s  1  K a K t K1

Ka

(  ) Amplifier

Km
(  ) Ra

Vt ( s )

Td ( s )
Tm ( s ) (  )


1 ( s)
TL ( s ) Js  b

Kb

Kt
Tachometer

 K a K t K1   k2 E 
 K a K t K1  
K a K1k2 E 
1

exp

t

1

exp
t 





1  K a K t K1 
1
Kt 

1




sites.google.com/site/ncpdhbkhn

24


Control of the Transient
Response (3)
1

0.8

Speed

With feedback
Without feedback
0.6

0.4

0.2

0

0


2

4

6

8

10
Time (s)

12

sites.google.com/site/ncpdhbkhn

14

16

18

20

25


×