Tải bản đầy đủ (.pdf) (8 trang)

Inbreeding depression analysis for yield and some of its associated characters in late sown condition in bread wheat (Triticum aestivum L.em. Thell)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (458.52 KB, 8 trang )

Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 1986-1993

International Journal of Current Microbiology and Applied Sciences
ISSN: 2319-7706 Volume 7 Number 07 (2018)
Journal homepage:

Original Research Article

/>
Inbreeding Depression Analysis for Yield and Some of
its Associated Characters in Late Sown Condition in
Bread Wheat (Triticum aestivum L.em. Thell)
Ritu Choudhary*, Hoshiyar Singh, Chhagan Lal and Darshita Bhat
Seed Testing Laboratory, Chittorgarh, (Raj) India
*Corresponding author

ABSTRACT
Keywords
Inbreeding
,Depression,
Bread wheat,
Yield,
Late sown

Article Info
Accepted:
15 June 2018
Available Online:
10 July 2018

In order to study inbreeding depression for yield and some of its associated characters in


bread wheat (Triticum aestivum L.em. Thell) over the environments, the present
experiment was carried out performing diallel analysis following Griffing (1956) Method
II Model I. Ten genetically diverse parents were selected and crossed in half diallel fashion
excluding reciprocals. These parents were evaluated along with their 45 F 1’s and 45 F2’s in
a randomized block design with 3 replications over three environments namely, normal
sown (E1), late sown (E2) and very late sown (E3) environments created by using three
different dates of sowing. In the present experiment significant inbreeding depression was
reported for different traits in all the three environments. Even though, none of the cross
displayed significant inbreeding depression in desired direction for all the characters and in
all the environments but HD 2967 X DBW 88 was found as desirable cross combination in
E3 environment as it showed desirable (significant negative) inbreeding depression for
grain yield per plant and some other traits.

Introduction
Wheat one of the most important food crop
and cereal crop remains the third most
produced food grain in world a cereal crop.
There is noteworthy production in the
production and productivity of wheat but still
it needs much more improvement the yield
and quality of wheat as it is a staple good of
more than one billion people and still the
population is burgeoning. The fundamental
objective of most of plant breeding
programmes remain to increase yield of

concerned crop by developing improved
varieties through heterotic expression which is
expected to decline in F2 generation due to
decrease in heterozygosity and referred as

inbreeding depression.
The estimates of heterosis and inbreeding
depression together provide information about
the type of gene action involved in the
expression of various quantitative traits. The
mating between more closely related
individuals is known as inbreeding. The
closest form of inbreeding is self-fertilization.

1986


Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 1986-1993

The genetic effects of inbreeding on crossfertilizing crops are as follows (Falconer,
1981).
Homozygosity is increased which results in
fixation of genes. The recessive
deleterious genes come to the surface
due to release of hidden genetic
variability from heterozygotes. These
recessives are exposed to natural
selection.
The heterozygosity is reduced rapidly because
inbreeding results in elimination of
hybrids from a population and replaces
them with pure types. Thus, inbreeding
leads to purity of types.
The populations mean is reduced due to
decrease in the number of hybrid

genotypes, which have more number of
dominant genes.
Genetic correlation increases between close
relatives due to increase in the
prepotency, which increases with
homozygosity.
The

variability, which is hidden in
heterozygote, is made free through
inbreeding. Thus, the total variability is
increased without selection. With
selection the variability is reduced
towards the direction of selection.

The inbreeding depression refers to decrease
in fitness and vigour due to inbreeding. The
degree of inbreeding is measured by the
inbreeding coefficient. Inbreeding depression
results are due to fixation of unfavorable
recessive genes in F2, while in case of
heterosis the unfavorable recessive genes of
one line or parent are covered by favorable
dominant genes of other parent. The fixation
of all favorable dominant genes in one
homozygous line is impossible due to linkage
between some unfavorable recessive and
favorable dominant genes. In the present study

Inbreeding depression is studied and analysis

under three environments viz. normal. Late
and very late sown conditions which are
indicated as E1, E2 and E3 respectively.
Materials and Methods
On the basis of genetic diversity and their
stability for different yield traits, ten diverse
wheat varieties selected as the experimental
material and crossed in diallel mating fashion
excluding reciprocals to obtain 45 F1s in rabi
2014-2015. In Rabi 2015-16 ten genotypes
along with their 45 F1’s and 45 F2’s (obtained
at IARI, regional station, Wellington, TN
during kharif 2015) progenies were evaluated
using Randomized Block in 3 replications
over three environments created by three
different dates of sowing viz. 15 Nov., 5 Dec.
and 25 Dec. at Agricultural Research Farm of
RARI, Durgapura.
Observations were recorded on days to
heading (Days), days to maturity (Days), grain
filling period (Days), plant height (cm.), flag
leaf area (cm2), number of tillers per plant,
spike length (cm), number of grains per spike,
1000-seed weight (g), harvest index (%) and
grain yield/plant (g). Mean values over
selected plants were used for statistical
analysis.The mean values of different F1s and
F2s for all characters were subjected for
analysis of inbreeding depression as per cent
increase or decrease in the mean value of F2

over F1.
Results and Discussion
The heterotic expression normally decreases
in F2 generation as the dominance or
dominance interaction effects dissipate in this
generation due to reduced heterozygosity,
resulting into inbreeding depression. In
present experiment, significant inbreeding
depression was reported for different traits in
all the three environments.

1987


Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 1986-1993

Table.1.1 Estimates of inbreeding depression

P1XP2
P1XP3
P1XP4
P1XP5
P1XP6
P1XP7
P1XP8
P1XP9
P1XP10
P2XP3
P2XP4
P2XP5

P2XP6
P2XP7
P2XP8
P2XP9
P2XP10
P3XP4
P3XP5
P3XP6
P3XP7
P3XP8
P3XP9
P3XP10
P4XP5
P4XP6
P4XP7
P4XP8
P4XP9
P4XP10
P5XP6
P5XP7
P5XP8
P5XP9
P5XP10
P6XP7
P6XP8
P6XP9
P6XP10
P7XP8
P7XP9
P7XP10

P8XP9
P8XP10
P9XP10
Average

Days to
Heading
E1

Days to
Heading
E2

Days to
Heading
E3

Days to
Maturity
E1

Days to
Maturity
E2

Days to
Maturity
E3

-2.331*

-0.962
-1.095
1.350
3.084**
1.396
4.000
-0.457
0.826
2.548*
-1.608
-0.541
0.172
2.416*
-0.463
0.573
0.000
-0.728
0.701
1.900
1.429
-0.236
0.420
0.126
1.809
0.299
-1.571
0.794
0.823
1.317
-0.261

-0.704
0.885
0.919
1.377
1.396
-1.667
-1.293
-0.661
-1.708
-0.008
-1.716
-0.400
-0.707
0.172
0.251

2.990*
3.856*
2.724*
3.505*
2.288**
2.451
3.197*
2.851
1.871*
2.570
3.962*
2.603***
2.767*
3.548

2.642
2.857
3.996**
2.510
3.225
2.347
3.302
3.318*
3.391*
2.780
2.724
2.161
2.439
2.315
3.070
2.729
2.666
3.330
2.315
4.245
5.508***
7.583**
9.019**
-7.263**
3.982
1.990
3.389
5.136*
2.279
2.358

2.290
3.032***

1.987
0.852
2.243
1.658
1.429
1.105
-0.067
2.281
2.138
1.657
0.751
2.139
1.596
1.563
1.992*
3.191*
1.524
0.541
2.131
2.094
1.613
2.122*
3.134**
2.162*
0.992
1.093
1.130

1.483
2.247
0.939
0.532
1.124
1.656
1.648
1.053
2.775
1.070
1.413
1.905
2.968
1.124
2.377
1.657
2.551
1.124
1.666***

-0.763
-1.305
0.055
-0.524
-1.240
-1.378
1.416
0.545
0.254
-0.992

-0.775
-0.182
1.326
1.818
-0.353
-0.771
-0.088
-0.512
0.508
0.850
-1.238
-1.028
-0.126
-4.810**
-1.235
-0.838
0.787
-0.942
-0.773
-1.064
0.549
0.552
-0.811
-0.220
1.429
0.000
-0.257
-1.282
0.251
-1.676

0.741
-1.667
0.249
-0.826
-1.312
-0.400

-1.246
-0.901
-1.223
-1.488
-1.282
-1.250
-1.266
1.458
-0.307
-0.904
1.994
2.609
0.619
0.197
2.849
-1.112
6.497**
0.306
3.768
2.128
0.000
-0.909
1.739

0.000
3.395**
-0.901
-1.307
0.912
-0.901
2.586
3.254
-0.331
-0.926
-1.603
6.079*
-1.235
-1.526
-0.612
2.286
-0.965
0.872
-0.664
0.301
-0.619
2.882
0.569

-0.719
-1.071
-1.460
-1.060
-1.852
-1.873

-1.449
-1.418
-0.719
-0.364
-0.362
-2.290
-1.838
-1.128
-1.103
-1.083
-1.465
-1.792
-1.413
-1.449
-1.852
-2.281
-2.273
-2.239
-0.692
-1.034
1.767
-0.730
-1.429
-0.348
-1.370*
-1.730
-0.690
-1.053
-0.678
-1.370

-1.014
-1.003
-0.304
-0.699
-1.481
-1.429
-1.056
-1.515
-1.465
-1.186*

1988

Grain
Filling
Period
E1
0.927
2.243
-1.442
2.969
0.120
2.005
0.701
2.702
-2.179
-0.306
1.726
-2.547
0.899

3.220
3.500
-0.879
3.842
3.408
4.321
-0.736
2.342
0.178
4.648*
-0.494
2.158
3.593
1.338
-4.430
3.130
3.017
4.552
-1.183
5.969*
3.395
2.050
1.205
0.401
9.818*
-8.004*
17.813**
9.411
0.784
4.488

3.119
-2.458
2.078

Grain
Filling
Period E2

Grain Filling
Period E3

-6.161
-6.738
-7.959**
-9.650**
-7.388
-5.621*
-7.609
-7.822**
-9.484
-5.583*
-6.167
-5.379
-6.982*
-6.660
-4.949
-2.802
-5.445
-7.889
-5.860

-5.323*
-10.406**
-6.113*
-7.692*
-7.005*
-5.670
-7.571**
-9.353
-5.068
-3.487
-7.538
-7.053
-7.662**
-6.927**
-9.255**
-11.452**
-0.471
-7.020
-5.065
-7.535*
-11.110**
-5.149
-4.208
-6.765
-8.397
-6.596*
-6.715***

-26.583**
23.428**

-60.290***
-19.378**
-11.658*
-38.045***
-8.366
1.042
-25.908***
-50.032***
-47.209***
-39.516***
-45.004**
-0.307
-33.201***
-12.006
1.809
18.692**
3.596
-5.892
-2.679
1.364
-2.714
-11.901
15.862**
-80.092***
-67.012***
-15.338
-37.281***
-62.695***
-71.734***
-8.501

-11.317**
-46.530***
-40.261***
-45.740***
2.557
-46.316**
-43.158**
-3.326
-13.444**
-23.001**
-40.173**
-26.707**
-28.185***
-19.955***


Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 1986-1993

Table.2 Estimates of inbreeding depression
Plant Height
cm E1
P1XP2
P1XP3
P1XP4
P1XP5
P1XP6
P1XP7
P1XP8
P1XP9
P1XP10

P2XP3
P2XP4
P2XP5
P2XP6
P2XP7
P2XP8
P2XP9
P2XP10
P3XP4
P3XP5
P3XP6
P3XP7
P3XP8
P3XP9
P3XP10
P4XP5
P4XP6
P4XP7
P4XP8
P4XP9
P4XP10
P5XP6
P5XP7
P5XP8
P5XP9
P5XP10
P6XP7
P6XP8
P6XP9
P6XP10

P7XP8
P7XP9
P7XP10
P8XP9
P8XP10
P9XP10
Average

2.158
-1.534
-0.676
-1.093
-0.313
-1.240
1.046
3.368*
-1.417
6.490
5.002**
3.948
-1.426
-5.376***
8.172***
3.266*
-11.358*
-1.587
-12.207***
6.241***
-1.698
1.116

-0.218
1.905
-0.080
2.148
0.133
-1.250
2.926
0.830
1.919
-0.806
1.924
10.432**
-10.161***
-1.435
2.985**
0.537
2.653*
2.188*
3.975*
5.426**
2.660*
4.593*
1.117
0.909

Plant
Height cm
E2
-1.176
-1.008

-1.772
-2.518
-0.658
-0.809
-2.308
-1.328
-1.219
-1.379
-15.641**
-3.115
-2.253
-3.529**
-1.849
-1.011
-1.001
-0.977
-1.310
-1.447
-0.764
-1.279
-0.816
-1.419
-1.071
-1.093
-1.081
-2.720
-1.330
-1.911
-0.697
-0.606

-1.492
-0.832
-2.226
-2.074
-1.698
-0.447
-0.287
-2.000
-0.293
-1.327
-0.972
-1.119
-1.492
-1.706*

Plant
Height cm
E3
2.101*
0.608
-1.366
3.496*
3.646*
-1.587
1.112
-1.159
-2.114
0.638
1.558
0.959

-0.210
-3.550
1.200
-1.681
-4.580
-1.139
-0.725
0.949
-1.673
1.139
1.244
1.392
1.326
-0.050
1.375
0.803
1.078
1.926
1.061
1.983
0.789
-3.248
-0.995
-2.133
-0.412
-0.461
-9.301
2.997
-0.815
4.102

0.077
-1.393
1.052
0.099

Flag Leaf
Area cm² E1
7.540
5.849
13.834
11.292
13.766**
11.300
24.968***
20.352*
14.356
20.424
17.286
13.945
9.904**
6.756
17.881
19.253**
6.502
6.218
8.217
27.332***
13.697
21.365
26.019**

5.449
-1.791
31.773***
22.235*
4.814
-5.815
-3.110
26.877***
33.148*
35.971**
31.209***
6.275
15.784
7.000
12.136
1.729
27.691*
9.142
34.177**
8.447
28.698***
-15.624*
16.627***

1989

Flag Leaf
Area cm²
E2
4.352

1.744
-2.959
5.509
0.000
3.258
4.555
1.752
3.865
5.265
1.940
16.357
3.470
-6.125
4.522
5.525
2.528
5.699
4.678
3.705
3.449
3.696
1.957
18.032
2.506
12.504
6.099
3.696
5.525
5.740
3.292

2.006
1.123
11.376
6.242
3.348
2.482
7.067
-4.602
2.390
7.838
2.805
8.046
3.462
6.210
4.256*

Flag Leaf
Area cm²
E3
8.083
7.485
10.551
8.667
9.706
-2.130
10.521
10.194
1.390
-9.583
1.931

10.563
8.073
-41.077
5.306
-12.876
7.884
14.776
-9.880
-24.904
8.824
8.112
9.028
2.636
15.219
9.107
10.572
5.496
5.523
-10.664
-18.535
6.985
-3.477
2.282
-2.674
-18.569
-8.576
-12.407
-14.912
10.256
7.892

13.680
10.302
10.465*
10.156
2.649

Tillers/
Plant E1

Tillers/
Plant E2

Tillers/
Plant E3

14.286
18.875
50.000
3.138
12.500
18.182
8.333
-28.571
-24.388
-12.500
10.048
24.471
8.056
-12.500
7.619

16.000
9.167
26.435
-16.667
-37.619*
-13.636
4.167
25.000
-7.066
11.111
8.333
-12.676
-2.857
9.524
0.111
0.000
0.000
9.091
0.000
13.995
-15.789
16.667
10.000
14.729
7.407
8.696
-23.333
21.466
12.500
16.123

4.573

6.129
16.780
13.913
5.950
14.702
20.524
25.208
15.067
14.610*
24.806
16.747
21.585
27.654
22.321
13.255
7.612
23.993
11.614
14.556
17.232
24.027
10.636
18.280
20.788
21.504
9.097
15.939
19.786

17.097
19.908
15.476
18.034
20.755
15.647
28.054
16.760
5.751
11.436
18.636
17.032
16.803
8.059
29.466**
18.919
22.910
17.115**
*

14.170
7.909
29.923
7.742
-14.870
24.675
18.153
-1.732
30.720
48.987*

12.309
24.620
0.645
22.374
24.348
25.112
29.235
7.720
-27.778
12.425
15.625
29.140
1.201
8.007
-4.407
28.314
27.803
9.082
-19.134
13.713
-10.819
17.619
32.807
26.667*
0.486
2.130
21.442
-6.803
-2.644
29.243

20.695
0.731
-2.002
30.901*
-2.136
13.906*
**


Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 1986-1993

Table.3 Estimates of inbreeding depression
Spike
Length E1

Spike
Length E2

Spike
Length E3

Grains/
Spike E1

Grains/ Spike
E2

Grains/
Spike E3


P1XP2
P1XP3
P1XP4
P1XP5
P1XP6
P1XP7
P1XP8
P1XP9
P1XP10

-6.733
-21.846**
-19.412
-5.640
-2.873
-2.083
-13.932*
-28.390
-37.309**

16.686
21.891
12.519
19.243**
6.732
15.968
19.524*
13.921
4.488


-21.949*
-19.501
-8.767
18.400
4.268
6.859
-0.811
-9.971
4.744

5.100
1.480
1.722
2.941
2.795*
5.729
36.808***
-11.331**
-8.159*

2.918
1.607
2.568
-1.994
1.714
2.554
1.598
2.382
-8.681**


P2XP3
P2XP4
P2XP5
P2XP6
P2XP7
P2XP8
P2XP9
P2XP10
P3XP4
P3XP5
P3XP6
P3XP7
P3XP8
P3XP9
P3XP10
P4XP5
P4XP6
P4XP7
P4XP8
P4XP9
P4XP10
P5XP6
P5XP7
P5XP8
P5XP9
P5XP10
P6XP7
P6XP8
P6XP9
P6XP10

P7XP8
P7XP9
P7XP10
P8XP9
P8XP10
P9XP10
Average

-14.950
-8.811
-27.702
-28.079*
-7.447
-31.011
-4.781
-12.349
-4.647
1.509
-14.867
-17.713
-7.632
1.464
-34.179*
-15.793
10.617
2.865
2.349
-21.450**
-47.558***
-15.920*

-16.183*
-25.321*
-17.679
-9.804
-11.547
11.398
-9.656
-7.887
-24.727*
13.282
3.670
-48.992**
-6.554
-21.177*
-13.015***

20.288*
9.748
12.056
2.837
7.309
-4.813
14.896
10.509
2.856
6.592
15.042
15.816*
7.309
13.067

0.102
10.842*
-2.443
7.731
6.267
23.830**
14.530
14.244
3.363
20.897*
13.882
10.506
6.454
18.070*
32.410*
21.300*
2.990
14.262
-9.234
11.368*
16.147
28.201*
12.037***

15.671
21.420**
3.477
0.187
11.830
13.060

9.955
28.350*
-3.374
-5.754
-7.598*
14.368
6.265
13.723
-14.587
-6.996
10.797
7.145
12.613
8.798
10.919*
11.271
10.113
23.830**
20.650
12.049
33.212**
23.408*
21.252**
-31.840*
76.100***
28.045
10.673*
15.776
6.220
21.858

10.013***

0.041
-4.826
3.872**
3.667
11.440
0.208
-1.459
-4.786
19.658***
0.033
2.121
3.472
1.750
2.150
1.935
3.842
3.605*
3.332
1.787
1.998
2.088
2.277
1.861
1.840
1.431
8.777**
1.750
3.960*

3.391
3.491
2.080
3.708
2.207
1.763
1.385
2.137
3.178*

1.476
3.042
2.385
2.134
2.090
3.241
1.545
-2.625
0.962
6.719
1.480
0.650
2.980
2.708
1.408
2.130
2.472
2.189
1.577
3.519

3.841
1.729
-5.542**
2.516
2.798
-32.614***
3.038
3.253
19.469**
2.408
-1.930
3.637
0.620
3.584
1.503
2.524
1.332

1990

-13.777
-20.083*
-9.479
-9.255
-12.405
-18.894*
-7.713
-11.270**
-10.524


1000-grain
Weight (g)
E1
2.030
1.736
4.535
1.402
-0.094
2.813
2.268
5.391
4.656

1000-grain
Weight (g)
E2
7.383
4.909
6.484
5.979
7.189
7.745
7.007*
8.384*
8.342

1000-grain
Weight (g)
E3
16.086**

22.558**
19.922**
18.431*
16.424*
14.387
10.311*
15.049**
17.398**

-9.803
-8.296
-19.628**
-8.912*
-23.221**
-8.347
-7.561
-18.946***
-5.962
-10.034*
-5.519
-11.316*
-9.880*
-11.450
-10.687**
-6.130
-9.286
-9.351
-9.138***
-11.031*
-12.092*

-8.190*
-5.024
-8.682*
-8.488*
-16.622*
-10.901*
-5.493
-10.699**
-17.038**
-10.720**
-8.574*
-7.186
-10.658**
-8.402
-5.540
-10.217***

5.688
2.440
5.167*
3.547
7.941
-8.011
7.421
3.436
7.582
0.640
4.429*
1.991
1.458

-2.076
1.894
5.811
8.339***
1.048
1.796
3.225
2.167
3.986
2.552
4.647
4.097
1.024
7.230
3.757
0.909
3.169
2.645
6.506
2.180
2.320
3.505
2.319
3.181

8.372
9.998
8.719
7.872
8.448

5.946
8.488
9.921
8.924
7.128*
8.587*
10.360
9.303
6.444
9.222
5.607
7.201
6.039
3.966
8.945
8.617
2.580
4.639
8.762*
3.459
9.598*
4.866
5.421
7.764***
6.379*
6.527
8.227*
8.331*
12.499
6.545*

8.266
7.391

18.780**
18.298
10.901
17.295
22.991***
15.406*
20.158*
15.321*
21.916*
15.431
16.321*
21.568*
21.179*
16.011**
25.023**
12.225**
18.190**
15.769*
17.163
18.061*
17.832
25.689**
18.972**
12.643
21.345**
21.033*
19.159

18.412
16.346
24.097*
22.545**
20.428**
16.577*
17.886*
14.090**
17.556**
17.957***


Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 1986-1993

Table.4 Estimates of inbreeding depression

P1XP2
P1XP3
P1XP4
P1XP5
P1XP6
P1XP7
P1XP8
P1XP9
P1XP10
P2XP3
P2XP4
P2XP5
P2XP6
P2XP7

P2XP8
P2XP9
P2XP10
P3XP4
P3XP5
P3XP6
P3XP7
P3XP8
P3XP9
P3XP10
P4XP5
P4XP6
P4XP7
P4XP8
P4XP9
P4XP10
P5XP6
P5XP7
P5XP8
P5XP9
P5XP10
P6XP7
P6XP8
P6XP9
P6XP10
P7XP8
P7XP9
P7XP10
P8XP9
P8XP10

P9XP10
Average

Harvest
Index
(%) E1

Harvest
Index (%)
E2

Harvest Index (%) E3

1.340
2.230
-4.229
5.271
3.994
0.849
5.754
5.189
3.151
-0.422
4.308
-3.397
-3.814
1.947
-1.658
0.094
9.401

0.879
4.789
7.115
-4.343
9.681
6.735
-1.196
-6.501
3.964
1.664
-4.163
5.816
11.772*
5.550
5.386
8.845**
8.042*
3.623
3.742
1.500
5.092
8.035
3.966
-0.740
7.639
-5.438
3.055
3.540
3.175


3.168
3.120
2.055
1.549
3.067
12.906
2.266
7.861
8.275
3.616
4.489
9.599
7.343
9.040
4.793
21.385**
-3.962
23.767**
-20.958*
26.315**
-1.841
4.920
3.755
-3.249
-4.656
27.338***
7.450
-15.907*
-14.050
9.392

1.549
15.453**
-11.261*
15.126**
0.273
8.259
1.544
17.733**
-13.836
34.541**
-27.234*
7.444
-11.047*
10.022*
2.601
4.847***

-7.945
-6.937
-10.056
-6.888
-7.713
-8.608
-4.317
-12.067*
-8.715*
-11.445
-10.839*
-11.571
-7.808

-11.466
-9.037
-11.899
-11.954
-6.989
-8.226*
-14.448
-12.233*
-10.087
-9.435
-10.202*
-8.455
-0.069
-12.890*
-11.788*
-8.973
-10.309*
-10.704*
-11.860*
-17.996*
-10.272
-9.086
-10.465
-3.695
-8.223
-6.613*
-4.532
-14.127**
-16.321
-9.722

-11.511*
-15.499*
-9.924***

1991

Grain
Yield/
Plant
(g) E1
-0.222
5.994
7.097
1.944
8.154
4.639
3.052
-1.637
-7.004
17.026*
9.540
2.840
12.150
10.020
-4.045
14.875
-1.704
9.944
12.446
3.371

-5.029
-3.607
5.959
-0.737
3.509
2.859
4.176
8.919
5.017
6.229
5.198
-0.632
4.969
4.744
0.441
0.000
10.920
6.623
9.998
2.094
8.511
8.633
-0.559
-2.837
-3.023
4.243*

Grain
Yield/
Plant (g)

E2
10.13
22.07**
-7.4
13.85
13.83*
13.8
18.34**
30.59**
23.09**
22.67**
14.55
21.17*
22.88**
20.44*
13.96
28.27**
14.86
20.62**
18.13
13.12
17.12*
20.93**
30.93**
24.21**
14.94
14.35*
7.3
11.17
19.1*

15.7
24.79**
3.73
29.26**
17.49**
11.79
18.15*
16.46
18.34*
16.1
9.72
17.82*
5.97
11.49
9.97
20.99**
17.978***

Grain
Yield/
Plant (g)
E3
8.634
3.102
-14.309
10.711
10.021
5.606
16.780
16.377

14.457**
22.737
17.089*
14.313
20.707
26.320*
18.239*
17.815
14.032
12.312
17.648**
13.624
22.134*
17.697
16.424
16.754
22.942
18.374
14.300
11.164
10.532
5.432
12.495
15.199
16.388*
15.357*
28.010*
18.599
22.946
17.441

-25.012*
47.290**
-8.964
18.600*
18.387
18.199
19.118*
14.967***


Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 1986-1993

Each cross exhibited significant inbreeding
depression for at least one or more traits in
one or more traits, however none of the cross
exhibited consistency for each character over
each environment. For example the cross Raj
3765 X HD 2967 for days to heading in E1
and E2 environments and plant height in E3
environment showed desirable significant
inbreeding depression but in other cases it
showed inbreeding depression either in
desirable direction but non-significant or in
undesirable direction. Cross Raj 3765 X
DBW 621-50 for days to heading in E2
environment, plant height in E3 environment
and spike length in E3 environment showed
desirable significant inbreeding depression
but in other cases it also showed inbreeding
depression either in desirable direction but

non-significant or in undesirable direction.
The same pattern was displayed by other
crosses also for exhibition of inbreeding
depression. Such results were also reported
for different crosses and characters. However
the cross HD 2967 X DBW 88 displyed
desirable (significant negative) inbreeding
depression for grain yield per plant and some
other traits viz. spike length (cm) and number
of grains per spike. Similar findings were also
reported by Sharma and Menon (1996), Joshi
et. al. (2003b), Prakash Ved and Joshi (2003),
Singh et. al. (2004), Singh et al., (2012),
Kumar and Kerkhi (2014), Kumar et al.,
(2015), Bhardwaj (2017) and Yadav 2017).
The negative inbreeding depression may
result from the advantage of population
buffering, which may occur in F2 generation
due to the segregation of genes or sometimes
because of formation of superior gene
combinations, such a situation is valuable in
conventional breeding programme.
References
Anonymous, 2015. Population growth (annual
%). World Bank. Retrieved 20 January

2015.
Bhardwaj, R Genetic Studies for Yield and its
Contributing Attributes in Bread
Wheat (Triticum aestivum L. em

Thell) Over Environments. Thesis
(Unpub.) submitted to S. K. N. A. U.
Jobner.
Falconer, D.S. 1981. Introduction to
quantitative
genetics,
2nd
ed.
Longman, New York.
Grafius, J.E. 1959. Heterosis in barley.
Agron. J., 51 (9): 551-554.
Grifing, B. 1956. Concept of general and
specific combining ability in relation
to diallel crossing system. Aust. J.
Biol. Sci., 9 (4): 463-493.
Joshi, S.K., Sharma, S.N., Singhania, D.L.
and Sain, R.S. 2003b. Hybrid vigour
over environments in a ten parent
diallel cross in common wheat.
SABRAO. J. Br. Genet., 35: 81-91.
Kumar, A.; Harshwardhan; Kumar, A. and
Prasad,
B.
(2015).
Heterotic
performance of diallel F1 crosses over
parents for yield and its contributing
traits in bread wheat. J. Hill Agri., 6
(1): 237-245.
Kumar, D. and Kerkhi, S.A. 2014. Heterosis

studies for yield component traits and
quality in spring wheat (Triticum
aestivum L.). Supplement Genet. and
Pl. Br., 9 (4): 1725-1731.
Prakash, V. and Joshi, P. 2003. Genetics of
metric traits in spring wheat under
normal and late sown environments.
Crop Improv., 30 : 177-187.
Singh, H.; Sharma, S.N. and Sain, R.S. 2004.
Heterosis studies for yield and its
components in bread wheat over
environments. Hereditas. 141: 106114.
Singh, V.; Krishna, R.; Singh, S. and Vikram,
P. 2012. Combining ability and
heterosis analysis for yield traits in
bread wheat (T. aestivum L.).Indian J.
Agric. Sci., 82: 11.

1992


Int.J.Curr.Microbiol.App.Sci (2018) 7(7): 1986-1993

Sharma, S.N. and Menon, U. 1996. Heterosis
over environments in bread wheat.
Crop Improv., 23: 225-228.
Yadav, J. 2017. Genetic architecture of yield

and its associated traits in bread wheat
(Triticum aestivum L. em. Thell.) over

environments.
Thesis
(Unpub.)
submitted to S. K. N. A. U. Jobner.

How to cite this article:
Ritu Choudhary, Hoshiyar Singh, Chhagan Lal and Darshita Bhat. 2018. Inbreeding Depression
Analysis for Yield and Some of Its Associated Characters in Late Sown Condition in Bread
Wheat (Triticum aestivum L.em. Thell). Int.J.Curr.Microbiol.App.Sci. 7(07): 1986-1993.
doi: />
1993



×