Tải bản đầy đủ (.docx) (19 trang)

Tải Đề thi thử THPT Quốc Gia chuẩn cấu trúc bộ GD&ĐT môn Toán năm học 2016 - 2017 (Đề số 10) - Đề thi thử THPT Quốc Gia môn Toán có đáp án

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (211.37 KB, 19 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

ĐỀ SỐ 10
(đề thử sức số 2)


BỘ ĐỀ THI THPT QUỐC GIA CHUẨN CẤU TRÚC BỘ GIÁO DỤC
Mơn: Tốn học


Thời gian làm bài: 50 phút, khơng kể thời gian phát đề
Đề thi gồm 06 trang


(((((


Câu 1: Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số
được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số
nào?


3


yx 3x 2 yx33x 1 <sub>A. ᄃ</sub> <sub>B. ᄃ</sub>


4 2


y x  x 1y x 3 3x 1 <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


 


 



f x
y


g x



 

 



f x g x 0 <sub>x</sub>lim f x<sub> </sub>

 

1<sub>x</sub>lim g x<sub> </sub>

 

1


Câu 2: Cho hàm số ᄃ với ᄃ, có ᄃ và ᄃ.
Khẳng định nào sau đây là khẳng định đúng?


A. Đồ thị hàm số đã cho khơng có tiệm cận ngang
B. Đồ thị hàm số đã cho có đúng một tiệm cận ngang
C. Đồ thị hàm số có thể có nhiều hơn một tiệm cận ngang.


y 1 y1 <sub>D. Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng ᄃ</sub>


và ᄃ
4


y4x 1<sub>Câu 3: Hỏi hàm số ᄃ nghịch biến trên khoảng nào?</sub>


 ;6

0; 



1
;
2


 


 


 



 

  ; 5

<sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


 



y f x <sub></sub>


Câu 4: Cho hàm số ᄃ xác định, liên tục trên ᄃ và có bảng biến thiên:


x  1<sub>ᄃ ᄃ 0 1 ᄃ </sub>


y'   <sub> ᄃ 0 + 0 ᄃ 0 +</sub>


y   3 <sub>ᄃ ᄃ ᄃ</sub>


4


 <sub> ᄃ ᄃ</sub>


Khẳng định nào sau đây là khẳng định đúng?
A. Hàm số có đúng một cực trị.


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

 <sub>C. Hàm số có giá trị lớn nhất bằng ᄃ và giá trị nhỏ nhất bằng -4.</sub>


x 0 x 1 <sub>D. Hàm số đạt cực đại tại ᄃ và đạt cực tiểu tại ᄃ</sub>


CT


y 3 2



y x  3x <sub> Câu 5: Tìm giá trị cực tiểu ᄃ của hàm số ᄃ</sub>2


CT


y 4 y<sub>CT</sub> 1y<sub>CT</sub> 0 y<sub>CT</sub> 2 <sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


 

2


f x  2 x x


Câu 6: Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số: ᄃ


min 2


max 2


 <sub></sub>









min 3


max 2


 <sub></sub>










min 2


max 3


 <sub></sub>









min 2


max 4


 <sub></sub>









 <sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub>


D. ᄃ
x 1
y


2x 1
 


 d : y x m  <sub>Câu 7: Cho hàm số ᄃ có đồ thị (C) cà đường thẳng ᄃ. Tìm m để d ln</sub>
cắt (C) tại 2 điểm phân biệt A, B.


m 5 m 0 m 1 m   A. ᄃ <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


3 3 2 1 3


y x mx m


2 2


  

<sub></sub>

<sub></sub>



m


C

<sub></sub>

C<sub>m</sub>

<sub></sub>

<sub>d : y x</sub><sub></sub>



Câu 8: Cho hàm số ᄃ có đồ thị ᄃ . Tìm tất cả giá trị
thực của m để đồ thị ᄃ có hai điểm cực đại là A và B thỏa mãn AB vng góc đường thẳng ᄃ


1
m


2



m 0 m 2 m 0 <sub>A. ᄃ hoặc ᄃ</sub> <sub>B. ᄃ hoặc ᄃ</sub>


1
m


2



m 2 <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


2
5x 3
y


x 4x m





  <sub>Câu 9: Cho hàm số ᄃ với m là tham số thực. Chọn khẳng định sai:</sub>
m 4 <sub>A. Nếu ᄃ đồ thị hàm số có một tiệm cận ngang. </sub>



m4 <sub>B. Nếu ᄃ đồ thị hàm số có một tiệm cận ngang và một tiệm cận đứng.</sub>
m 4 <sub>C. Nếu ᄃ đồ thị hàm số có ít nhất một tiệm cận đứng và một tiệm cận</sub>
ngang.


D. Với mọi m hàm số ln có hai tiệm cận đứng.


Câu 10: Người ta cần chế tạo một ly dạng hình cầu tâm O, đường kính 2R. Trong hình cầu có
một hình trụ trịn xoay nội tiếp trong hình cầu. Nước chỉ chứa được trong hình trụ. Hãy tìm
bán kính đáy r của hình trụ để ly chứa được nhiều nước nhất.


R 6
r


3


 r 2R


3


 r 2R


3


 r R


3


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

cot x 2


y


cotx m





;
4 2
 


 


 


 <sub> Câu 11: Tìm tất cả các giá trị thực của tham số m để hàm số ᄃ đồng biến</sub>
trên khoảng ᄃ


m 0 1 m 2  m 0 <sub>A. ᄃ hoặc ᄃ</sub> <sub>B. ᄃ</sub>


1 m 2  m 2 <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


2



3


log x 1 1


Câu 12: Giải phương trình ᄃ



x2 x4 x 2 x 6 <sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


7


y log x <sub>Câu 13: Tính đạo hàm của hàm số ᄃ</sub>


1
y '


x ln 5


 y ' 1


x ln 7


 y ' 1


x


x
13
y '


ln13


A. ᄃ B. ᄃ C. ᄃ D. ᄃ





2


log 3x 1 3


Câu 14: Giải phương trình ᄃ


x 14
1


x 3
3  x 3


10
x


3


A. ᄃ B. ᄃ C. ᄃ


D. ᄃ


3 2



y ln x  4x


Câu 15: Tìm tập xác định D của hàm số ᄃ





D 4; D 

1;3



A. ᄃ B. ᄃ


 



D   ; 1  3; D 

1;3



C. ᄃ D. ᄃ


Câu 16: Đồ thị dưới đây là đồ thị của hàm số nào trong 4 đáp án sau:


x


y 2 y 3 x y 4 x y 2x 2


A. ᄃ B. ᄃ C. ᄃ
D. ᄃ


3


2log a 2


5 a


B 3  log a .log 25<sub>Câu 17: Cho biểu thức ᄃ với a dương, khác 1. Khẳng định nào sau</sub>


đây là khẳng định đúng?


2


B a  4B 2a 5  log<sub>a</sub>2 <sub>4</sub>

 

B 1


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

2
x 4
y log


x 4


 


 <sub></sub> <sub></sub>




 <sub> Câu 18: Tính đạo hàm của hàm số ᄃ</sub>




x 4
y '


x 4 ln 2






8
y '


x 4 ln 2


2



8
y '


x 4 ln 2


2

2


8
y '


x 4 ln 2




A. ᄃ B. ᄃ C. ᄃ
D. ᄃ


3 3


log 15 a, log 10 b  log 50 Câu 19: Cho ᄃ. Tính ᄃ theo a và b.<sub>9</sub>





9
1


log 50 a b 1
2


  


9


log 50 a b 1   <sub>A. ᄃ</sub> <sub>B. ᄃ</sub>


9


log 50 a b  log 50 2a b<sub>9</sub>   <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>




2


4 2 1


2


log x log 2x 1 log 4x 3 0


Câu 20: Cho bất phương trình ᄃ. Chọn khẳng định


đúng:


2; 

<sub>A. Tập nghiệm của bất phương trình là chứa trong tập ᄃ</sub>


2 2


log x log 3 <sub>B. Nếu x là một nghiệm của bất phương trình thì ᄃ</sub>
1


x 3


2  <sub>C. Tập nghiệm là ᄃ</sub>


1 x 3  <sub>D. Tập nghiệm của bất phương trình là ᄃ</sub>


Câu 21: Một người gởi 100 triệu đồng vào ngân hàng theo kì hạn một năm với lãi suất 1,75%
năm thì sau bao nhiêu năm người đó thu được một số tiền là 200 triệu. Biết rằng tiền lãi sau
mỗi năm được cộng vào tiền gốc trước đó và trở thành tiền gốc của năm tiếp theo. Đáp án
nào sau đây gần số năm thực tế nhất.


A. 41 năm B. 40 năm C. 42 năm D. 43 năm


 

 



y f x , y g x  x a, x b a b 



Câu 22: Cơng thức tính diện tích hình phẳng giới hạn
bởi hai đồ thị hàm số ᄃ và hai đường thẳng ᄃ là:


 

 




b


a


S

<sub></sub>

f x  g x dx

<sub> </sub>

<sub> </sub>


b


a


S

<sub></sub>

f x  g x dx


A. ᄃ B. ᄃ


 

 





b


2


a


S

<sub></sub>

f x  g x dx

 

 


b


a


S

<sub></sub>

f x  g x dx


C. ᄃ D. ᄃ


 



4
2
2x 3
f x


x



</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

 



3
2x 3


f x dx C


3 x


  


 



3
2x 3



f x dx C


3 x


  


<sub>A. ᄃ</sub> <sub>B. ᄃ</sub>


 

3 3


f x dx 2x C


x


  


 



3


2x 3


f x dx C


3 2x


  


<sub>C. ᄃ</sub> <sub>D. ᄃ</sub>



8


0


I sin x.sin 3xdx


<sub></sub>



Câu 24: Tính ᄃ
2 1


I
4




 I 2 1


4


 I 2 1


8


 I 2 1


8





A. ᄃ B. ᄃ C. ᄃ D. ᄃ


5
2


0


x


J 1 2sin dx


4


 


 <sub></sub>  <sub></sub>


 




Câu 25: Tính ᄃ là:
8


J
15



 J 15


8


 J 16


15


 J 15


16


A. ᄃ B. ᄃ C. ᄃ D. ᄃ


12


0


I tan 4 xdx


<sub></sub>



Câu 26: Tính ᄃ :
1


I ln 2
2



 I 1ln 2
3


 I 1ln 2
4


 I 1ln 2
5


A. ᄃ B. ᄃ C. ᄃ D. ᄃ


2


y x  2x 2 M 3;5

<sub>Câu 27: Ở hình bên, ta có parabol ᄃ, tiếp tuyến với nó tại điểm ᄃ.</sub>
Diện tích phần gạch chéo là:


A. 9 B. 10 C. 12
D. 15


2 2 Câu 28: Một cái chng có
dạng như hình vẽ. Giả sử khi cắt
chng bởi mặt phẳng qua trục
của chuông, được thiết diện có


đường viền là một phần parabol ( hình vẽ ). Biết chng cao 4m, và bán kính của miệng
chng là ᄃ . Tính thể tích


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

6 12 <sub>2</sub>3<sub>16</sub>



A. ᄃ B. ᄃ C. ᄃ D. ᄃ


z 2i 3 
z


z <sub>Câu 29: Nếu ᄃ thì ᄃ bằng:</sub>


5 6i
2i
11


 5 12i
13


 5 12i
13


 3 4i
7


A. ᄃ B. ᄃ C. ᄃ D. ᄃ


Câu 30: Số nào trong các số phức sau là số thực


3 i

 

 3 i

2 i 5

 

 1 2i 5



A. ᄃ B. ᄃ



1 i 3 1 i 3

 



2 i
2 i


 <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>




A 4;1 , B 1;3 , C 6;0  <sub>z , z , z Câu 31: Trong mặt phẳng phức ᄃ lần lượt biểu diễn các số</sub><sub>1</sub> <sub>2</sub> <sub>3</sub>


phức ᄃ . Trọng tâm G của tam giác ABC biểu diễn số phức nào sau đây?


4


3 i


3


 3 4i


3


  3 4i


3


 3 4i



3
 


A. ᄃ B. ᄃ C. ᄃ D. ᄃ


z
z


z i


 Câu 32: Tập hợp các nghiệm của phương trình ᄃ là:


0;1 i

<sub> </sub>

0

<sub></sub>

1 i

<sub></sub>

<sub></sub>

0;1

<sub></sub>



A. ᄃ B. ᄃ C. ᄃ D. ᄃ


2


z.z 29, z 21 20i <sub>Câu 33: Tìm số phức z biết ᄃ, phần ảo z là một số thực âm.</sub>


z 2 5iz 2 5i  z 5 2i  z 5 2i <sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


z  z 3 4i


Câu 34: Trong mặt phẳng phức, tập hợp các điểm M biểu diễn số phức z biết
ᄃ là:


2 2



x y


1


4  2  y2 4x <sub>A. Elip ᄃ</sub> <sub>B. Parabol ᄃ</sub>


2 2


x y  4 0 6x 8y 25 0   <sub>C. Đường tròn ᄃ</sub> <sub>D. Đường thẳng ᄃ</sub>


a 3


2 <sub>Câu 35: Cho hình hộp đứng ABCD.A’B’C’D’ có đáy là hình vuông cạnh a. Khoảng</sub>


cách từ điểm A đến mặt phẳng (A’BCD’) bằng ᄃ. Tính thể tích hình hộp theo a.


3
V a


3


a 21


V
7


 <sub>V a</sub>3 <sub>3</sub>





3


a 3


V
3


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

AB a, AD 2a  <sub>Câu 36: Cho hình chóp S.ABCD có đáy ABCD là hình cữ nhật, SA vng</sub>


góc với mặt đáy (ABCD), ᄃ. Góc giữa cạnh bên SB và mặt phẳng (ABCD) bằng 450. Thể
tích hình chop S.ABCD bằng


3
6a
18


3
2 2a


3
3
a


3
3
2a


3 <sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>



1 1 1


SA ' SA;SB' SB;SC' SC


2 3 4


  


Câu 37: Cho khối chóp S.ABC. Trên các đoạn SA, SB,
SC lần lượt lấy ba điểm A', B', C’ sao cho ᄃ. Khi đó tỉ số thể tích của hai khối chóp S.A'B'C'
và S.ABC bằng:


1
2


1
6


1
12


1


24 <sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


Câu 38: Cho hình chóp S.ABCD có đáy ABCD là hình vng cạnh a. Hình chiếu vng góc
của S lên mặt phẳng (ABCD) trùng với trung điểm H của cạnh AB. Góc tạo bởi SC và
(ABCD) bằng 450. Tính theo a tính khoảng cách giữa hai đường thẳng SD và AB.



2a 5
d


3


 d a 5


13


 d a 5


3


 d a 15


3


A. ᄃ B. ᄃ C. ᄃ D. ᄃ


a
OA OB a,OC


2


  




OC OAB



Câu 39: Cho tứ diện OABC có OAB là tam giác vng
cân. ᄃ và ᄃ. Xét hình nón trịn xoay đỉnh C, đáy là đường trịn tâm O, bán kính a. Hãy chọn
câu sai.


A. Đường sinh hình nón bằng


B. Khoảng cách từ O đến thiết diện (ABC) bằng
C. Thiết diện (ABC) là tam giác đều.


D. Thiết diện (ABC) hợp với đáy góc 450.


Câu 40: Cho hình nón có chiều cao h và góc ở đỉnh bằng 900. Thể tích của khối nón xác định
bởi hình nón trên:


3
h
3


 6 h3
3


 2 h3
3


3


2 h <sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>



Câu 41: Một hình trụ có diện tích xung quanh bằng S, diện tích đáy bằng diện tích một mật
cầu bán kính a. Khi đó, thể tích của hình trụ bằng:


1
Sa
2


1
Sa
3


1
Sa


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

2


1
cos


3
 


Câu 42: Cho tứ diện ABCD có ABC và DBC là 2 tam giác đều cạnh chung
BC = 2. Cho biết mặt bên (DBC) tạo với mặt đáy (ABC) góc ᄃ mà ᄃ. Hãy xác định tâm O của
mặt cầu ngoại tiếp tứ diện đó.


A. O là trung điểm của AB. B. O là trung điểm của AD.
C. O là trung điểm của BD. D. O thuộc mặt phẳng (ADB).


1 2 3

1 2 3




a a , a ,a , b b , b , b <sub>0</sub><sub>a</sub><sub>b</sub><sub>c</sub>


Câu 43: Trong khơng gian Oxyz, cho hai vector ᄃ khác
ᄃ. Tích hữu hướng của ᄃ và ᄃ và ᄃ. Câu nào sau đây đúng?


1 3 2 1 2 3 3 2 3 1 1 3



c a b  a b ,a b  a b ,a b  a b


2 3 3 2 3 1 1 b 1 2 2 1



c a b  a b ,a b  a b ,a b  a b


A. ᄃ B. ᄃ


3 1 1 3 1 2 2 1 2 3 3 1



c a b  a b ,a b  a b ,a b  a b


1 3 3 1 2 2 1 2 3 2 2 3



c a b  a b ,a b  a b ,a b  a b


C. ᄃ D. ᄃ


1 2 3

1 2 3




a a , a ,a , b b , b , b <sub>0</sub>cos a, b



 


Câu 44: Trong không gian Oxyz, cho hai vector ᄃ
khác ᄃ. ᄃ là biểu thức nào sau đây?


1 1 2 2 3 3
a b a b a b


a . b


 


  a b1 2 a b2 3 a b3 1
a . b


 


 


A. ᄃ B. ᄃ


1 3 2 1 3 2
a b a b a b


a . b


 



  a b1 1 a b2 2 a b3 1
a . b


 


 


C. ᄃ D. ᄃ


x 2y z 6 0, 2x y 3z 13 0,3x 2y 3z 16 0            <sub>Câu 45: Ba mặt phẳng ᄃ cắt nhau</sub>


tại điểm A. Tọa độ của A là:




A 1; 2;3 A 1; 2;3

<sub></sub>

<sub></sub>

A 1; 2;3

<sub></sub>

 

<sub></sub>

A 1; 2; 3

<sub></sub>

 

<sub></sub>



A. ᄃ B. ᄃ C. ᄃ D. ᄃ




A 0;1; 1 , B 1;1;2 , C 1; 1;0 , D 0;0;1 


Câu 46: Cho tứ giác ABCD có ᄃ . Tính độ dài
đường cao AH của hình chóp A.BCD.


2
2



3 2


2 2 2 3 2 <sub>A. ᄃ</sub> <sub>B. ᄃ</sub> <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>


 



x 3 4t
D : y 1 4t t


z t 3
 



  



  




  

P : m 1 x 2y 4z n 9 0

    <sub> Câu 47: Với giá trị nào của m, n thì</sub>
đường thẳng ᄃ nằm trong mặt phẳng ᄃ?


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

m 3; n 11m 4;n 14 <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>




I 1;5;2



Câu 48: Viết phương trình tham số của đường thẳng (D) qua ᄃ và song song với
trục Ox.


x t 1
y 5 ; t
z 2


 



 



 




x m


y 5m ; m
z 2m






 




 




A. ᄃ B. ᄃ


x 2t
y 10t ; t
z 4t






 



 




C. ᄃ D. Hai câu A và C




A 2;3;5

<sub> </sub>

P : 2x 3y z 17 0   <sub> Câu 49: Cho điểm ᄃ và mặt phẳng ᄃ. Gọi A’ là điểm đối</sub>


xứng của A qua (P). Tọa độ điểm A’ là:


12 18 34


A ' ; ;


7 7 7


 


 


 


12 18 34


A ' ; ;


7 7 7


 




 


  <sub>A. ᄃ</sub> <sub>B. ᄃ</sub>


12 18 34



A ' ; ;


7 7 7


 


 


 


 


12 18 34


A ' ; ;


7 7 7


 


 


 


  <sub>C. ᄃ</sub> <sub>D. ᄃ</sub>




A 1;0;1 ; B 2; 1;0 ;C 0; 3; 1   M x; y;z

<sub>AM</sub>2 <sub>BM</sub>2 <sub>CM</sub>2


  <sub>Câu 50: Cho ba điểm ᄃ .</sub>


Tìm tập hợp các điểm ᄃ thỏa mãn ᄃ
2 2 2


x y z  2x 8y 4z 13 0    <sub>A. Mặt cầu ᄃ</sub>
2 2 2


x y z  2x 4y 8z 13 0    <sub>B. Mặt cầu ᄃ</sub>
2 2 2


x y z 2x 8y 4z 13 0    <sub>C. Mặt cầu ᄃ</sub>


2x 8y 4z 13 0    <sub>D. Mặt phẳng ᄃ</sub>


Đáp án


1-A 2-C 3-B 4-D 5-D 6-A 7-D 8-D 9-A 10-A


11-D 12-A 13-B 14-C 15-A 16-A 17-A 18-C 19-A 20-C


21-B 22-A 23-A 24-C 25-C 26-C 27-A 28-D 29-B 30-C


31-B 32-A 33-B 34-D 35-C 36-D 37-D 38-C 39-C 40-A


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

LỜI GIẢI CHI TIẾT


<b>Câu 1: Đáp án A</b>



a 0

0;2

<sub>Đồ thị hình bên là dạng đồ thị của hàm số bậc 3 có ᄃ, nó di qua điểm ᄃ</sub>


<b>Câu 2: Đáp án C</b>


 


 



x
x


x


lim f x <sub>1</sub>


lim y 1


lim g x 1
 


 


 


  


 <sub>y</sub><sub></sub><sub>1</sub>


Ta có: ᄃ suy ra ᄃ là tiệm cận ngang. Rõ ràng đồ thị hàm
số có thể nhiều hơn một tiệm cận.



<b>Câu 3: Đáp án B</b>


3


y '16x 0 x

0; Ta có: ᄃ với ᄃ



<b>Câu 4: Đáp án D</b>


x1x 0 <sub>Hàm số đạt cực tiểu tại ᄃ và đạt cực đại tại ᄃ</sub>


<b>Câu 5: Đáp án D</b>


2 x 0


y ' 3x 6x 0


x 2



  <sub>  </sub>




 a 0 x 2<sub> ᄃ do ᄃ nên ᄃ là điểm cực tiểu của hàm số suy ra</sub>
3


CT


y 2  3.4 2 2





<b>Câu 6: Đáp án A</b>


D  2; 2


 <sub> TXĐ: ᄃ</sub>


 



2


2 2


x x 2 x


f ' x 1


2 x 2 x


   


  


  <sub>ᄃ</sub>


 

2


2 2


x 0


f ' x 0 2 x x x 1


2 x x





     <sub></sub>  


 


 <sub>ᄃ</sub>


 

 



f  2  2;f 1 2;f 2  2


 

 



2; 2


max f x f 1 2
 


 


 

<sub> </sub>




2; 2


min f x f 2 2


 
 


  


ᄃ, ᄃ


<b>Câu 7: Đáp án D</b>


x 1


d : x m


2x 1
 


 


 <sub>PTHĐGĐ của (C) và ᄃ</sub>
1


x
2



ĐK: ᄃ


 

<sub>1</sub> <sub>x 1 2x</sub>2 <sub>2mx x m</sub>


      


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

 



2


2x 2mx 1 m 0, *


    



1


x
2


Ta thấy ᄃ khơng phải là nghiệm của phương trình
2


' m 2m 2 0, m


      <sub>Ta có: ᄃ</sub>


Do đó pt ln có 2 nghiệm phân biệt với mọi m
Vậy d cắt (C) tại 2 điểm phân biệt với mọi m



<b>Câu 8: Đáp án D</b>


3
2


1


x 0 y m


y' 3x 3mx y ' 0 2


x m y 0




  




    




  


 <sub>Ta có: ᄃ</sub>


m 0<sub> Để hàm số có hai điểm cực trị thì ᄃ</sub>





2 3


1 1


A 0; m , B m;0 AB m, m


2 2


   


  


   


   





Giả sử ᄃ




n1; 1  u1;1


Ta có vtpt của d là ᄃ


3 m 0



1


AB d AB.u 0 m m 0 m 2


2 m 2





       <sub></sub>  




 


 
 
 
 
 
 
 
 
 
 
 
 
 


Để ᄃ



<b>Câu 9: Đáp án A</b>


2


x 4x m 0    ' 4 m 0  m 4<sub>Xét phương trình ᄃ, với ᄃ thì phương trình này vơ</sub>


nghiệm nên đồ thị hàm số khơng có tiệm cận đứng.


<b>Câu 10: Đáp án A</b>


2


Vr h<sub>Gọi h và r là chiều cao và bán kính đáy của</sub>


hình trụ. Bài tốn quy về việc tính h và r phụ thuộc theo
R khi hình chữ nhật ABCD nội tiếp trong hình trịn
(O,R) thay đổi về ᄃ đạt giá trị lớn nhất.


2 2 2 2 2 2


AC AB BC  4R 4r h <sub>Ta có: ᄃ</sub>




2 1 2 1 3 2


V R h h h R h 0 h 2R


4 4



   


<sub></sub>  <sub></sub>  <sub></sub>  <sub></sub>  


    <sub>ᄃ </sub>


2 2


3 2R


V ' h R h


4 3


 


 <sub></sub>  <sub></sub> 


  <sub>ᄃ</sub>


3
max


4 2R


V V R 3 h


9 3



    


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

x 2R


3 2R 0 ᄃ


y' + 0
-y


2 2


2 2 1 4R 2R R 6


r R . r


4 3 3 3


    


Lúc đó ᄃ


<b>Câu 11: Đáp án D</b>




u cot x, u  0;1


u 2
y



u m



 <sub>Đặt ᄃ thì ᄃ</sub>








2 2


x 2 x 2 2


2 m


2 m 2 m


y ' .u ' . 1 cot x . 1 cot x


u m u m u m


 


 


 



     


 


  


Ta có: ᄃ


x


; y ' 0


4 2
 


 


 


 


  4 2;


 


 


 



 



m 2


m 2
m 0;1






 






 <sub>Hàm số đồng biến trên ᄃ với mọi x thuộc ᄃ</sub>
hay ᄃ


<b>Câu 12: Đáp án A</b>


2


x 1 0 <sub>Điều kiện ᄃ</sub>


2

2


3



log x 1  1 x  4 x2


Phương trình ᄃ, thỏa điều kiện


<b>Câu 13: Đáp án B</b>


1
y '


x.ln 7




<b>Câu 14: Đáp án C</b>


1
3x 1 0 x


3


   


Điều kiện ᄃ




2


log 3x 1  3 3x 1 8   x 3 <sub>x 3</sub><sub> ᄃ, kết hợp điều kiện ta được ᄃ</sub>



<b>Câu 15: Đáp án A</b>




3 2 2


x  4x  x x 4  0 x 4


Điều kiện xác định: ᄃ


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

1; 2



Đồ thị hàm số đi qua điểm ᄃ chỉ có A, D thỏa tuy nhiên đáp án D có đồ thị là một
parabol.


<b>Câu 17: Đáp án A</b>


2


3 3


2log a 2 log a 2


5 a 5 a


B 3  log a .log 25 3  4log a.log 5 a  4<sub>Ta có: ᄃ</sub>


<b>Câu 18: Đáp án C</b>



<sub></sub>

<sub></sub>

<sub></sub>

<sub></sub>



'


2 2


1 x 4 x 4 8 8


y ' .


x 4 <sub>ln 2</sub> x 4 x 4 ln 2 x 4 x 4 ln 2
x 4


 


 


 <sub></sub> <sub></sub>  


  


     


 




  <sub>Ta có: ᄃ</sub>


<b>Câu 19: Đáp án A</b>



2


9 3 3


1


log 50 log 50 log 50
2


 


Ta có ᄃ


3 3 3 3


150


log 50 log log 15 log 10 1 a b 1
3


      






9 3


1 1



log 50 log 50 a b 1


2 2


   


Suy ra ᄃ
Hoặc học sinh có thể kiểm tra bằng MTCT.


<b>Câu 20: Đáp án C</b>


 



1


x *


2


ĐK: ᄃ


<sub></sub>

<sub></sub>



2 2


4 2 1 2 2


2



log x log 2x 1 log 4x 3  0 log 2x  x log 4x 3


2 1


2x 5x 3 0 x 3


2


        1 x 3


2  <sub>ᄃ kết hợp đk (*) ta được ᄃ</sub>


<b>Câu 21: Đáp án B </b>


r 1,75% <sub>Đặt ᄃ</sub>




100 100.r 100 1 r  


Số tiền gốc sau 1 năm là:ᄃ


2


100 1 r 100 1 r r 100 1 r  


Số tiền gốc sau 2 năm là: ᄃ



n


100 1 r


Như vậy số tiền gốc sau n năm là: ᄃ


n

n 1 r


100 1 r 200 1 r  2 n log 2 40   Theo đề ᄃ


<b>Câu 22: Đáp án A</b>


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<b>Câu 23: Đáp án A</b>


 



3
2


2


3 2x 3


f x dx 2x dx C


x 3 x


 


 <sub></sub>  <sub></sub>   



 






<b>Câu 24: Đáp án C</b>




8 8 <sub>8</sub>


0 0 0


1 1 1 1 2 1


I sin x.sin 3x.dx cos 2x cos 4x dx sin 2x sin 4x


2 2 2 4 8


  <sub></sub>




 


    <sub></sub>  <sub></sub> 


 







<b>Câu 25: Đáp án C</b>


5
2


0


x 16


J 1 2sin dx


4 15




 


 <sub></sub>  <sub></sub> 


 







<b>Câu 26: Đáp án C</b>


Sử dụng MTCT giá trị này là
đáp án A.


<b>Câu 27: Đáp án A</b>


 

2


1


f x x  2x 2


 

 



1 1


f ' x 2x 2,f ' 3 4 M 3;5

y 5 4 x 3 

 y 4x 7 


Đặt ᄃ . Ta có ᄃ . Tiếp tuyến
của parabol đã cho tại điểm ᄃ có phương trình ᄃ


 



2


f x 4x 7


Đặt ᄃ. Diện tích phải tìm là:



 

 

<sub></sub>

<sub></sub>



3 3


2


1 2


0 0


f x  f x dx x  2x 2  4x 7 dx








3
3


3 3


2
2


0 0 <sub>0</sub>


x 3



x 6x 9 dx x 3 dx 9


3


 <sub></sub> 


       


 


 






<b>Câu 28: Đáp án D</b>


0;0 , 4; 2 2 , 4; 2 2

 



2
y
x


2


y 2x, x 0, x 4  <sub>Xét hệ</sub>


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>




4 <sub>4</sub>


2
0
0


V

<sub></sub>

2xdx x  16


Ta có ᄃ


<b>Câu 29: Đáp án B</b>


z 2i 3 3 2i    z 3 2i  <sub>Vì ᄃ nên ᄃ, suy ra </sub>


3 2i 3 2i

 



z 3 2i 5 12i


z 3 2i 9 4 13


 


 


  


  <sub>ᄃ</sub>


<b>Câu 30: Đáp án C</b>



1 i 3 1 i 3

 

 1

i 3

2 4


<b>Câu 31: Đáp án B</b>


4


G 3;


3


 




 


 <sub>Trọng tâm của tam giác ABC là ᄃ</sub>


4


z 3 i


3
 


Vậy G biểu diễn số phức ᄃ


<b>Câu 32: Đáp án A</b>



z 0


z 0


z 1


z z 1 0 <sub>1</sub>


z 1 i


z i z i 1


z i






  <sub></sub>


  <sub></sub>  <sub></sub>   <sub></sub>


  


     


  <sub>ᄃ</sub>



<b>Câu 33: Đáp án B</b>




z a ib a, b  , b 0


Đặt ᄃ


 



 


 



2 2


2 2
2 2 2


z a bi z.z a b 29 1


a b 21 2


z a b 2abi 21 20i


2ab 20 3


      






  


 


     <sub> </sub>







 


 <sub>Ta có: ᄃ</sub>


2


2b 50 b 0 b5<sub>(1) trừ (2), ta có ᄃ mà ᄃ nên ᄃ</sub>


b5a 2<sub> Thay ᄃ vào (3) ta được ᄃ</sub>


z 2 5i  <sub>Vậy ᄃ</sub>


<b>Câu 34: Đáp án D</b>




z x yi x, y    M x; y

<sub>Đặt ᄃ và ᄃ là điểm biểu diễn của z.</sub>



 



2 2


z x y


z 3 4i x iy 3 4i x 3 y 4 i


 <sub></sub> <sub></sub>





         




</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

2

2


z 3 4i x 3 y 4


       




2

2


2 2


z  z 3 4i  x y  x 3  y 4  6x 8y 25 0  <sub> Vậy ᄃ</sub>



<b>Câu 35: Đáp án C</b>


Gọi H là hình chiếu của A lên cạnh A’B


a 3


AH A 'BCD ' AH


2


   




AA ' x 0<sub>  Gọi ᄃ. Áp dụng hệ thức về cạnh và đường cao</sub>
trong tam giác AA’B:


2 2 2 2 2 2


1 1 1 4 1 1


AH AA ' AB  3a x a <sub>ᄃ</sub>
2 2


x 3a x a 3


    <sub>ᄃ</sub>


3


ABCD.A'B'C'D'


V AA '.AB.AD a 3.a.a a  3




<b>Câu 36: Đáp án D</b>


3
ABCD


1 1 2a


V SA.S .a.a.2a


3 3 3


  




<b>Câu 37: Đáp án D</b>


S.A 'B'C'
S.ABC


V SA ' SB' SC' 1 1 1 1


. . . .



V SA SB SC 2 3 424<sub>Ta có: ᄃ</sub>


<b>Câu 38: Đáp án C</b>


0


SCH 45 <sub>Xác định được</sub>


đúng góc giữa SC và
(ABCD) là ᄃ


a 5 a 5


HC SH


2 2


  


Tín
h được ᄃ




AB / / SCD , H AB d AB;SD

d AB, SCD

d H, SCD



</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

HK SI <sub>Gọi I là trung điểm của CD. Trong (SHI), dựng ᄃ tại K</sub>





HK SCD  d H; SCD HK


Chứng minh được ᄃ
Xét tam giác SHI vuông tại H, HK đường cao:


2 2 2 2 2 2


1 1 1 4 1 9 a 5


HK


HK SH HI 5a a 5a   3 <sub>ᄃ</sub>


a 5


d AB;SD HK


3


 


Vậy ᄃ


<b>Câu 39: Đáp án C</b>


AB a 2 <sub>Tam giác OAB vuông cân tại O nên ᄃ</sub>


2 2


2 2 2 2 a 3a



OAC : AC OA OC a


2 2


     




a 6
AC


2




AB AC <sub>Vì ᄃ: Câu C) sai</sub>


<b>Câu 40: Đáp án A</b>


R h <sub> Do góc ở đỉnh của hình nón bằng 900 nên thiết diện qua trục hình nón là tam giác</sub>
vng cân. Suy ra bán kính đáy của hình nón là ᄃ


3
2


1 h


V R h



3 3




  


Thể tích khối nón là : ᄃ


<b>Câu 41: Đáp án B</b>


Gọi R và h là bán kính đáy và chiều cao của hình trụ. Khi đó :


2 2 2


d


S R  R  4 a <sub></sub> <sub>R 2a</sub><sub></sub>


ᄃ (Sd là diện tích mặt cầu) ᄃ




xq xq


S


S 2 Rh S S S h


4 a



     


 ᄃ


2
d


S
V S .h 4 a . Sa


4 a


   


 <sub>Vậy ᄃ</sub>


<b>Câu 42: Đáp án B</b>


a 3
AM DM


2


 


Gọi M là trung điểm cạnh BC. Vì ABC và DBC là 2 tam giác đều bằng
nhau nên 2 trung truyến AM và DM cùng vng góc với BC và ᄃ


MAD



</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

2 2 2


AD AM DM  2AM.DM.cos 2<sub>ᄃ</sub>


2 2


2


3a 3a 1


AD 2.2. 2. . 2a


4 4 3


   




2 2 2 2 2 2


BA BD a a 2a AD <sub>Ta có: ᄃ</sub>
0


ABD 90


  <sub>ᄃ</sub>


2 2 2



CA CD AD <sub>Tương tự: ᄃ</sub>
0


ACD 90


  <sub>ᄃ</sub>


Vậy mặt cầu ngoại tiếp tứ diện ABCD có tâm O là trung điểm cạnh AD.


<b>Câu 43: Đáp án B</b>




2 3 3 1 1 2


2 3 3 2 3 1 1 3 1 2 2 1
2 3 3 1 1 2


a a a a a a


a;b ; ; a b a b ,a b a b ,a b a b


b b b b b b


 


 <sub> </sub><sub></sub> <sub></sub>   


 



 


 


Ta có: ᄃ


<b>Câu 44: Đáp án A</b>


 

a.b a b1 1 a b2 2 a b3 3
cos a, b


a . b a . b


 


 


 
 


   


Ta có ᄃ


<b>Câu 45: Đáp án D</b>


Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :


 


 




 



x 2y z 6 0 1
2x y 3z 13 0 2
3x 2y 3z 16 0 3


   





   





   


 <sub>ᄃ</sub>


x z 4; y z 5  <sub>z</sub><sub></sub><sub>3</sub> x1; y 2 <sub>Giải (1),(2) tính x,y theo z được ᄃ. Thế vào phương</sub>


trình (3) được ᄃ từ đó có ᄃ




A 1;2; 3 


Vậy ᄃ



<b>Câu 46: Đáp án B</b>




BC 0; 2; 2 ; BD   1; 1; 1   n<sub></sub>BC, BD<sub></sub> 2 0;1; 1


    


    


    


    


    


    


    


    


    


    


    


    



    


    




x 1 0

y 1

 

 z 2

 

1

0


Phương trình tổng quát của (BCD): ᄃ


BCD : y z 1 0



   




1 1 1 3 2


AH d A, BCD


2
2


 


  





</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>



A 3;1; 3 a

4; 4;1



(D) qua ᄃ và có vectơ chỉ phương ᄃ


  

P : m 1; 2; 4 



Vecto pháp tuyến của ᄃ


 

 



 



m 4 m 4


a.n 0


D P


3m n 2 n 14


A P


 <sub></sub> <sub></sub> <sub></sub> <sub></sub> <sub></sub>




  <sub></sub>  <sub></sub>  <sub></sub>



  


 <sub></sub> <sub></sub>





 




<b>Câu 48: Đáp án A</b>




D / / Ox 

 

D : e1

1;0;0






ᄃ Vectơ chỉ phương của ᄃ


 



x t 1
D : y 5 ; t


z 2
 




 <sub></sub>  


 






<b>Câu 49: Đáp án A</b>


 



x 2 2t
P : y 3 3t
z 5 t


 



 

  


 <sub>Phương trình tham số của đường thẳng (d) qua A vng góc với ᄃ.</sub>
1


t


14



Thế x,y,z theo t vào phương trình của (P) được ᄃ
1


t
14


 I 26 39 69; ;


14 14 14


 


 


 <sub>Thế ᄃ vào phương trình của (d) được giao điểm I của (d) và (P) là: ᄃ</sub>


12 18 34
A ' ; ;


7 7 7


 


 <sub></sub> <sub></sub>


 <sub> I là trung điểm của AA’ nên: ᄃ</sub>



<b>Câu 50: Đáp án A</b>


2 2 2


AM  BM CM <sub>ᄃ</sub>


<sub>x 1</sub>

2 <sub>y</sub>2

<sub>z 1</sub>

2

<sub>x 2</sub>

2

<sub>y 1</sub>

2 <sub>z</sub>2 <sub>x</sub>2

<sub>y 3</sub>

2

<sub>z 1</sub>

2


              



2 2 2


</div>

<!--links-->

×