Tải bản đầy đủ (.pdf) (43 trang)

Bài giải mạch P18

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.31 MB, 43 trang )

Chapter 18, Solution 1.



)2t()1t()1t()2t()t('f −δ+−δ−+δ−+δ=



2jjj2j
eeee)(Fj
ω−ω−ωω
+−−=ωω

ω−ω=

cos22cos2

F(ω) =
ω
ω−ω
j
]cos2[cos2



Chapter 18, Solution 2.






<<
=
otherwise,0
1t0,t
)t(f


-
δ(t-1)
δ(t)

f ”(t)
t
–δ’(t-1)


1
-δ(t-1)
0
1
f ‘(t)
t










f"(t) = δ(t) - δ(t - 1) - δ'(t - 1)

Taking the Fourier transform gives


2
F(ω) = 1 - e
-jω
- jωe
-jω


F(ω) =
2
j
1e)j1(
ω
−ω+
ω


or
F


ω−

1
0

tj
dtet)(

But

+−= c)1ax(
a
e
dxex
2
ax
ax


()
=−ω−
ω−

ω−
1
0
2
j
)1tj(
j
e
)(F
()
[ ]
1ej1

1
j
2
−ω+
ω
ω−

Chapter 18, Solution 3.



2t2,
2
1
)t('f,2t2,t
2
1
)t(f <<−=<<−=




ω−
ω
−ω−
ω−
==ω
2
2
2

2
2
tj
tj
)1tj(
)j(2
e
dtet
2
1
)(F

[]
)12j(e)12j(e
2
1
2j2j
2
−ω−−ω−
ω
−=
ωω−



( )
[]
2j2j2j2j
2
eeee2j

2
1
ω−ωωω
−++ω−
ω
−=



()
ω+ωω−
ω
2sin2j2cos4j
2
1
2
−=


F(
ω
) =
)2cos22(sin
j
2
ωω−ω
ω




Chapter 18, Solution 4.


1
–2δ(t–1)

(t+1)
–1
g’
2

0

–2
t










–2δ’(t–1)
–2δ
(t+1)
1
–2δ(t–1)

2δ’
(t+1)
–1
g”
4δ(t)

0

–2
t








4sin4cos4
ej2e24ej2e2)(G)j(
)1t(2)1t(2)t(4)1t(2)1t(2g
jjjj2
+ωω−ω−=
ω−−+ω+−=ωω
−δ

−−δ−δ++δ

++δ−=
′′

ω−ω−ωω


)1sin(cos
4
)(G
2
−ωω+ω
ω




Chapter 18, Solution 5.

1
0
h’(t)
–1

–2δ(t)
1
t














δ(t+1)
–δ(t–1)
1
0
h”(t)
–1

–2δ’(t)
1
t











ω−ω=ω−−=ωω
δ


−−δ−+δ=
′′
ω−ω
j2sinj2j2ee)(H)j(
)t(2)1t()1t()t(h
jj2


H(ω) =
ω
ω

ω
sin
j2j2
2

Chapter 18, Solution 6.


dtetdte)1()(F
tj
0
1
1
0
tj ω−

ω−
∫∫

+−=ω


)1(cos
1
tsin
t
tcos
1
tsin
1
tdtcosttdtcos)(F Re
2
1
0
2
0
1
0
1
1
0
−ω
ω
=









ω
ω

ω

ω
−=
ω+ω−=ω


∫∫



Chapter 18, Solution 7.


(a) f
1
is similar to the function f(t) in Fig. 17.6.



)1t(f)t(f
1
−=


Since
ω
−ω
=
2
F ω
j
)1(cos
)(

=ω=ω
ω
)(Fe)(F
j
1

ω
−ω
ω−
j
)1(cose2
j


Alternatively,


)
)
2t()1t(2)t()t(f

'
1
−δ+−δ−δ=


e2e(eee21)(Fj
jjj2jj
1
ωωω−ω−ω−
+−=+−=ωω



)2cos2(e
j
−ω=
ω−

F
1
(ω) =
ω
−ω
ω−
j
)1e
j
(cos2



(b)

f
2
is similar to f(t) in Fig. 17.14.
f
2
(t) = 2f(t)

F
2
(ω) =
2
)cos1(4
ω
ω−


Chapter 18, Solution 8.


(a)
2
1
tj
2
2
1
tj
1

0
tj
2
1
tj
1
0
tj
)1tj(e
2
e
j
4
e
j
2
dte)t24(dte2)(F
−ω−
ω−

ω−
+
ω−
=
−+=ω
ω−ω−ω−
ω−ω−
∫∫



ω−ω−ω−
ω+
ω

ω

ω
+
ω
+
ω

2j
2
2jj
2
e)2j1(
2
e
j
4
j
2
e
j
22
)(F

(b) g(t) = 2[ u(t+2) – u(t-2) ] - [ u(t+1) – u(t-1) ]


ω
ω

ω
ω

sin22sin4
)(G


Chapter 18, Solution 9.


(a)

y(t) = u(t+2) – u(t-2) + 2[ u(t+1) – u(t-1) ]

ω
ω

ω
=ω sin
4
2sin
2
)(Y

(b)
)j1(
e22

)1tj(
e2
dte)t2()(
2
j
2
1
0
1
0
2
tj
tj
ω+
ω

ω
=−ω−
ω−

=−=ω
ω−ω−
ω−

Z



Chapter 18, Solution 10.



(a) x(t) = e
2t
u(t)

X(ω) =
1/(2 + j
ω
)

(b)






<
>
=


0t,e
0t,e
e
t
t
)t(




∫∫∫
−−
ω−−ωω
+==ω
1
1
0
1
1
0
tjttjttj
dteedteedte)t(y)(Y

1
0
t)j1(
0
1
t)j1(
)j1(
e
j1
e
ω+−
+
ω−
=
ω+−


ω−








ω+
ω−ω
+
ω−
ω+ω

ω+
=

j1
sinjcos
j1
sinjcos
e
1
2
1
2


Y(ω) =

[ ]
)sin(cose1
1
2
1
2
ωω−ω−
ω+




Chapter 18, Solution 11.


f(t) = sin π t [u(t) - u(t - 2)]

( )
∫∫
ω−π−πω−
−=π=ω
2
0
2
0
tjtjtjtj
dteee
j2
1
dtetsin)(F









+

π+ω−π+ω−+
2
0
t)(jt)(j
dt)ee(
j2
1
=









π+ω−
+
π−ω−

π+ω−
π−ω− 2
0
t)(j
2
0
t)(j
)(j
e
e
)(j
1
j2
1
=











ω+π

+
ω−π


ω−ω− 2j2j
e1e1
2
1
=



()
ω−
π+π
ω−π
2j
22
e22
)(2
1
=


F(ω) =
( )
1e
2j
22

π−ω
π
ω−




Chapter 18, Solution 12.

(a)
F =

dtedtee)(
0
2
0
t)j1(tjt
∫∫

ω−ω−



=
ω−
=
ω− 2
0
t)j1(
e
j1
1

ω−


ω−
j1
1e
2j2


(b)


∫∫

ω−ω−
−+=ω
0
1
1
0
tjtj
dte)1(dte)(H


()( )
)cos22(
j
1
1e
j
1
e1

j
1
jj
ω+−
ω
=−
ω
+−
ω
ω−ω
−=


=
ω
ω−
=
j
2/sin4
2
2
2/
2/sin
j







ω
ω
ω



Chapter 18, Solution 13.


(a)

We know that
)]a()a([]at[cos +ωδ+−ωδπ=F
.

Using the time shifting property,
)a(e)a(e)]a()a([e)]a3/t(a[cos
3/j3/ja3/j
+ωδπ+−ωδπ=+ωδ+−ωδπ=π−
ππ−ωπ−
F

(b) sin tsinsintcoscostsin)1t(
π−=ππ+ππ=+π

g(t) = -u(t+1) sin (t+1)

Let x(t) = u(t)sin t, then
22
1

1
1)j(
1
)(X
ω−
=



Using the time shifting property,

1
e
e
1
1
)(G
2
j
j
2
−ω
=
ω−
−=ω
ω
ω


(c ) Let y(t) = 1 + Asin at, then

Y )]a()a([Aj)(2)( −ωδ−+ωδπ+ωπδ=ω

h(t) = y(t) cos bt

Using the modulation property,
)]b(Y)b(Y[
2
1
)(H −ω++ω=ω

[][]
)ba()ba()ba()ba(
2
Aj
)b()b()(H −−ωδ−−+ωδ++−ωδ−++ωδ
π
+−ωδ++ωδπ=ω

(d)
)14j(
e
j
e1
)1tj(
e
j
e
dte)t1()(
2
4j4j

2
4
0
2
tj
4
0
tj
tj

ω

ω

ω
=−ω−
ω−

ω−
=−=ω
ω−ω−ω−ω−
ω−

I



Chapter 18, Solution 14.



(a)
)t3cos()0(t3sin)1(t3cossint3sincost3cos)t3cos( −=−−=π−π=π+

(f

)t(ut3cose)t
t

−=

F(ω) =
( )
()
9j1
j1
2
+ω+
ω+−

(b)









[]

)1t(u)1t(utcos)t('g −−−ππ=

g(t)
t
1
-1
-1
1
-
π
-1 1
g’(t)
t
π









)1t()1t()t(g)t("g
2
−πδ++πδ−π−=
ω−ω
π+π−ωπ−=ωω−
jj22
ee)(G)(G

( )
ωπ−=−π−=ωω−π
ω−ω
sinj2)ee()(G
jj22


G(ω) =
22
sinj2
π−ω
ωπ


Alternatively, we compare this with Prob. 17.7
f(t) = g(t - 1)
F(ω) = G(ω)e
-jω

()
( )
ωω−ω

π−ω
π
=ω=ω
jj
22
j
eee)(FG



22
sin2j
π−ω
ωπ−
=


G(ω) =
22
sinj2
ω−π
ωπ


(c)
tcos)0(tsin)1(tcossintsincostcos)1t(cos π−=π+−π=ππ+ππ=−π

Let ex
=
)t(he)1t(u)1t(cos)t(
2)1t(2
−=−−π
−−
and

)t(u)tcos(e)t(y
t2
π=




22
)j2(
j2
)(Y
π+ω+
ω+




)1t(x)t(y −=

ω−
ω=ω
j
e)(X)(Y


()
()
2
2
j
j2
ej2
)(X
π+ω+

ω+

ω




)(He)(X
2
ω−=ω



)(Xe)(H
2
ω−=ω



=

()
()
2
2
2j
j2
ej2
π+ω+
ω+−

−ω


(d) Let x

)t(y)t(u)t4sin(e)t(
t2
−=−−=


)t(x)t(p −=
where )t(ut4sine)t(y
t2
=


()
2
2
4j2
j2
)(Y
+ω+
ω+




()
16j2

j2
)(Y)(X
2
+ω−
ω−
=ω−=ω



=ω−=ω )(X)(p
()
162j
2j
2
+−ω
−ω


(e)

2j2j
e
j
1
)(23e
j
8
)(Q
ω−ω−









ω
+ωπδ−+
ω


Q(ω) =
2j2j
e)(23e
j
6
ω−ω
ωπδ−+
ω



Chapter 18, Solution 15.


(a) F =−=ω
ω−ω
3j3j
ee)( ω

3sinj2

(b)

Let g
ω−
=ω−δ=
j
e2)(G),1t(2)t(

=ω)(F

F








∞−
t
dt)t(g

)()0(F
j
)(G
ωδπ+
ω

ω
=


)()1(2
j
e2
j
ωδ−πδ+
ω
=
ω−


=
ω
ω−
j
e
j
2


(c)
F
[]
1
2
1
)t2( ⋅=δ



=ω−⋅=ω j
2
1
1
3
1
)(F
2
j
3
1
ω





Chapter 18, Solution 16.


(a) Using duality properly


2
2
t
ω





ωπ→

2
t
2
2


or
ωπ−→ 4
t
4
2


F(
ω
) =
F

=




2
t

4



ωπ4−


(b)
ta
e


22
a
a2
ω+



22
ta
a2
+

ω−
π
a
e2




22
ta
8
+

ω−
π
2
e4


G(ω) =
F

=




+
2
t4
8


ω−
π
2
e4



Chapter 18, Solution 17.


(a) Since H(ω) =
F

()()(
[]
000
FF
2
1
)t(ftcos ω−ω+ω+ω=ω
)


where F(ω) =
F

()
[]
()
2,
j
1
tu
0


ω
+ωπδ=

() ()
()
()
()






−ω
+−ωπδ+

++ωπδ=ω
2j
1
2
2j
1
2
2
1
H



()()

[]
()()






−ω+ω
−ω++ω
−−ωδ++ωδ
π
=
22
22
2
j
22
2


H(ω) =
()()
[]
4
j
22
2
2
−ω

ω
−−ωδ++ωδ
π


(b)

G(ω) =
F

[]
()(
[]
000
FF
2
j
)t(ftsin ω−ω−ω+ω=ω
)


where F(ω) =
F

()
[]
()
ω
+ωπδ=
j

1
tu

() ()
()
()
()






−ω
−−ωπδ−

++ωπδ=ω
10j
1
10
10j
1
10
2
j
G


()()
[]









−ω
+−ωδ−+ωδ
π
=
10
j
10
j
2
j
1010
2
j


=
()()
[]
100
10
1010
2

2
j
−ω
−−ωδ−+ωδ
π


Chapter 18, Solution 18.

Let f
() ()
tuet
t

=
()
ω+

jj
1
F

()
tcostf

()(
[]
1F1F
2
1

+ω+−ω
)


Hence
()
() ()






+ω+
+
−ω+

1j1
1
1j1
1
2
1
Y



()
[]
()

[]






+ω+−ω+
−ω+++ω+
=
1j11j1
jj1jj1
2
1



1jjjj1
j1
2
+ω−−ω++ω+
ω+
=

=
2j2
j1
2
+ω−ω
ω+


Chapter 18, Solution 19.


()
( )
∫∫

∞−
ω−π−πω
+==ω dteee
2
1
dte)t(fF
tj
1
0
t2jt2jtj


()
() ()
[]

π−ω−π+ω−
+=ω
1
0
t2jt2j
dtee

2
1
F



()
()
()
()
1
0
t2jt2j
e
2j
1
e
2j
1
2
1






π−ω−
+
π+ω−

=
π−ω−π+ω−



()
()
( )
()






π−ω

+
π+ω

−=
π−ω−π+ω−
2j
1e
2j
1e
2
1
2j2j



But
π−π
==π+π=
2j2j
e12sinj2cose


()






π−ω
+
π+ω









−=ω
ω−
2

1
2
1
j
1e
2
1
F
j



=
( )
1e
4
j
j
22

π−ω
ω
ω−



Chapter 18, Solution 20.


(a)

F
(c
n
) = c
n
δ(ω)


F

( )
( )
on
tjn
n
ncec
o
ω−ωδ
ω
=


F



=







−∞=
ω
n
tjn
n
o
ec
()


−∞=
ω−ωδ
n
on
nc

(b)
π= 2T
1
T
2
o
=
π




()
∫∫






+⋅
π
==
π

ω−
T
00
jnt
tjn
n
0dte1
2
1
dtetf
T
1
c
o




()
1e
n2
j
e
jn
1
2
1
jn
0
jnt

π
=









π
=
π−π


But

e
njn
)1(ncosnsinjncos −=π=π+π=
π−

()
[]



=−−
π
=
=
≠=
π

evenn,0
0n,oddn,
n
j
n
n
11
n2
j
c

for n = 0



π
=
π
=
0
n
2
1
dt1
2
1
c


Hence



=

−∞=
π
−=
oddn
0n
n
jnt
e
n

j
2
1
)t(f


F(ω) =
()


=

−∞=
−ωδ
π
−δω
oddn
0n
n
n
n
j
2
1



Chapter 18, Solution 21.



Using Parseval’s theorem,

∫∫

∞−

∞−
ωω
π
=
d|)(F|
2
1
dt)t(f
22


If f(t) = u(t+a) – u(t+a), then
∫∫∫

∞−

∞−−
ω







ω
ω
π
=== d
a
asin
a4
2
1
a2dt)1(dt)t(f
2
2
a
a
22

or
a
a4
a4
d
a
asin
2
2
π
=
π








ω
ω


∞−
as required.



Chapter 18, Solution 22.


F
[]
( )


∞−
ω−
ω−ω

=ω dte
j2
ee
)t(ftsin)t(f

tj
tjtj
o
oo



() ()






−=
∫∫

∞−

∞−
ω+ω−ω−ω−
dtedte)t(f
j2
1
tjtj
oo


=
()(

[]
oo
FF
j2
1
ω+ω−ω−ω
)



Chapter 18, Solution 23.



(a) f(3t) leads to
()()()( )
ω+ω+
=
ω+ω+

j15j6
30
3/j53/j2
10
3
1


F
[]

()
=− t3f
()( )
ω−ω− j15j6
30


(b) f(2t)
()( )()( )
ω+ω+
=
ω+ω+

j10j4
20
2/j152/j2
10
2
1


f(2t-1) = f [2(t-1/2)]
()( )
ω+ω+
ω−
j10j4
e20
2/j



(c) f(t) cos 2t
()()
2F
2
1
2F
2
1
+ω++ω

=
[]
()()
[]
()()
[][]
2j52j2
5
2j52j2
−ω+−ω+
+
+ω++ω+
5


(d)
F
[]
() ()
()()

ω+ω+
ω
=ωω=
j5j2
10j
Fjt'f

(e)
()

f

∞−
t
dtt
( )
()
()( )
ωδπ+
ω
ω
0F
j
F



()()
()
5x2

10x
j5j2j
ωπδ+
ω+ω+ω
10
=

=
()()
()
ωπδ+
ω+ω+ω
j5j2j
10



Chapter 18, Solution 24.


(a)
() ()
ω=ω FX
+
F
[3]

=
()
( )

1e
j
ω
+ωπδ
ω−
j
6 −


(b)

() ( )
2tfty −=


() ( )
=ω=ω
ω−
FeY
2j
()
1e
je
j
2j

ω
ω−
ω−



(c)

If h(t) = f '(t)
() ()
( )
=−
ω
ω=ωω=ω
ω−
1e
j
jFjH
j
ω−

j
e1

(d)
()






ω+







ω=ω










=
5
3
F
5
3
x10
2
3
F
2
3
x4)(G,t
3
5

f
3
ft
+


10t
2
4g

( ) ( )
1e
5
3
j6
1e
2
3
j
6
5/3j2/3j

ω
+−
ω
⋅=
ω−ω−


=

( ) ( )
1e
10j
1e
4j
5/3j2/3j

ω
+−
ω
ω−ω−



Chapter 18, Solution 25.


(a)
()
()
ω=
+
+=
+
=
js,
2s
B
s2ss
s

A10
F


5
2
10
B,5
2
10
A
−=

===



()
2j
5
j
5
F


ω



f(t) =

() ()
tue5t
2
t2


sgn
5


(b)

()
()( )
2j
B
1j
A
2j1j
4j
F

+

=
+ω+ω
−ω





()
()( )
ω=
+
+
+
=
++

=
js,
2s
B
1s
A
2s1s
4s
sF

A = 5, B = 6


()
ω+
+
ω+


j2

6
j1
5
F

f(t) =
( )
( )
tue6e5
t2t
−−
+−



Chapter 18, Solution 26.


(a)
)t(ue)t(
)2t( −−
=f


(b)
)t(ute)t(
t4−
=h



(c) If
ω
ω
=ω→−−+=
sin
2)(X)1t(u)1t(u)t(x


By using duality property,

Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×