Tải bản đầy đủ (.doc) (22 trang)

Đê kiem tra HKI Khối 11 năm 2010( Mới nhất)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (892.39 KB, 22 trang )

Đề thi học kỳ I
Môn Toán 11 (Chương trình nâng cao)
Thời gian làm bài 90 phút (không kể phát đề)
(Đề gồm có 01 trang)
NỘI DUNG ĐỀ
Câu I :(3đ) Giải các phương trình sau :
1) (1đ)
( )
2
3 tan 1 3 tan 1 0x x− + + =
2) (1đ)
2
3
2 cos 3 cos2 0
4
x x
π
 
− + =
 ÷
 

3) (1đ)
2
1 cos2
1 cot 2
sin 2
x
x
x


+ =
Câu II :(2đ)
1) (1đ) Tìm số hạng không chứa
x
trong khai triển của
2
4
1
n
x
x
 
+
 ÷
 
, biết:
0 1 2
2 109
n n n
C C A− + =
.
2) (1đ) Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên chẵn có sáu chữ số và thoả mãn
điều kiện: sáu chữ số của mỗi số là khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba
chữ số cuối một đơn vị.
Câu III :(2đ) Trên một giá sách có các quyển sách về ba môn học là toán, vật lý và hoá học, gồm 4 quyển sách
toán, 5 quyển sách vật lý và 3 quyển sách hoá học. Lấy ngẫu nhiên ra 3 quyển sách. Tính xác suất để :
1) (1đ) Trong 3 quyển sách lấy ra, có ít nhất một quyển sách toán.
2) (1đ) Trong 3 quyển sách lấy ra, chỉ có hai loại sách về hai môn học.
Câu IV :(1đ) Trong mặt phẳng toạ độ Oxy, cho đường tròn
( ) ( )

2 2
( ) : 1 2 4C x y− + − =
. Gọi f là phép biến
hình có được bằng cách sau: thực hiện phép tịnh tiến theo vectơ
1 3
;
2 2
v
 
=
 ÷
 
r
, rồi đến phép vị tự tâm
4 1
;
3 3
M
 
 ÷
 
, tỉ số
2k
=
. Viết phương trình ảnh của đường tròn (C) qua phép biến hình f.
Câu V :(2đ) Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M và N lần lượt là trọng tâm của tam
giác SAB và SAD.
1) (1đ) Chứng minh: MN // (ABCD).
2) (1đ) Gọi E là trung điểm của CB. Xác định thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng
(MNE).

----------HẾT----------
ĐÁP ÁN VÀ THANG ĐIỂM

u
Nội dung Điể
m
I (3đ)
1
( )
2
1
3 tan 1 3 tan 1 0 tan 1 hoÆc tan
3
x x x x− + + = ⇔ = =
0,50
tan 1
4
x x k
π
π
= ⇔ = +
0,25
1
tan
6
3
x x k
π
π
= ⇔ = +

0,25
2
3
pt 1 cos 2 3 cos2 0 1 sin 2 3 cos2 0 sin 2 3 cos2 1
2
x x x x x x
π
 
⇔ + − + = ⇔ − + = ⇔ − =
 ÷
 
0,25

sin 2 sin
3 6
x
π π
 
⇔ − =
 ÷
 
0,25
2 2
3 6 4
sin 2 sin
3 6
5 7
2 2
3 6 12
x k x k

x
x k x k
π π π
π π
π π
π π π
π π
 
− = + = +
 
 
− = ⇔ ⇔
 
 ÷
 
 
− = + = +
 
 
0,25
0,25
3
ĐK:
sin 2 0
2
x x k
π
≠ ⇔ ≠
( ) ( )
2

2
cos2 1 cos2
pt 1 sin 2 cos2 sin 2 1 cos2
sin 2
sin 2
sin 2 1 sin 2 cos2 1 0
sin 2 1

sin 2 cos2 1
x x
x x x x
x
x
x x x
x
x x

⇔ + = ⇔ + = −
⇔ + + − =
= −



+ =

0,50
sin 2 1 2 2
2 4
x x k x k
π π

π π
= − ⇔ = − + ⇔ = − +
(thoả điều kiện)
0,25
(lo¹i)
sin 2 cos2 1 sin 2 sin
4 4 4
4
x k
x x x x k
x k
π
π π π
π
π
π
=

 

+ = ⇔ + = ⇔ ⇔ = +
 ÷

= +
 

(thoả điều
kiện)
0,25
II (2đ)

1
ĐK:
2;n n≥ ∈ ¥
;
( )
0 1 2
2 109 1 2 1 109 12
n n n
C C A n n n n
− + = ⇔ − + − = ⇔ =
0,25
( )
12
12 12
12
2 2 4 24 6
12 12
4
0 0
1
k
k k k k
k k
x C x x C x
x

− −
= =
 
+ = =

 ÷
 
∑ ∑
0,25
24 6 0 4k k
− = ⇔ =
0,25
Vậy số hạng không chứa x là
4
12
495C
=
0,25
2
Gọi số cần tìm là
1 2 3 4 5 6
a a a a a a
.
Theo đề ra, ta có:

( )
( )
1 2 3 4 5 6 1 2 3 1 2 3 4 5 6
1 2 3 1 2 3
1 2 1
2 21 1 11
a a a a a a a a a a a a a a a
a a a a a a
+ + = + + + ⇒ + + = + + + + + +
⇒ + + = + ⇒ + + =

0,25
+Trường hợp 1:
{ } { }
1 2 3
; ; 2;4;5a a a =
thì
{ } { }
4 5 6
; ; 1;3;6a a a =
nên có (1.2!).(3!) = 12 (số)
+Trường hợp 2:
{ } { }
1 2 3
; ; 2;3;6a a a =
thì
{ } { }
4 5 6
; ; 1;4;5a a a =
nên có (1.2!).(3!) = 12 (số)
+Trường hợp 1:
{ } { }
1 2 3
; ; 1;4;6a a a =
thì
{ } { }
4 5 6
; ; 2;3;5a a a =
nên có (1.2!).(3!) = 12 (số)
0,50
Theo quy tắc cộng, ta có: 12 + 12 + 12 = 36 (số) 0,25

III (2đ)
1 A là biến cố “Trong 3 quyển sách lấy ra, có ít nhất một quyển sách toán”.
A
là biến cố “Trong 3 quyển sách lấy ra, không có quyển sách toán nào”.
( )
3
8
3
12
14
A
55
C
P
C
= =
0,50
( )
( )
14 41
1 1
55 55
P A P A
= − = − =
0,50
2 B là biến cố “Trong 3 quyển sách lấy ra, có đúng hai loại sách về hai môn học”
1 2 2 1 1 2 2 1 2 1 1 2
4 5 4 5 4 3 4 3 5 3 5 3
145
B

C C C C C C C C C C C C
Ω = + + + + + =
0,50
( )
3
12
145 29
44
P B
C
= =
0,50
IV (1đ)
Gọi I là tâm của (C) thì I(1 ; 2) và R là bán kính của (C) thì R = 2.
Gọi A là ảnh của I qua phép tịnh tiến theo vectơ
1 3
;
2 2
v
 
=
 ÷
 
r
, suy ra
3 7
;
2 2
A
 

 ÷
 
0,25
Gọi B là tâm của (C’) thì B là ảnh của A qua phép vị tự tâm
4 1
;
3 3
M
 
 ÷
 
tỉ số
2k
=
nên :
5
2
3
2
14
2
3
B A M
B A M
x x x
MB MA
y y y

= − =



= ⇒


= − =


uuur uuur
. Vậy
5 20
;
3 3
B
 
 ÷
 
0,25
Gọi R’ là bán kính của (C’) thì R’ = 2R = 4 0,25
Vậy
2 2
5 20
( ') : 16
3 3
C x y
   
− + − =
 ÷  ÷
   
0,25
V (2đ)

0,50
1 Gọi I, J lần lượt là trung điểm của AB và AD, ta có:
2
//
3
SM SN
MN IJ
SI SJ
= = ⇒
0,50

( )IJ ABCD

nên suy ra MN // (ABCD).
0,50
2 + Qua E vẽ đường thẳng song song với BD cắt CD tại F, cắt AD tại K.
+ KN cắt SD tại Q, KN cắt SA tại G; GM cắt SB tại P.
Suy ra ngũ giác EFQGP là thiết diện cần dựng.
0,50
HẾT
Đề thi học kỳ I
Môn Toán 11 (Chương trình nâng cao)
Thời gian làm bài 90 phút (không kể phát đề)
(Đề gồm có 01 trang)
NỘI DUNG ĐỀ
Câu I :(3đ) Giải các phương trình sau :
1) (1đ)
sin3 3 cos3 1x x− =
2) (1đ)
3

4 cos 3 2 sin 2 8cosx x x+ =
3) (1đ)
( )
2
2 3 cos 2 sin
2 4
1
2 cos 1
x
x
x
π
 
− − −
 ÷
 
=

Câu II :(2đ)
1) (1đ) Tìm hệ số của
x
31
trong khai triển của
2
1
n
x
x
 
+

 ÷
 
, biết rằng
1 2
1
821
2
n n
n n n
C C A

+ + =
.
2) (1đ) Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ
số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.
Câu III :(2đ) Có hai cái hộp chứa các quả cầu, hộp thứ nhất gồm 3 quả cầu màu trắng và 2 quả cầu màu đỏ;
hộp thứ hai gồm 3 quả cầu màu trắng và 4 quả cầu màu vàng. Lấy ngẫu nhiên từ mỗi hộp ra 2 quả cầu. Tính xác
suất để :
1) (1đ) Trong 4 quả cầu lấy ra, có ít nhất một quả cầu màu trắng.
2) (1đ) Trong 4 quả cầu lấy ra, có đủ cả ba màu: trắng, đỏ và vàng.
Câu IV :(1đ) Trong mặt phẳng toạ độ Oxy, cho đường tròn
( ) ( )
2 2
( ) : 2 1 9C x y− + − =
. Gọi f là phép biến
hình có được bằng cách sau: thực hiện phép đối xứng tâm
4 1
;
3 3
M

 
 ÷
 
, rồi đến phép vị tự tâm
1 3
;
2 2
N
 
 ÷
 
, tỉ
số
2k
=
. Viết phương trình ảnh của đường tròn (C) qua phép biến hình f .
Câu V :(2đ) Cho hình chóp S.ABCD có đáy ABCD là hình thang (AD // BC, AD > BC). Gọi M là một điểm bất
kỳ trên cạnh AB ( M khác A và M khác B). Gọi (
α
) là mặt phẳng qua M và song song với SB và AD.
1) (1đ) Xác định thiết diện của hình chóp khi cắt bởi mặt phẳng (
α
). Thiết diện này là hình gì ?
2) (1đ) Chứng minh SC // (
α
).
----------HẾT----------
ĐÁP ÁN VÀ THANG ĐIỂM
Câu Nội dung Điểm
I (3đ)

1
1 3 1
sin 3 cos3 sin 3 sin
2 2 2 3 6
x x x
π π
 
− = ⇔ − =
 ÷
 
0,50

2
3 2
3 6 6 3
5 7 2
3 2
3 6 18 3
x k x k
x k x k
π π π π
π
π π π π
π
 
− = + = +
 
⇔ ⇔
 
 

− = + = +
 
 
0,25
0,25
2
( )
3 2
2
pt 4 cos 6 2 sin cos 8 cos cos 2 cos 3 2 sin 4 0
cos 0

2sin 3 2 sin 2 0 (*)
x x x x x x x
x
x x
⇔ + = ⇔ + − =
=



− + =

0,25
cos 0
2
x x k
π
π
= ⇔ = +

0,25
2
2
sin
2
4
(*) sin
2
2
3
2
sin 2 (lo¹i)
4
x k
x
x
x k
x
π
π
π
π


= +

=

⇔ ⇔ = ⇔




= +
=



0,25
0,25
3
Điều kiện:
1
cos 2
2 3
x x k
π
π
≠ ⇔ ≠ ± +
( )
2 3 cos 1 cos 2 cos 1 sin 3 cos 0 tan 3
2
pt x x x x x x
π
 
⇔ − − + − = − ⇔ − = ⇔ =
 ÷
 
0,50
tan 3
3

x x k
π
π
= ⇔ = +
0,25
Đối chiếu điều kiện, ta có nghiệm của pt là:
4
3
x k
π
π
= +
0,25
II (2đ)
1
ĐK:
2;n n≥ ∈ ¥
( )
1 2 2
1
1
821 1 821 1640 0 40
2 2
n n
n n n
n n
C C A n n n n


+ + = ⇔ + + = ⇔ + − = ⇔ =

0,25
40
40 40
40 2 40 3
40 40
2
0 0
1
k k k k k
k k
x C x x C x
x
− − −
= =
 
+ = =
 ÷
 
∑ ∑
0,25
40 3 31 3k k
− = ⇔ =
0,25
Vậy hệ số của x
31

3
40
9880C
=

0,25
3 + Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ có:

2 2 2 1
5 4 5 3
5 4! 4 3! 6480C C C C− =
(số)
0,25
+ Số tự nhiên chẵn gồm 5 chữ số khác nhau và có đúng hai chữ số lẻ đứng cạnh nhau có:
2 2 2
5 4 5
5 3 4 2 3 3120A A A× × × − × × × =
(số)
0,50
Suy ra có: 6480 - 3120 = 3360 (số) 0,25
III (2đ)
1
2 2
5 7
210C C
Ω = × =
0,25
Gọi A là biến cố “Trong 4 quả cầu lấy ra, có ít nhất một quả cầu màu trắng”.

A
là biến cố “Trong 4 quả cầu lấy ra, không có quả cầu màu trắng”.
( )
2 2
2 4
1

A
210 35
C C
P = =
0,50
Suy ra:
( )
( )
1 34
1 1
35 35
P A P A= − = − =
0,25
2 Gọi B là biến cố “Trong 4 quả cầu lấy ra, có đủ cả ba màu: trắng, đỏ và vàng”.
+Trường hợp 1: 1 trắng, 1 đỏ ở hộp một; 2 vàng ở hộp hai có
( )
1 1 2
2 3 4
C C C
(cách)
+Trường hợp 2: 2 đỏ ở hộp một; 1 vàng, 1 trắng ở hộp hai có
( )
2 1 1
2 3 4
C C C
(cách)
+Trường hợp 3: 1 đỏ, 1 trắng ở hộp một; 1 vàng, 1 trắng ở hộp hai có
( ) ( )
1 1 1 1
3 2 4 3

C C C C

(cách)
Suy ra:
( ) ( ) ( ) ( )
1 1 2 2 1 1 1 1 1 1
2 3 4 2 3 4 3 2 4 3
120
B
C C C C C C C C C C
Ω = + + =
0,75
Suy ra:
( )
120 4
210 7
P B
= =
0,25
IV (1đ)
Gọi I là tâm của (C) thì I(2 ; 1) và R là bán kính của (C) thì R = 3.
Gọi A là ảnh của I qua phép đối xứng tâm
4 1
;
3 3
M
 
 ÷
 
, suy ra

2 1
;
3 3
A
 

 ÷
 
0,25
Gọi B là tâm của (C’) thì B là ảnh của A qua phép vị tự tâm
1 3
;
2 2
N
 
 ÷
 
tỉ số
2k
=
nên :
5
2
6
2
13
2
6
B A N
B A N

x x x
NB NA
y y y

= − =


= ⇒


= − = −


uuur uuur
. Vậy
5 13
;
6 6
B
 

 ÷
 
0,25
Gọi R’ là bán kính của (C’) thì R’ = 2R = 6 0,25
Vậy
2 2
5 13
( ') : 36
6 6

C x y
   
− + + =
 ÷  ÷
   
0,25
V (2đ)
0,50
1
( )
( ) //
( ) ( ) // ,
( )
SB
SAB MN SB N SA
SB SAB
α
α

⇒ ∩ = ∈



( )
( ) //
( ) ( ) // ,
( )
AD
SAD NP AD P SD
AD SAD

α
α

⇒ ∩ = ∈



( )
( ) //
( ) ( ) // ,
( )
AD
ABCD MQ AD Q CD
AD ABCD
α
α

⇒ ∩ = ∈



Vậy thiết diện là hình thang MNPQ (MQ // NP).
0,50
2
Ta có:
; ; //
DP AN AN AM AM DQ DP DQ
SC PQ
DS AS AS AB AB DC DS DC
= = = ⇒ = ⇒


( )
PQ
α

nên suy ra
( )
//SC
α
(đpcm).
1,00
HẾT
Họ và tên:………………………… KIỂM TRA HỌC KÌ I
Lớp: 11… Môn: Toán
Mã đề: 115 Thời gian: 90 phút (Không kể thời gian giao đề)
I. Phần trắc nghiệm: ( mỗi câu đúng 0,5 đ)
C©u 1 : Xác suất của biến cố “ hai mặt giống nhau” khi gieo một con súc sắc hai lần:
A.
6
1
. B.
3
2
. C.
8
7
. D.
4
3
.

C©u 2 : Số nghiệm của phương trình sinx=cosx trên đoạn [-2
π
;2
π
] là :
A. 2. B. 6. C. 4. D. 8.
C©u 3 :
Nghiệm lớn nhất của phương trình
3
tanx-3=0 trên khoảng (0;
π
) là:
A.
3
π
. B.
6
π
. C.
4
π
. D.
2
π
.
C©u 4 :
Hệ số của hạng tử không chứa x trong khai triển ( x
2
+
x

1
)
6

là:
A. 4. B. 15. C. 2. D. 8.
C©u 5 : Phương trình sin
2
x-3=2sinx có:
A. Vô nghiệm. B. Vô số nghiệm. C. 1nghiệm. D. 2 nghiệm.

×