Tải bản đầy đủ (.pdf) (8 trang)

Solution manual for microelectronics circuit analysis and design 4th edition by neamen

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (164.02 KB, 8 trang )

Solution Manual for Microelectronics Circuit Analysis and Design 4th Edition by Neamen
Full file at />Microelectronics: Circuit Analysis and Design, 4th edition

Chapter 1
By D. A. Neamen
Exercise Solutions
______________________________________________________________________________________

Chapter 1
Exercise Solutions
EX1.1
⎛ − Eg ⎞
ni = BT 3 / 2 exp ⎜

⎝ 2kT ⎠

GaAs: ni = ( 2.1× 1014 ) ( 300 )



−1.4
⎟ or ni = 1.8 × 106 cm −3
exp ⎜

6
⎜ 2 ( 86 × 10 ) ( 300 ) ⎟



3/ 2




− 0.66
⎟ or ni = 2.40 × 1013 cm −3
exp⎜⎜
−6

(
)
2
86
10
300
×


______________________________________________________________________________________

(

)

Ge: n i = 1.66 × 1015 (300)

3/ 2

(

)


EX1.2
(a) (i)

n o = N d = 2×1016 cm

(

)

2

n i2
1.5 × 1010
=
no
2 × 1016

po =

(ii) p o = N a = 1015 cm

(

)

2

no = N d = 2 × 1016 cm

(


ni2
1.8 × 10 6
=
no
2 × 1016

po =

(ii)

= 1.125 × 10 4 cm −3

−3

n2
1.5 × 10 10
no = i =
po
1015

(b) (i)

p o = N a = 1015 cm

(

−3

)


= 2.25 × 10 5 cm −3
−3

2

= 1.62 × 10 − 4 cm −3

−3

)

2

n i2
1.8 × 10 6
=
= 3.24 × 10 − 3 cm −3
po
10 15
______________________________________________________________________________________
no =

EX1.3
(a) For n-type;

ρ=
(b) J =

1


ρ

1
1
=
= 0.046 ohm-cm
−19
eμ n N d
1.6 × 10 (6800) 2 × 1016

(

)

(

)

⋅ Ε ⇒ Ε = ρ J = (0.046)(175) = 8.04 V/cm

--------------------------------------------------------------------------------------------------------------------------------EX1.4
Diffusion current density due to holes:
dp
J p = −eD p
dx
⎛ −1 ⎞
⎛ −x ⎞
= −eD p (1016 ) ⎜ ⎟ exp ⎜ ⎟
⎜L ⎟

⎜L ⎟
⎝ p⎠
⎝ p⎠

Full file at />

Solution Manual for Microelectronics Circuit Analysis and Design 4th Edition by Neamen
Full file at />Microelectronics: Circuit Analysis and Design, 4th edition

Chapter 1
By D. A. Neamen
Exercise Solutions
______________________________________________________________________________________
(a) At x = 0

(1.6 ×10 ) (10) (10 ) = 16 A / cm
=
−19

Jp

(b) At x = 10−3

16

2

10−3
cm


⎛ −10−3 ⎞
J p = 16 exp ⎜ −3 ⎟ = 5.89 A / cm 2
⎝ 10 ⎠
______________________________________________________________________________________

EX1.5

( )( )
(
)
⎡ (10 )(10 ) ⎤
= (0.026 ) ln ⎢
⎥ = 0.374 V
⎢⎣ (2.4 × 10 ) ⎥⎦

⎡ 10 16 10 17 ⎤
(a) Vbi = (0.026 ) ln ⎢
⎥ = 1.23 V
6 2
⎣⎢ 1.8 × 10 ⎦⎥
16

(b) Vbi

17

13 2

______________________________________________________________________________________
EX1.6

−1/ 2

⎛ V ⎞
C j = C jo ⎜1 + R ⎟
⎝ Vbi ⎠
and
⎡N N ⎤
Vbi = VT ln ⎢ a 2 d ⎥
⎣ ni ⎦

⎡ (1017 )(1016 ) ⎤
⎥ = 0.757 V
= ( 0.026 ) ln ⎢
⎢ (1.5 × 1010 )2 ⎥


5 ⎞

Then 0.8 = C jo ⎜ 1 +

⎝ 0.757 ⎠
or
C jo = 2.21 pF

−1/ 2

= C jo ( 7.61)

−1/ 2


______________________________________________________________________________________
EX1.7
⎛I ⎞
(a) V D = VT ln⎜⎜ D ⎟⎟
⎝ IS ⎠
⎛ 50 × 10 −6
(i) V D = (0.026) ln⎜⎜
−14
⎝ 2 × 10


⎟ = 0.563 V



⎛ 10 −3
(ii) V D = (0.026 ) ln⎜⎜
−14
⎝ 2 × 10


⎟ = 0.641 V



⎛ 50 × 10 −6
(b) (i) V D = (0.026) ln⎜⎜
−12
⎝ 2 × 10



⎟ = 0.443 V



⎛ 10 −3 ⎞
⎟ = 0.521 V
(ii) V D = (0.026 ) ln⎜⎜
−12 ⎟
⎝ 2 × 10 ⎠
______________________________________________________________________________________

Full file at />

Solution Manual for Microelectronics Circuit Analysis and Design 4th Edition by Neamen
Full file at />Microelectronics: Circuit Analysis and Design, 4th edition

Chapter 1
By D. A. Neamen
Exercise Solutions
______________________________________________________________________________________
EX1.8
⎛V ⎞
VPS = I D R + VD and I D ≅ I S exp ⎜ D ⎟
⎝ VT ⎠
( 4 − VD )
so 4 = I D ( 4 × 103 ) + VD ⇒ I D =
4 ×103
and
⎛ V ⎞

I D = (10 −12 ) exp ⎜ D ⎟
⎝ 0.026 ⎠
By trial and error, we find I D ≅ 0.866 mA and V D ≅ 0.535 V.
______________________________________________________________________________________

EX1.9

V PS − Vγ

8 − 0.7
⇒R=
= 6.08 k Ω
R
1.20
4 − 0. 7
(b) I D =
= 0.9429 mA
3. 5
PD = I DV D = (0.9429 )(0.7 ) = 0.66 mW
______________________________________________________________________________________
ID =

(a)

EX1.10
PSpice Analysis
______________________________________________________________________________________
EX1.11
8 − 0.7
= 0.365 mA

20
V
0.026
⇒ 71.2 Ω
rd = T =
I D 0.365

(a) I D =

0.25 sin ω t
⇒ 12.5 sin ω t ( μ A)
20 + 0.0712
8 − 0 .7
(b) I D =
= 0.73 mA
10
0.026
rd =
⇒ 35.6 Ω
0.73
0.25 sin ω t
id =
⇒ 24.9 sin ω t ( μ A)
10 + 0.0356
______________________________________________________________________________________
id =

EX1.12
⎛I ⎞
⎛ 1.2 × 10−3 ⎞

or VD = 0.6871 V
For the pn junction diode, VD ≅ VT ln ⎜ D ⎟ = ( 0.026 ) ln ⎜
−15 ⎟
⎝ 4 × 10 ⎠
⎝ IS ⎠
The Schottky diode voltage will be smaller, so VD = 0.6871 − 0.265 = 0.4221 V
⎛V ⎞
Now I D ≅ I S exp ⎜ D ⎟
⎝ VT ⎠

Full file at />

Solution Manual for Microelectronics Circuit Analysis and Design 4th Edition by Neamen
Full file at />Microelectronics: Circuit Analysis and Design, 4th edition

Chapter 1
By D. A. Neamen
Exercise Solutions
______________________________________________________________________________________
or

1.2 × 10−3
⇒ I S = 1.07 × 10−10 A
⎛ 0.4221 ⎞
exp ⎜

⎝ 0.026 ⎠
______________________________________________________________________________________
IS =


EX1.13
P = I ⋅ VZ ⇒ 10 = I ( 5.6 ) ⇒ I = 1.79 mA
10 − 5.6
= 1.79 ⇒ R = 2.46 kΩ
R
______________________________________________________________________________________

Also I =

Test Your Understanding Solutions
TYU1.1
(a) T = 400K
⎛ − Eg ⎞
Si: ni = BT 3 / 2 exp ⎜

⎝ 2kT ⎠
ni = ( 5.23 × 1015 ) ( 400 )

3/ 2



−1.1

exp ⎢
−6
⎢⎣ 2 ( 86 × 10 ) ( 400 ) ⎥⎦

or
ni = 4.76 × 1012 cm −3


Ge: ni = (1.66 × 1015 ) ( 400 )

3/ 2



−0.66

exp ⎢
⎢⎣ 2 ( 86 × 10−6 ) ( 400 ) ⎥⎦

or
ni = 9.06 × 1014 cm −3
GaAs:

ni = ( 2.1× 1014 ) ( 400 )

3/ 2



−1.4

exp ⎢
−6
⎢⎣ 2 ( 86 × 10 ) ( 400 ) ⎥⎦

or
ni = 2.44 × 109 cm −3

(b) T = 250 K

Si: ni = ( 5.23 × 1015 ) ( 250 )

3/ 2



−1.1

exp ⎢
⎢⎣ 2 ( 86 × 10−6 ) ( 250 ) ⎥⎦

or
ni = 1.61× 108 cm −3

Ge: ni = (1.66 × 1015 ) ( 250 )

3/ 2



−0.66

exp ⎢
−6
⎢⎣ 2 ( 86 × 10 ) ( 250 ) ⎥⎦

or
ni = 1.42 × 1012 cm −3


Full file at />

Solution Manual for Microelectronics Circuit Analysis and Design 4th Edition by Neamen
Full file at />Microelectronics: Circuit Analysis and Design, 4th edition

Chapter 1
By D. A. Neamen
Exercise Solutions
______________________________________________________________________________________
GaAs: ni = ( 2.10 × 1014 ) ( 250 )

3/ 2



−1.4

exp ⎢
⎢⎣ 2 ( 86 × 10−6 ) ( 250 ) ⎥⎦

or
ni = 6.02 × 103 cm −3
______________________________________________________________________________________

TYU1.2

(

)


(

)

(a) σ = eμ p N a = 1.6 × 10 −19 (480) 2 × 10 15 = 0.154 (ohm-cm)

ρ=

1

σ

=

1
= 6.51 Ω -cm
0.1536

(

)

(

)

(b) σ = eμ n N d = 1.6 × 10 −19 (1350) 2 × 1017 = 43.2 (ohm-cm)

ρ=


1

σ

=

−1

−1

1
= 0.0231 Ω -cm
43.2

________________________________________________________________________
TYU1.3
(a) J = σ Ε = (0.154)(4) = 0.616 A/cm 2

(b) J = σ Ε = (43.2)(4) = 172.8 A/cm 2
______________________________________________________________________________________
TYU1.4

(a)

J n = eDn

⎛ 1015 − 1016 ⎞
dn
Δn

so J n = 1.6 × 10−19 ( 35 ) ⎜
= eDn
−4 ⎟
dx
Δx
⎝ 0 − 2.5 × 10 ⎠

(

)

or
J n = 202 A / cm 2

(b)

J p = −eD p

⎛ 1014 − 5 × 1015 ⎞
dp
Δp
so J p = − 1.6 × 10−19 (12.5 ) ⎜
= −eD p
−4 ⎟
dx
Δx
⎝ 0 − 4 × 10 ⎠

(


)

or

J p = −24.5 A / cm2
______________________________________________________________________________________
TYU1.5
(a) no = N d = 8 × 1015 cm −3
10
ni2 (1.5 × 10 )
po =
=
= 2.81× 10 4 cm −3
no
8 × 1015
2

(b) n = no + δ n = 8 × 1015 + 0.1× 1015
or
n = 8.1×1015 cm−3
p = po + δ p = 2.81 × 10 4 + 1014
or
p ≅ 1014 cm −3
______________________________________________________________________________________

Full file at />

Solution Manual for Microelectronics Circuit Analysis and Design 4th Edition by Neamen
Full file at />Microelectronics: Circuit Analysis and Design, 4th edition


Chapter 1
By D. A. Neamen
Exercise Solutions
______________________________________________________________________________________
TYU1.6

( )(
(

)

⎡ 10 15 5 × 10 16 ⎤

⎟ = (0.026 ) ln ⎢
⎥ = 0.679 V
2

⎢⎣ 1.5 × 10 10
⎥⎦

⎡ 10 15 5 × 10 16 ⎤
(b) Vbi = (0.026 ) ln ⎢
⎥ = 1.15 V
2
⎢⎣ 1.8 × 10 6
⎥⎦
⎡ 10 15 5 × 10 16 ⎤
(c) Vbi = (0.026 ) ln ⎢
⎥ = 0.296 V
2

⎢⎣ 2.4 × 10 13
⎥⎦
______________________________________________________________________________________
⎛N N
(a) Vbi = VT ln⎜⎜ a 2 d
⎝ ni

( )(
(
( )(
(

)

)

)

)

)

TYU1.7
⎛V
(a) (i) I D = I S exp⎜⎜ D
⎝ VT

(

)


(

)

(ii) I D = 10 −16


⎛ 0.55 ⎞
⎟⎟ = 10 −16 exp⎜
⎟ ⇒ 0.154 μ A
⎝ 0.026 ⎠

⎛ 0.65 ⎞
exp⎜
⎟ ⇒ 7.20 μ A
⎝ 0.026 ⎠

(

)

⎛ 0.75 ⎞
(ii) I D = 10 −16 exp⎜
⎟ ⇒ 0.337 mA
⎝ 0.026 ⎠

(b) (i) I D = −10 −16 A
(ii) I D = −10 −16 A
______________________________________________________________________________________

TYU1.8
ΔT = 100C so ΔVD ≅ 2 × 100 = 200 mV
Then VD = 0.650 − 0.20 = 0.450 V
______________________________________________________________________________________
TYU1.9

______________________________________________________________________________________

Full file at />

Solution Manual for Microelectronics Circuit Analysis and Design 4th Edition by Neamen
Full file at />Microelectronics: Circuit Analysis and Design, 4th edition

Chapter 1
By D. A. Neamen
Exercise Solutions
______________________________________________________________________________________
TYU1.10
(a) I D = 0

(b)
(c)

2 − 0.7
= 0.325 mA
4
5 − 0.7
ID =
= 1.075 mA
4

ID = 0
ID =

(d)
(e) I D = 0
______________________________________________________________________________________
TYU1.11
P = I DVD ⇒ 1.05 = I D ( 0.7 ) so I D = 1.5 mA
VPS − Vγ

10 − 0.7
=
⇒ R = 6.2 kΩ
1.5
ID
______________________________________________________________________________________

Now R =

TYU1.12
ID
0.8
=
= 30.8 mS
VT 0.026
______________________________________________________________________________________
gd =

TYU1.13
rd =


VT 0.026
=
= 2.6 k Ω
I D 0.010

0.026
⇒ 260 Ω
0.10
0.026
rd =
⇒ 26 Ω
1
----------------------------------------------------------------------------------------------------------------------------rd =

TYU1.14
rd =

VT
0.026
0.026
⇒ 50 =
⇒ ID =
50
ID
ID

or
I D = 0.52 mA
______________________________________________________________________________________


TYU1.15
For the pn junction diode,
4 − 0.7
ID =
= 0.825 mA
4
4 − 0.3
= 0.925 mA
4
______________________________________________________________________________________

For the Schottky diode, I D =

Full file at />

Solution Manual for Microelectronics Circuit Analysis and Design 4th Edition by Neamen
Full file at />Microelectronics: Circuit Analysis and Design, 4th edition

Chapter 1
By D. A. Neamen
Exercise Solutions
______________________________________________________________________________________

TYU1.16
Vz = Vzo + I z rz ⇒ Vzo = Vz − I z rz so Vzo = 5.20 − (10−3 ) ( 20 ) = 5.18 V

Then Vz = 5.18 + (10 × 10−3 ) ( 20 ) ⇒ Vz = 5.38 V

______________________________________________________________________________________

TYU1.17
P = I Z VZ ⇒ I Z =

P 6.5
=
= 1.81 mA
V Z 3.6

V PS = I Z R + V Z = (1.81)(4 ) + 3.6 = 10.8 V
______________________________________________________________________________________

Full file at />


×