Tải bản đầy đủ (.doc) (2 trang)

Giải bài toán bằng máy tính

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (90.62 KB, 2 trang )

Giải bài toán bằng máy tính
Module bởi: Khoa CNTT ĐHSP KT Hưng Yên. E-mail the author
Người dùng đánh giá ( How does the rating system work ?)
THUẬT TOÁN
Thuật toán, còn gọi là giải thuật, là một tập hợp hữu hạn của các chỉ thị hay phương cách được định
nghĩa rõ ràng cho việc hoàn tất một số sự việc từ một trạng thái ban đầu cho trước; khi các chỉ thị này được áp
dụng triệt để thì sẽ dẫn đến kết quả sau cùng như đã dự đoán.
Nói cách khác, thuật toán là một bộ các qui tắc hay qui trình cụ thể nhằm giải quyết một vấn đề trong
một số bước hữu hạn, hoặc nhằm cung cấp một kết quả từ một tập hợp của các dữ kiện đưa vào.
Ví dụ: thuật toán để giải phương trình bậc nhất P(x): ax + b = c, (a, b, c là các số thực), trong tập hợp các
số thực có thể là một bộ các bước sau đây:
Nếu a = 0
b = c thì P(x) có nghiệm bất kì
b ≠ c thì P(c) vô nghiệm
Nếu a ≠ 0
P(x) có duy nhất một nghiệm x = (c - b)/a
Lưu ý:
Khi một thuật toán đã hình thành thì ta không xét đến việc chứng minh thuật toán đó mà chỉ chú trọng
đến việc áp dụng các bước theo sự hướng dẫn sẽ có kết quả đúng. Việc chứng minh tính đầy đủ và tính đúng
của các thuật toán phải được tiến hành xong trước khi có thuật toán. Nói rõ hơn, thuật toán có thể chỉ là việc áp
dụng các công thức hay qui tắc, qui trình đã được công nhận là đúng hay đã được chứng minh về mặt toán học.
"Thuật toán" hiện nay thường được dùng để chỉ thuật toán giải quyết các vấn đề tin học. Hầu hết các
thuật toán tin học đều có thể viết thành các chương trình máy tính mặc dù chúng thường có một vài hạn chế (vì
khả năng của máy tính và khả năng của người lập trình). Trong nhiều trường hợp, một chương trình khi thiết
kế bị thất bại là do lỗi ở các thuật toán mà người lập trình đưa vào là không chính xác, không đầy đủ, hay
không ước định được trọn vẹn lời giải của vấn đề. Tuy nhiên cũng có một số bài toán mà hiện nay người ta
chưa tìm được lời giải triệt để, những bài toán ấy gọi là những bài toán NP-không đầy đủ.
Thuật toán: Thuật toán của một bài toán là một hệ thống chặt chẽ và rõ ràng các quy tắc nhằm xác định
một dãy các thao tác trên những dữ liệu vào (Input), sao cho sau một số hữu hạn bước thực hiện các thao tác ta
thu được kết quả (Output) của bài toán đó.
Chương trình:


Khái niệm thuật giải: Là một tập hợp các thao tác được sắp sếp theo một trình tự nào đó nhằm giải
quyết một vấn đề có hiệu quả.
Biểu diễn thuật toán
Để mô tả thuật giải người ta có thể dùng ngôn ngữ tự nhiên nhưng cũng có thể dùng hình ảnh trực quan
hơn để thể hiện quá trình diễn tiến của việc giải quyết bài toán. Một thuật giải được biểu diễn bằng các kí hiệu
đồ hoạ (Đồ thuật) ta gọi là lưu đồ thuật giải.
Một số thuật toán thông dụng
Sắp xếp nổi bọt
Sắp xếp nổi bọt (bubble sort) là phương pháp sắp xếp đơn giản, dễ hiểu thường được dạy trong khoa học
máy tính. Giải thuật bắt đầu từ đầu của tập dữ liệu. Nó so sánh hai phần tử đầu, nếu phần tử đứng trước lớn
hơn phần tử đứng sau thì đổi chỗ chúng cho nhau. Tiếp tục làm như vậy với cặp phần tử tiếp theo cho đến cuối
tập hợp dữ liệu. Sau đó nó quay lại với hai phần tử đầu cho đến khi không còn cần phải đổi chỗ nữa.
Sắp xếp chèn
Sắp xếp chèn (insertion sort) là một thuật toán sắp xếp rất hiệu quả với các danh sách nhỏ. Nó lần lượt
lấy các phần tử của danh sách chèn vào vị trí thích hợp trong một danh sách mới đã được sắp.
Sắp xếp chọn
Sắp xếp chọn (select sort) là phương pháp sắp xếp bằng cách chọn phần tử bé nhất xếp vào vị trí thứ
nhất, tương tự với các phần tử nhỏ thứ hai, thứ ba,...
Sắp xếp trộn
Sắp xếp trộn (merge sort) cùng với sắp xếp nhanh là hai thuật toán sắp xếp dựa vào tư tưởng "chia để trị"
(divide and conquer). Thủ tục cơ bản là việc trộn hai danh sách đã được sắp xếp vào một danh sách mới theo
thứ tự. Nó có thể bắt đầu trộn bằng cách so sánh hai phần tử một (chẳng hạn phần tử thứ nhất với phần tử thứ
hai, sau đó thứ ba với thứ tư...) và sau khi kết thúc bước 1 nó chuyển sang bước 2. Ở bước 2 nó trộn các danh
sách hai phần tử thành các danh sách bốn phần tử. Cứ như vậy cho đến khi hai danh sách cuối cùng được trộn
thành một.
Sắp xếp vun đống
Sắp xếp vun đống (heapsort) là một trong các phương pháp sắp xếp chọn. Ở mỗi bước của sắp xếp chọn
ta chọn phần tử lớn nhất (hoặc nhỏ nhất) đặt vào cuối (hoặc đầu) danh sách, sau đó tiếp tục với phần còn lại
của danh sách. Thông thường sắp xếp chọn chạy trong thời gian O(n
2

). Nhưng heapsort đã giảm độ phức tạp
này bằng cách sử dụng một cấu trúc dữ liệu đặc biệt được gọi là đống (heap). Đống là cây nhị phân mà trọng
số ở mỗi đỉnh cha lớn hơn hoặc bằng trọng số các đỉnh con của nó. Một khi danh sách dữ liệu đã được vun
thành đống, gốc của nó là phần tử lớn nhất, thuật toán sẽ giải phóng nó khỏi đống để đặt vào cuối danh sách.
Sắp xếp vun đống chạy trong thời gian O(n log n).
Sắp xếp nhanh
Sắp xếp nhanh (quicksort) là một thuật toán theo tư tưởng chia để trị, nó dựa trên thủ tục phân chia như
sau: để chia một dãy ta chọn một phần tử được gọi là "chốt" (pivot), chuyển tất cả các phần tử nhỏ hơn chốt về
trước chốt, chuyển tất cả các phần tử lớn hơn chốt về sau nó. Thủ tục này có thể thực hiện trong thời gian tuyến
tính. Tiếp tục phân chia các dãy con đó như trên cho đến khi các dãy con chỉ còn một phần tử.
Điểm khác biệt giữa sắp xếp nhanh và sắp xếp trộn là trong sắp xếp trộn việc xác định thứ tự được xác
định khi "trộn", tức là trong khâu tổng hợp lời giải sau khi các bài toán con đã được giải, còn sắp xếp nhanh đã
quan tâm đến thứ tự các phần tử khi phân chia một danh sách thành hai danh sách con.
Ngoài ra còn nhiều giải thuật sắp xếp khác, trong đó nhiều giải thuật sắp xếp được cải tiến từ các giải
thuật trên. Trong sau giải thuật liệt kê trên, ta thường coi các giải thuật chèn, chọn, nổi bọt là các giải thuật cơ
bản, độ phức tạp trong trường hợp trung bình của chúng là O(n
2
). Ba giải thuật còn lại thường được coi là giải
thuật cao cấp, độ phức tạp tính toán trung bình của chúng là n.lnn.
Sắp xếp theo cơ số
Sắp xếp theo cơ số (radix sort) dựa trên tính chất "số" của các khóa. Trong giải thuật sắp xếp theo cơ số,
ta không chỉ so sánh giá trị của các khóa, mà so sánh các thành phần của khóa. Giả sử các khóa là các số biểu
diễn theo hệ ghi số cơ số M. Khi đó sắp xếp theo cơ số sẽ so sánh từng ký số của nó.
Chúng ta mô tả cách sắp này khi cơ số M=10. Giả sử phải sắp các hồ sơ đánh số bởi 3 chữ số thập phân.
Đầu tiên ta chia các hồ sơ vào các đống có cùng chữ số hàng trăm (đồng thới xếp các đống theo thứ tự của chữ
số hàng trăm), trong mỗi đống con lại phân chia theo chữ số hàng chục, cuối cùng trong mỗi đống có cùng chữ
số hàng trăm và hàng chục, sắp xếp theo thứ tự của chữ số hàng đơn vị.
Trong máy tính, đương nhiên việc sắp xếp theo cơ số nhị phân (cơ số 2) hoặc cơ số là lũy thừa của 2 là
thuận lợi nhất. Trong trường hợp cơ số 2, việc phân hoạch tương tự như phân hoạch trong Quick Sort, chỉ khác
ở chỗ cách chọn phần tử chốt.

Sắp xếp đếm phân phối
Sắp xếp đếm phân phối là phương pháp sắp xếp có độ phức tạp tuyến tính trong trường hợp các khóa
nhận hữu hạn giá trị trong khoảng cho trước. Để đơn giản ta giả sử các phần tử của danh sách a[1..n] nhận các
giá trị tự nhiên trong khoảng [1..M].
Sắp xếp đếm phân phối đầu tiên đếm các phần tử thuộc danh sách nhận giá trị k với
Hình 1
. Các giá trị đếm được đươc ghi vào mảng Counter[1..M]. Sau đó khi duyệt theo k từ 1 đến M, ta lần lượt
xếp Counter[k] phần tử của vào danh sách a[1..n].

×