Tải bản đầy đủ (.pdf) (53 trang)

Bài giải phần giải mạch P15

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.42 MB, 53 trang )

Chapter 15, Solution 1.


(a)
2
ee
)atcosh(
at-at
+
=

[]
=






+
+

=
as
1
as
1
2
1
)atcosh(L
22


as
s



(b)
2
ee
)atsinh(
at-at

=

[]
=






+


=
as
1
as
1
2

1
)atsinh(L
22
as
a




Chapter 15, Solution 2.


(a)
)sin()tsin()cos()tcos()t(f θω−θω=

[ ] [ ]
)tsin()sin()tcos()cos()s(F ωθ−ωθ= LL


=)s(F
22
s
)sin()cos(s
ω+
θω−θ


(b)
)sin()tcos()cos()tsin()t(f θω+θω=
[ ] [ ]

)tsin()cos()tcos()sin()s(F ωθ+ωθ= LL


=)s(F
22
s
)cos()sin(s
ω+
θω−θ




Chapter 15, Solution 3.


(a)

[]
=
)t(u)t3cos(e
-2t
L
9)2s(
2s
2
++
+



(b)

[]
=
)t(u)t4sin(e
-2t
L
16)2s(
4
2
++


(c)

Since
[]
22
as
s
)atcosh(

=L

[]
=)t(u)t2cosh(e
-3t
L
4)3s(
3s

2
−+
+


(d) Since
[]
22
as
a
)atsinh(

=L

[
=)t(u)tsinh(e
-4t
L
]
1)4s(
1
2
−+


(e)
[]
4)1s(
2
)t2sin(e

2
t-
++
=
L

If
)s(F)t(f →←


)s(F
ds
d-
)t(ft →←

Thus,
[]()
[ ]
1-
2t-
4)1s(2
ds
d-
)t2sin(et ++=
L



)1s(2
)4)1s((

2
22
+⋅
++
=


[]
=
)t2sin(et
-t
L
22
)4)1s((
)1s(4
++
+



Chapter 15, Solution 4.


(a)
16s
se6
e
4s
s
6)s(G

2
s
s
22
+
=
+
=




(b)
3s
e
5
s
2
)s(F
s2
2
+
+=



Chapter 15, Solution 5.


(a)


[]
4s
)30sin(2)30cos(s
)30t2cos(
2
+
°
−°
=°+
L


[]






+
−°
=°+
4s
1)30cos(s
ds
d
)30t2cos(t
22
2

2
L



()








+








−=
1-
2
4s1s
2
3
ds

d
ds
d



() ()








+








−−+=
2-
2
1-
2
4s1s

2
3
s24s
2
3
ds
d


()
()()() ()
3
2
2
2
2
2
2
2
2
4s
1s
2
3
)s8(
4s
2
3
s2
4s

1s
2
3
2
4s
2s-
2
3
+









+
+









+











+
=


() ()
3
2
2
2
2
4s
1s
2
3
)s8(
4s
s32s3s3-
+










+
+
−+−
=


() ()
3
2
23
3
2
2
4s
s8s34
4s
)42)(ss3(-3
+

+
+
++
=


[]
=°+ )30t2cos(t
2
L
()
3
2
32
4s
s3s6s3128
+
+−−


(b)

[]
=
+
⋅=
5
t-4
)2s(
!4
30et30
L
5
)2s(
720

+


(c)

=−⋅−=






δ−
)01s(4
s
2
)t(
dt
d
4)t(ut2
2
L
s4
s
2
2







(d)

)t(ue2)t(ue2
-t1)--(t
=
[]
=
)t(ue2
1)--(t
L
1s
e2
+


(e)

Using the scaling property,
[]
=⋅⋅=⋅⋅=
s2
1
25
)21(s
1
21
1
5)2t(u5

L
s
5


(f)

[]
=
+
=
31s
6
)t(ue6
3t-
L
1s3
18
+


(g)

Let f . Then, )t()t(
δ=
1)s(F
=
.

"



−−=






=






δ
−−
)0(fs)0(fs)s(Fs)t(f
dt
d
)t(
dt
d
2n1nn
n
n
n
n
LL



"
−⋅−⋅−⋅=






=






δ
−−
0s0s1s)t(f
dt
d
)t(
dt
d
2n1nn
n
n
n
n

LL


=






δ
)t(
dt
d
n
n
L
n
s



Chapter 15, Solution 6.


(a)

[ ]
=−δ
)1t(2

L
-s
e2


(b)

[ ]
=−
)2t(u10
L
2s-
e
s
10


(c)

[ ]
=+
)t(u)4t(
L
s
4
s
1
2
+



(d)

[][ ]
=−=−
)4t(uee2)4t(ue2
4)--(t-4-t
LL
)1s(e
e2
4
-4s
+



Chapter 15, Solution 7.


(a)

Since
[]
22
4s
s
)t4cos(
+
=
L

, we use the linearity and shift properties to
obtain
[]
=−−
)1t(u))1t(4cos(10
L
16s
es10
2
s-
+


(b)

Since
[]
3
2
s
2
t
=
L
,
[]
s
1
)t(u
=

L
,

[]
3
t2-2
)2s(
2
et
+
=
L
, and
[]
s
e
)3t(u
s3-
=−
L


[]
=−+
)3t(u)t(uet
t2-2
L
s
e
)2s(

2
-3s
3
+
+



Chapter 15, Solution 8.


(a)


[]
t3-t2-
e10e4)t2(u6)t3(2
−++δ
L

3s
10
2s
4
2s
1
2
1
6
3

1
2
+

+
+⋅⋅+⋅=


=
3s
10
2s
4
s
6
3
2
+

+
++


(b)

)1t(ue)1t(ue)1t()1t(uet
-t-t-t
−+−−=−
)1t(uee)1t(uee)1t()1t(uet
-11)--(t-11)--(t-t

−+−−=−


[]
=
+
+
+
=−
1s
ee
)1s(
ee
)1t(uet
-s-1
2
-s-1
t-
L
1s
e
)1s(
e
1)-(s
2
1)-(s
+
+
+
++



(c)

[ ]
=−−
)1t(u))1t(2cos(L
4s
es
2
-s
+





(d)

Since )t4sin()t4cos()4sin()4cos()t4sin())t(4sin(
=π−π=π−

)t(u))t(4sin()t(u)t4sin(
π−π−=π−


[ ][ ]
)t(u)t(u)t4sin(
π−−
L



[ ] [ ]
)t(u))t(4sin()t(u)t4sin(
π−π−−=
LL


=
+

+
=
π
16s
e4
16s
4
2
s-
2
)e1(
16s
4
s-
2
π
−⋅
+




Chapter 15, Solution 9.


(a)

)2t(u2)2t(u)2t()2t(u)4t()t(f
−−−−=−−=


=
)s(F
2
-2s
2
-2s
s
e2
s
e



(b)

)1t(uee2)1t(ue2)t(g
1)--4(t-4-4t
−=−=


=
)s(G
)4s(e
e2
4
-s
+


(c)

)t(u)1t2cos(5)t(h
−=

)Bsin()Asin()Bcos()Acos()BAcos(
+=−

)1sin()t2sin()1cos()t2cos()1t2cos(
+=−


)t(u)t2sin()1sin(5)t(u)t2cos()1cos(5)t(h
+=


4s
2
)1sin(5
4s
s

)1cos(5)s(H
22
+
⋅+
+
⋅=


=
)s(H
4s
415.8
4s
s702.2
22
+
+
+


(d)

)4t(u6)2t(u6)t(p
−−−=


=
)s(P
4s-2s-
e

s
6
e
s
6



Chapter 15, Solution 10.


(a) By taking the derivative in the time domain,
)tsin(et)tcos()ee-t()t(g
-t-t-t
−+=
)tsin(et)tcos(et)tcos(e)t(g
-t-t-t
−−=







++
+







++
+
+
++
+
=
1)1s(
1
ds
d
1)1s(
1s
ds
d
11)(s
1s
)s(G
222


=
++
+

++
+


++
+
=
2222
2
2
)2s2(s
22s
)2s2(s
2ss
2s2s
1s
)s(G
22
2
)2s2(s
2)(ss
++
+


(b)

By applying the time differentiation property,
)0(f)s(sF)s(G −=
where
, f
)tcos(et)t(f
-t
= 0)0( =


=
++
+
=






++
+
⋅=
22
2
2
)2s2(s
2s)(s)(s
1)1s(
1s
ds
d-
)s()s(G
22
2
)2s2(s
2)(ss
++
+




Chapter 15, Solution 11.


(a)

Since
[]
22
as
s
)atcosh(

=L

=
−+
+
=
4)1s(
)1s(6
)s(F
2
3s2s
)1s(6
2
−+
+



(b) Since
[]
22
as
a
)atsinh(

=L

[]
12s4s
12
16)2s(
)4)(3(
)t4sinh(e3
22
2t-
−+
=
−+
=L

[][]
1-22t-
)12s4s(12
ds
d-
)t4sinh(e3t)s(F −+=⋅= L



=−++=
2-2
)12s4s)(4s2)(12()s(F
22
)12s4s(
)2s(24
−+
+


(c)
)ee(
2
1
)tcosh(
t-t
+⋅=

)2t(u)ee(
2
1
e8)t(f
t-t3t-
−+⋅⋅=


=
)2t(ue4)2t(ue4

-4t-2t
−+−

=
)2t(uee4)2t(uee4
2)--4(t-82)--2(t-4
−+−

[][ ]
)t(ueee4)2t(uee4
-2-2s-42)--2(t-4
LL ⋅=−

[]
2s
e4
)2t(uee4
4)-(2s
2)-2(t-4-
+
=−
+
L


Similarly,
[]
4s
e4
)2t(uee4

8)-(2s
2)-4(t-8-
+
=−
+
L


Therefore,
=
+
+
+
=
++
4s
e4
2s
e4
)s(F
8)-(2s4)-(2s
[ ]
8s6s
)e8e16(s)e4e4(e
2
-22-226)-(2s
++
+++
+



Chapter 15, Solution 12.

)2s(
2
)2s(s
2
2
2
s
)1t(22)1t(222)1t(2
e
)2s(
3s
2s
1
1
2s
e
2s
e
e
)2s(
e
e)s(f
)1t(uee)1t(uee)1t()1t(uete)t(f
+−
+−−




−−−−−−−−−
+
+
=






+
+
+
=
+
+
+
=
−+−−=−=



Chapter 15, Solution 13.

(a)
)()( sF
ds
d
t −→←tf


If f(t) = cost, then
22
2
2
)1(
)12()1)(1(
)( and
1
)(
+
+−+
=
+
=
s
sss
sF
ds
d
s
s
sF


22
2
)1(
1
)cos(

+
−+
=
s
ss
ttL


(b) Let f(t) = e
-t
sin t.

22
1
1)1(
1
)(
22
++
=
++
=
sss
sF


22
2
)22(
)22)(1()0)(22(

++
+−++
=
ss
sss
ds
dF


22
)22(
)1(2
)sin(
++
+
=−=

ss
s
ds
dF
tte
t
L

(c )


→←
s

dssF
t
tf
)(
)(


Let
22
)( then ,sin)(
β
β
β
+
==
s
sFttf


s
ss
ds
s
t
t
s
s
β
β
π

ββ
β
β
ββ
111
22
tantan
2
tan
1sin
−−



=−==
+
=







L



Chapter 15, Solution 14.






<<−
<<
=
2t1t510
1t0t5
)t(f

We may write f as )t(
[ ] [ ]
)2t(u)1t(u)t510()1t(u)t(ut5)t(f −−−−+−−=

)2t(u)2t(5)1t(u)1t(10)t(ut5
−−+−−−=

s2-
2
s-
22
e
s
5
e
s
10
s
5

)s(F +−=

=)s(F
)ee21(
s
5
s2-s-
2
+−



Chapter 15, Solution 15.



[]
)2t(u)1t(u)1t(u)t(u10)t(f −+−−−−=


=






+−=
s
e

e
s
2
s
1
10)s(F
s2-
s-
2s-
)e1(
s
10




Chapter 15, Solution 16.


)4t(u5)3t(u3)1t(u3)t(u5)t(f −−−+−−=

=)s(F
[]
s4-s3-s-
e5e3e35
s
1
−+−




Chapter 15, Solution 17.









>
<<
<<
<
=
3t0
3t11
1t0t
0t0
)t(f
2


[][ ]
)3t(u)1t(u1)1t(u)t(ut)t(f
2
−−−+−−=



)3t(u)1t(u)1t(u)1t2-()1t(u)1t()t(ut
22
−−−+−++−−−=


)3t(u)1t(u)1t(2)1t(u)1t()t(ut
22
−−−−−−−−=

=)s(F
s
e
e
s
2
)e1(
s
2
s-3
s-
2
s-
3
−−−



Chapter 15, Solution 18.

(a)


[ ] [ ]
)3t(u)2t(u3)2t(u)1t(u2)1t(u)t(u)t(g −−−+−−−+−−=


)3t(u3)2t(u)1t(u)t(u −−−+−+=


=)s(G
)e3ee1(
s
1
s3-s2-s-
−++


(b)

[ ] [ ]
)3t(u)1t(u2)1t(u)t(ut2)t(h −−−+−−=

[ ]
)4t(u)3t(u)t28( −−−−+



)3t(u2)1t(u2)1t(u2)1t(u)1t(2)t(ut2 −−−+−−−−−=

)4t(u)4t(2)3t(u2)3t(u)3t(2
−−+−+−−−


)4t(u)4t(2)3t(u)3t(2)1t(u)1t(2)t(ut2 −
−+−−−−−−=

=+−−=
s4-
2
s3-
2
s-
2
e
s
2
e
s
2
)e1(
s
2
)s(H
)eee1(
s
2
s4-s3-s-
2
+−−




Chapter 15, Solution 19.


Since
[ ]
1)t( =δ
L
and ,
2T = =)s(F
s2-
e1
1




Chapter 15, Solution 20.


Let
1t0),tsin()t(g
1
<<π=


[]
)1t(u)t(u)tsin( −−π=

)1t(u)tsin()t(u)tsin(
−π−π=


Note that sin( )tsin(-)tsin())1t(
π=π−π=−π .
So,
1)-u(t1))-t(sin(u(t)t)sin()t(g
1
π+π=


)e1(
s
)s(G
s-
22
1
+
π+
π
=

=

=
2s-
1
e1
)s(G
)s(G
)e1)(s(
)e1(

2s-22
-s
−π+




Chapter 15, Solution 21.



π= 2T

Let
[]
)1t(u)t(u
2
t
1)t(f
1
−−






π
−=


)1t(u
2
1
1)1t(u)1t(
2
1
)t(u
2
t
)t(u)t(f
1







π
−−−−
π
+
π
−=


[ ]
[]
2
-s-s

s-
2
s-
2
1
s2
e1-se)12-(2
s
1
e
2
1
1-
s2
e
s2
1
s
1
)s(F
π
+++π+π
=⋅






π

++
π
+
π
−=

=

=
Ts-
1
e1
)s(F
)s(F
[ ]
[ ]
)e1(s2
e1-se)12-(2
s2-2
-s-s
π
−π
+++π+π



Chapter 15, Solution 22.


(a)


Let
1t0,t2)t(g
1
<<=


[ ]
)1t(u)t(ut2 −−=


)1t(u2)1t(u)1t(2)t(ut2 −+−−−=


s-
2
-s
2
1
e
s
2
s
e2
s
2
)s(G +−=


1T,

e1
)s(G
)s(G
sT-
1
=

=


=)s(G
)e1(s
)ese1(2
s-2
-s-s

+−


(b)

Let h , where is the periodic triangular wave. )t(uh
0
+=
0
h

Let
h
be within its first period, i.e.

1 0
h



<<−
<<
=
2t1t24
1t0t2
)t(h
1


)2t(u)2t(2)1t(ut2)1t(u4)1t(ut2)t(ut2)t(h
1
−−−−−−+−−=

)2t(u)2t(2)1t(u)1t(4)t(ut2)t(h
1
−−−−−−=


2s-
22
-2s
s-
22
1
)e1(

s
2
s
e2
e
s
4
s
2
)s(H −=−−=


)e1(
)e1(
s
2
)s(H
2s-
2-s
2
0


=

=)s(H
)e1(
)e1(
s
2

s
1
2s-
2-s
2


+



Chapter 15, Solution 23.


(a)

Let



<<
<<
=
2t11-
1t01
)t(f
1

[ ] [ ]
)2t(u)1t(u)1t(u)t(u)t(f

1
−−−−−−=

)2t(u)1t(u2)t(u)t(f
1
−+−−=


2s-2s-s-
1
)e1(
s
1
)ee21(
s
1
)s(F −=+−=


2T,
)e1(
)s(F
)s(F
sT-
1
=

=

=)s(F

)e1(s
)e1(
2s-
2-s




(b)

Let
[ ]
)2t(ut)t(ut)2t(u)t(ut)t(h
222
1
−−=−−=
)2t(u4)2t(u)2t(4)2t(u)2t()t(ut)t(h
22
1
−−−−−−−−=

2s-2s-
2
2s-
3
1
e
s
4
e

s
4
)e1(
s
2
)s(H −−−=

2T,
)e1(
)s(H
)s(H
Ts-
1
=

=

=)s(H
)e1(s
)ss(es4)e1(2
2s-3
2-2s-2s

+−−


Chapter 15, Solution 24.


(a)

5s6s
ss10
lim)s(sFlim)0(f
2
4
ss
++
+
==
∞→∞→



==
++
+
∞→
0
10
s
5
s
6
s
1
s
1
10
lim
432

3
s
=


=
++
+
==∞
→→
5s6s
ss10
lim)s(sFlim)(f
2
4
0s0s
0


(b)
=
+−
+
==
∞→∞→
6s4s
ss
lim)s(sFlim)0(f
2
2

ss
1


The complex poles are not in the left-half plane.
)(f ∞ existnotdoes


(c)
)5s2s)(2s)(1s(
s7s2
lim)s(sFlim)0(f
2
3
ss
++++
+
==
∞→∞→



==






++







+






+
+
∞→
1
0
s
5
s
2
1
s
2
1
s
1
1
s

7
s
2
lim
2
3
s
=
0


==
++++
+
==∞
→→
10
0
)5s2s)(2s)(1s(
s7s2
lim)s(sFlim)(f
2
3
0s0s
0


Chapter 15, Solution 25.



(a)

)4s)(2s(
)3s)(1s)(8(
lim)s(sFlim)0(f
ss
++
++
==
∞→∞→



=






+






+







+






+
∞→
s
4
1
s
2
1
s
3
1
s
1
1)8(
lim
s
=
8



===∞
→→
)4)(2(
)3)(1)(8(
lim)s(sFlim)(f
0s0s
3


(b)

1s
)1s(s6
lim)s(sFlim)0(f
4
ss


==
∞→∞→


==









=
∞→
1
0
s
1
1
s
1
s
1
6
lim)0(f
4
42
s
0


All poles are not in the left-half plane.
)(f ∞ existnotdoes



Chapter 15, Solution 26.


(a)


=
++
+
==
∞→∞→
6s4s
s3s
lim)s(sFlim)0(f
23
3
ss
1


Two poles are not in the left-half plane.
)(f ∞ existnotdoes

(b)

)4s2s)(2s(
ss2s
lim)s(sFlim)0(f
2
23
ss
++−
+−
==
∞→∞→




=






++







+−
∞→
2
2
s
s
4
s
2
1
s
2

1
s
1
s
2
1
lim
=
1

One pole is not in the left-half plane.
)(f ∞ existnotdoes



Chapter 15, Solution 27.


(a)

=)t(f
-t
e2)t(u +

(b)

4s
11
3
4s

11)4s(3
)s(G
+
−=
+
−+
=

=)t(g
-4t
e11)t(3
−δ

(c)

3s
B
1s
A
)3s)(1s(
4
)s(H
+
+
+
=
++
=

2A =

,
-2B =


3s
2
1s
2
)s(H
+

+
=

=)t(h
-3t-t
e2e2


(d)

4s
C
)2s(
B
2s
A
)4s()2s(
12
)s(J

22
+
+
+
+
+
=
++
=

6
2
12
B == ,
3
)-2(
12
C
2
==

2
)2s(C)4s(B)4s()2s(A12 ++++++=

Equating coefficients :
2
s
:
-3-CACA0 ==→+=
1

s:
6-2ABBA2C4BA60 ==→+=++=
0
s:
121224-24C4B4A812 =++=++=


4s
3
)2s(
6
2s
3-
)s(J
2
+
+
+
+
+
=

=)t(j
-2t-2t-4t
et6e3e3
+−


Chapter 15, Solution 28.



(a)
)t(ut)e4e2()t(f
5s
4
3s
2
5s
2
)4(2
3s
2
)2(2
)s(F
t5t3 −−
+−=
+
+
+

=
+


+
+

=



(b)

()
)t(ut2sine5.1t2cose2e2)t(h
5s2s
1s2
1s
2
)s(H
1C;2B;2A3CB,3CB;BA;11CA5
CA5s)CBA2(s)BA()1s)(CBs()5s2s(A11s3
5s2s
CBs
1s
A
)5s2s)(1s(
11s3
)s(H
ttt
2
22
22
−−−
+−=→
++
+−
+
+
=
=−==→−==+−−==+

++++++=+++++=+
++
+
+
+
=
+++
+
=

Chapter 15, Solution 29.


2222
22
22
3)2s(
3
3
2
3)2s(
)2s(2
s
2
)s(V
6Band2A26s2BsAs26s8s2;
3)2s(
BAs
s
2

)s(V
++

++
+
−=
−=−=→+=++++
++
+
+=


v(t) = 0t,t3sine
3
2
t3cose2)t(u
t2t2
≥−−
−−
2


Chapter 15, Solution 30.


(a)
222222
1
3)2s(
3

3
2
3)2s(
)2s(2
3)2s(
2)2s(2
)s(H
++
+
++
+
=
++
++
=

t3sine
3
2
t3cose2)t(h
t2t2
1
−−
+=

(b)
)5s2s(
DCs
)1s(
B

)1s(
A
)5s2s()1s(
4s
)s(
2222
2
2
++
+
+
+
+
+
=
+++
+
=H

22222
)1s(D)1s(Cs)5s2s(B)5s2s)(1s(A4s ++++++++++=+
or

)1s2s(D)ss2s(C)5s2s(B)5s7s3s(A4s
2232232
++++++++++++=+
Equating coefficients:

ACCA0:s
3

−=→+=
DBADC2BA31:s
2
++=+++=
2/1C,2/1A2A4D2B2A6D2CB2A70:s =−=→+=++=+++=

4/1D,4/5B1B4A4DB5A54:constant ==→++=++=









++
−+
+
+
+
+

=









++
+
+
+
+
+

=
)2)1s(
1)1s(2
)1s(
5
)1s(
2
4
1
)5s2s(
1s2
)1s(
5
)1s(
2
4
1
)s(H
22222
2
Hence,


()
)t(ut2sine5.0t2cose2te5e2
4
1
)t(h
tttt
2
−−−−
−++−=

(c )








+
+
+
=









+
+
+
=
++
+
=
−−

)3s(
1
)1s(
1
e
2
1
)3s(
B
)1s(
A
e
)3s)(1s(
e)2s(
)s(H
ss
s
3



()
)1t(uee
2
1
)t(h
)1t(3)1t(
3
−+=
−−−−



Chapter 15, Solution 31.


(a)

3s
C
2s
B
1s
A
)3s)(2s)(1s(
s10
)s(F
+
+
+

+
+
=
+++
=

-5
2
10-
)1s()s(FA
1-s
==+=
=


20
1-
20-
)2s()s(FB
-2s
==+=
=


-15
2
30-
)3s()s(FC
3-s
==+=

=


3s
15
2s
20
1s
5-
)s(F
+

+
+
+
=

=)t(f
-3t-2t-t
e15e20e5-
−+

(b)

323
2
)2s(
D
)2s(
C

2s
B
1s
A
)2s)(1s(
1s4s2
)s(F
+
+
+
+
+
+
+
=
++
++
=

-1)1s()s(FA
1-s
=+=
=

-1)2s()s(FD
-2s
3
=+=
=


)4s4s)(1s(B)4s4s)(2s(A1s4s2
222
+++++++=++
)1s(D)2s)(1s(C +++++

Equating coefficients :
3
s: 1 -ABBA0 ==→+=
2
s: 3 A2CCACB5A62 =−=→+=++=
1
s:
DC3A4DC3B8A124 ++=+++=

-1A-2DDA64 =−=→++=
0
s:
116-4D2C4ADC2B4A81 =−+=++=+++=


32
)2s(
1
)2s(
3
2s
1
1s
1-
)s(F

+

+
+
+
+
+
=

2t-
2
2t-2t-t-
e
2
t
et3ee-f(t) −++=

=)t(f
2t-
2
t-
e
2
t
t31e-







−++


(c)

5s2s
CBs
2s
A
)5s2s)(2s(
1s
)s(F
22
++
+
+
+
=
+++
+
=

5
1-
)2s()s(FA
-2s
=+=
=



)2s(C)s2s(B)5s2s(A1s
22
++++++=+

Equating coefficients :
2
s:
5
1
-ABBA0 ==→+=


1
s
: 1CC0CB2A21 =→+=++=
0
s:
121-C2A51 =+=+=


222222
2)1s(
54
2)1s(
)1s(51
2s
51-
2)1s(
1s51

2s
51-
)s(F
++
+
++
+
+
+
=
++
+⋅
+
+
=

=)t(f
)t2sin(e4.0)t2cos(e2.0e0.2-
-t-t-2t
++




Chapter 15, Solution 32.


(a)
4s
C

2s
B
s
A
)4s)(2s(s
)3s)(1s(8
)s(F
+
+
+
+=
++
++
=

3
)4)(2(
(8)(3)
s)s(FA
0s
===
=


2
)-4(
(8)(-1)
)2s()s(FB
-2s
==+=

=


3
(-2))-4(
)(8)(-1)(-3
)4s()s(FC
-4s
==+=
=


4s
3
2s
2
s
3
)s(F
+
+
+
+=

=)t(f
-4t-2t
e3e2)t(u3
++

(b)


22
2
)2s(
C
2s
B
1s
A
)2s)(1s(
4s2s
)s(F
+
+
+
+
+
=
++
+−
=


)1s(C)2s3s(B)4s4s(A4s2s
222
+++++++=+−

Equating coefficients :
2
s:

A1BBA1 −=→+=
1
s:
CA3CB3A42- ++=++=

0
s:
-6B2B-CB2A44 =→−=++=

7B1A =−=

-12A--5C ==


2
)2s(
12
2s
6
1s
7
)s(F
+

+

+
=

=

)t(f
-2t-t
e)t21(6e7
+−


(c)

5s4s
CBs
3s
A
)5s4s)(3s(
1s
)s(F
22
2
++
+
+
+
=
+++
+
=


)3s(C)s3s(B)5s4s(A1s
222
++++++=+



Equating coefficients :
2
s
: A1BBA1
−=→+=
1
s: -3CACA3CB3A40
=+→++=++=
0
s: 5A2A-9C3A51
=→+=+=

-4A1B =−=

-83A-C =−=


1)2s(
)2s(4
3s
5
1)2s(
8s4
3s
5
)s(F
22
++

+

+
=
++
+

+
=

=)t(f
)tcos(e4e5
-2t-3t



Chapter 15, Solution 33.


(a)

1s
C
1s
BAs
)1s)(1s(
6
1s
)1s(6
)s(F

224
+
+
+
+
=
++
=


=

)1s(C)1s(B)ss(A6
22
+++++=

Equating coefficients :
2
s: -CACA0 =→+=
1
s: C -ABBA0 ==→+=
0
s
: 3B2BCB6 =→=+=

-3A =
,
3B =
,
3C =



1s
3
1s
3s-
1s
3
1s
33s-
1s
3
)s(F
222
+
+
+
+
+
=
+
+
+
+
=

=)t(f
)tcos(3)tsin(3e3
-t
−+


(b)

1s
es
)s(F
2
s-
+
=
π


=)t(f
)t(u)tcos(
π−π−

(c)

323
)1s(
D
)1s(
C
1s
B
s
A
)1s(s
8

)s(F
+
+
+
+
+
+=
+
=

8A =
,
-8D =


sD)ss(C)ss2s(B)1s3s3s(A8
22323
+++++++++=

Equating coefficients :
3
s: -ABBA0 =→+=
2
s
: B-ACCACB2A30 ==→+=++=
1
s: -ADDADCBA30 =→+=+++=
0
s:
8D,8C,8B,8A −=−=−==



32
)1s(
8
)1s(
8
1s
8
s
8
)s(F
+

+

+
−=

=)t(f
[]
)t(uet5.0ete18
-t2-t-t
−−−



Chapter 15, Solution 34.



(a)

4s
3
11
4s
34s
10)s(F
22
2
+
−=
+
−+
+=


=)t(f
)t2sin(5.1)t(11
−δ

(b)

)4s)(2s(
e4e
)s(G
-2s-s
++
+
=


Let
4s
B
2s
A
)4s)(2s(
1
+
+
+
=
++


21A =

21B =








+
+
+
+







+
+
+
=
4s
1
2s
1
e2
4s
1
2s
1
2
e
)s(G
2s-
-s


=)t(g
[][ ]
)2t(uee2)1t(uee5.0
2)--4(t2)--2(t-1)-4(t-1)-2(t

−−+−−

(c)

Let
4s
C
3s
B
s
A
)4s)(3s(s
1s
+
+
+
+=
++
+


121A =
,
32B =
,
43-C =


2s-
e

4s
43
3s
32
s
1
12
1
)s(H






+

+
+⋅=

=)t(h
)2t(ue
4
3
e
3
2
12
1
2)-4(t-2)-3(t-








−+



Chapter 15, Solution 35.

(a)

Let
2s
B
1s
A
)2s)(1s(
3s
)s(G
+
+
+
=
++
+
=


2A = , -1B
=

2t-t-
ee2)t(g
2s
1
1s
2
)s(G −=→
+

+
=

)6t(u)6t(g)t(f)s(Ge)s(F
-6s
−−=→=
=)t(f
[]
)6t(uee2
6)--2(t6)--(t
−−

(b)

Let
4s
B

1s
A
)4s)(1s(
1
)s(G
+
+
+
=
++
=

31A
=
,
31-B
=


)4s(3
1
)1s(3
1
)s(G
+

+
=

[]

4t-t-
ee
3
1
)t(g −=

)s(Ge)s(G4)s(F
-2t
−=
)2t(u)2t(g)t(u)t(g4)t(f −−−=


=)t(f
[][]
)2t(uee
3
1
)t(uee
3
4
2)-4(t-2)-(t-4t-t-
−−−−


(c)

Let
4s
CBs
3s

A
)4s)(3s(
s
)s(G
22
+
+
+
+
=
++
=

133-A
=


)3s(C)s3s(B)4s(As
22
+++++=

Equating coefficients :
2
s: -ABBA0 =→+=
1
s:
CB31 +=
0
s
:

C3A40
+=

133-A =
,
133B =
,
134C =


4s
4s3
3s
3-
)s(G13
2
+
+
+
+
=

)t2sin(2)t2cos(3e-3)t(g13
-3t
++=

)s(Ge)s(F
-s
=


)1t(u)1t(g)t(f
−−=

=)t(f
[]
)1t(u))1t(2sin(2))1t(2cos(3e3-
13
1
1)-3(t-
−−+−+


Chapter 15, Solution 36.

(a)

3s
D
2s
C
s
B
s
A
)3s)(2s(s
1
)s(X
22
+
+

+
++=
++
=

61B =
,
41C =
,
91-D =


)s2s(D)s3s(C)6s5s(B)s6s5s(A1
2323223
+++++++++=

Equating coefficients :
3
s:
DCA0 ++=

2
s
:
CBA3D2C3BA50 ++=+++=

1
s:
B5A60 +=
0

s
: 61BB61 =→=

×