Tải bản đầy đủ (.pdf) (60 trang)

Bài giải phần giải mạch P16

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.85 MB, 60 trang )

Chapter 16, Solution 1.

Consider the s-domain form of the circuit which is shown below.
I(s)
+


1
1/s
1/s
s
22
2
)23()21s(
1
1ss
1
s1s1
s1
)s(I
++
=
++
=
++
=











= t
2
3
sine
3
2
)t(i
2t-


=)t(i
A)t866.0(sine155.1
-0.5t



Chapter 16, Solution 2.

8/s
s


s
4
2


+


+
V
x





4




V)t(u)e2e24(v
3
8
j
3
4
s
125.0
3
8
j
3
4

s
125.0
s
25.0
16
)8s8s3(s
2s
16V
s
32s16
)8s8s3(V
0VsV)s4s2(
s
)32s16(
)8s4(V
0
s
8
4
0V
2
0V
s
s
4
V
t)9428.0j3333.1(t)9428.0j3333.1(
x
2
x

2
x
x
2
x
2
x
xx
x
−−+−
++−=












−+

+
++

+−=
++

+
−=
+
=++
=+++
+
−+
=
+

+

+



v
x
= Vt
3
22
sine
2
6
t
3
22
cose)t(u4
3/t43/t4



















−−



Chapter 16, Solution 3.

s

5/s
1/2
+
V
o






1/8




Current division leads to:

)625.0s(16
5
s1610
5
s
8
1
2
1
2
1
s
5
8
1
V
o
+

=
+
=












++
=

v
o
(t) =
( )
V)t(ue13125.
t625.0−
−0
Chapter 16, Solution 4.


The s-domain form of the circuit is shown below.
6 s

10/s
1/(s + 1)
+

+
V
o
(s)


Using voltage division,







+++
=






+++
=
1s
1

10s6s
10
1s
1
s106s
s10
)s(V
2
o


10s6s
CBs
1s
A
)10s6s)(1s(
10
)s(V
22
o
++
+
+
+
=
+++
=

)1s(C)ss(B)10s6s(A10
22

++++++=

Equating coefficients :
2
s:
-ABBA0 =→+=
1
s:
A5-CCA5CBA60 =→+=++=
0
s
: -10C-2,B,2AA5CA1010 ===→=+=

22222
o
1)3s(
4
1)3s(
)3s(2
1s
2
10s6s
10s2
1s
2
)s(V
++

++
+


+
=
++
+

+
=

=)t(v
o
V)tsin(e4)tcos(e2e2
-3t-3t-t
−−


Chapter 16, Solution 5.



s
2
2s
1
+
2
I
o




s







()
()
A)t(ut3229.1sin7559.0e
or
A)t(ueee3779.0eee3779.0e)t(i
3229.1j5.0s
)646.2j)(3229.1j5.1(
)3229.1j5.0(
3229.1j5.0s
)646.2j)(3229.1j5.1(
)3229.1j5.0(
2s
1
)3229.1j5.0s)(3229.1j5.0s)(2s(
s
2
Vs
I
)3229.1j5.0s)(3229.1j5.0s)(2s(
s2
2ss

s2
2s
1
2
s
2
1
s
1
1
2s
1
V
t2
t3229.1j2/t90t3229.1j2/t90t2
o
22
2
o
2
−=
++=
−+
++
+−
+
++
−−
−−
+

+
=
−++++
==
−++++
=








++
+
=












++

+
=

−°−−°−−



Chapter 16, Solution 6.


2


2s
5
+
I
o

10/s



s



Use current division.

t3sine

3
5
t3cose5)t(i
3)1s(
5
3)1s(
)1s(5
10s2s
s5
2s
5
s
10
2s
2s
I
tt
o
22222
o
−−
−=
++

++
+
=
++
=
+

++
+
=



Chapter 16, Solution 7.


The s-domain version of the circuit is shown below.

1/s
1


I
x

+ 2s

1
2
+s





Z


2
2
2
s21
1s2s2
s21
s2
1
s2
s
1
)s2(
s
1
1s2//
s
1
1Z
+
++
=
+
+=
+
+=+=


)5.0ss(
CBs
)1s(

A
)5.0ss)(1s(
1s2
1s2s2
s21
x
1s
2
Z
V
I
22
2
2
2
x
++
+
+
+
=
+++
+
=
++
+
+
==



)1s(C)ss(B)5.0ss(A1s2
222
++++++=+


BA2:s
2
+=

2CC2CBA0:s −=→+=++=
-4B ,6A3 0.5A or CA5.01:constant ==→=+=


222
x
866.0)5.0s(
)5.0s(4
1s
6
75.0)5.0s(
2s4
1s
6
I
++
+

+
=
++

+

+
=

[]
A)t(ut866.0cose46)t(i
t5.0
x

−=



Chapter 16, Solution 8.

(a)
)1s(s
1s5.1s
s22
)s21(
s
1
)s21//(1
s
1
Z
2
+
++

=
+
+
+=++=

(b)
)1s(s2
2s3s3
s
1
1
1
s
1
2
1
Z
1
2
+
++
=
+
++=

2s3s3
)1s(s2
Z
2
++

+
=

Chapter 16, Solution 9.

(a)

The s-domain form of the circuit is shown in Fig. (a).

=
++
+
=+=
s1s2
)s1s(2
)s1s(||2Z
in
1s2s
)1s(2
2
2
++
+

1
1
2
s2/s
1/s
s

2
(a) (b)
(b)

The s-domain equivalent circuit is shown in Fig. (b).

2s3
)2s(2
s23
)s21(2
)s21(||2
+
+
=
+
+
=+

2s3
6s5
)s21(||21
+
+
=++

=







+
+
+






+
+

=






+
+
=
2s3
6s5
s
2s3
6s5
s

2s3
6s5
||sZ
in
6s7s3
)6s5(s
2
++
+

Chapter 16, Solution 10.


To find Z
Th
, consider the circuit below.
1/s V
x



+
1V
2 V
o
2V
o
-




Applying KCL gives

s/12
V
V21
x
o
+
=+

But
xo
V
s
/12
2
V
+
=
. Hence

s3
)1s2(
V
s
/12
V
s/12
V4

1
x
xx
+
−=→
+
=
+
+

s3
)1s2(
1
V
Z
x
Th
+
−==

To find V
Th
, consider the circuit below.
1/s V
y


+



1
2
+
s
2 V
o
2V
o
-



Applying KCL gives

)1s(3
4
V
2
V
V2
1s
2
o
o
o
+
−=→=+
+



But 0V
s
1
V2V
ooy
=+•+−

)1s(s3
)2s(4
s
2s
)1s(3
4
)
s
2
1(VVV
oyTh
+
+−
=






+
+
−=+==



Chapter 16, Solution 11.


The s-domain form of the circuit is shown below.
4/s s
I
2
I
1
+

+

2
4/(s + 2)
1/s

Write the mesh equations.

21
I2I
s
4
2
s
1








+= (1)

21
I)2s(I-2
2s
4-
++=
+
(2)

Put equations (1) and (2) into matrix form.












+
+

=






+
2
1
I
I
2s2-
2-s42
2)(s4-
s1


)4s2s(
s
2
2
++=∆ ,
)2s(s
4s4s
2
1
+
+−
=∆

,
s
6-
2
=∆

4s2s
CBs
2s
A
)4s2s)(2s(
)4s4s(21
I
22
2
1
1
++
+
+
+
=
+++
+−⋅
=


=

)2s(C)s2s(B)4s2s(A)4s4s(21

222
++++++=+−⋅

Equating coefficients :
2
s:
BA21 +=

1
s:
CB2A22- ++=
0
s:
C2A42 +=

Solving these equations leads to
A 2=
,
23-B =
,
-3C =


22
1
)3()1s(
3s23-
2s
2
I

++

+
+
=

2222
1
)3()1s(
3
32
3-
)3()1s(
)1s(
2
3-
2s
2
I
++
⋅+
++
+
⋅+
+
=


=)t(i
1

[]
A)t(u)t732.1sin(866.0)t732.1cos(e5.1e2
-t-2t
−−

22
2
2
2
)3()1s(
3-
)4s2s(2
s
s
6-
I
++
=
++
⋅=


=

== )t3sin(e
3
3-
)t(i
t-
2

A)t(u)t732.1sin(e1.732-
-t



Chapter 16, Solution 12.


We apply nodal analysis to the s-domain form of the circuit below.
V
o
10/(s + 1)
+

1/(2s)
4
s
3/s

o
o
o
sV2
4
V
s
3
s
V
1s

10
+=+

+


1s
15s1510
15
1s
10
V)ss25.01(
o
2
+
++
=+
+
=++

1s25.0s
CBs
1s
A
)1s25.0s)(1s(
25s15
V
22
o
++

+
+
+
=
+++
+
=

7
40
V)1s(A
1-so
=+=
=


)1s(C)ss(B)1s25.0s(A25s15
22
++++++=+

Equating coefficients :
2
s: -ABBA0 =→+=
1
s:
C-0.75ACBA25.015 +=++=

0
s:
CA25 +=


740A =
,
740-B =
,
7135C =


4
3
2
1
s
2
3
3
2
7
155
4
3
2
1
s
2
1
s
7
40
1s

1
7
40
4
3
2
1
s
7
135
s
7
40-
1s
7
40
V
222
o
+






+







⋅+
+






+
+

+
=
+






+
+
+
+
=











+








−= t
2
3
sine
)3)(7(
)2)(155(
t
2
3
cose
7
40
e

7
40
)t(v
2t-2t-t-
o


=)t(v
o
V)t866.0sin(e57.25)t866.0cos(e714.5e714.5
2-t2-t-t
+−



Chapter 16, Solution 13.


Consider the following circuit.
V
o
1/(s + 2)
1/s 2s
I
o
2
1

Applying KCL at node o,


o
oo
V
1s2
1s
s12
V
1s2
V
2s
1
+
+
=
+
+
+
=
+


)2s)(1s(
1s2
V
o
++
+
=

2s

B
1s
A
)2s)(1s(
1
1s2
V
I
o
o
+
+
+
=
++
=
+
=

1A =
,
-1B =


2s
1
1s
1
I
o

+

+
=

=)t(i
o
()
A)t(uee
-2t-t



Chapter 16, Solution 14.


We first find the initial conditions from the circuit in Fig. (a).
1

4

i
o
+
v
c
(0)

+


5 V
(a)
A5)0(i
o
=

, V0)0(v
c
=


We now incorporate these conditions in the s-domain circuit as shown in Fig.(b).
2s 5/s
I
o
V
o
+

1 4
15/s 4/s
(b)
At node o,
0
s44
0V
s
5
s2
V

1
s15V
ooo
=
+

+++



o
V
)1s(4
s
s2
1
1
s
5
s
15






+
++=−



o
2
o
22
V
)1s(s4
2s6s5
V
)1s(s4
s2s2s4s4
s
10
+
++
=
+
++++
=


2s6s5
)1s(40
V
2
o
++
+
=


s
5
)4.0s2.1s(s
)1s(4
s
5
s2
V
I
2
o
o
+
++
+
=+=

4.0s2.1s
CBs
s
A
s
5
I
2
o
++
+
++=


sCsB)4.0s2.1s(A)1s(4
s2
++++=+

Equating coefficients :
0
s: 10AA4.04 =→=
1
s
: -84-1.2ACCA2.14 =+=→+=
2
s : -10-ABBA0 ==→+=

4.0s2.1s
8s10
s
10
s
5
I
2
o
++
+
−+=

2222
o
2.0)6.0s(
)2.0(10

2.0)6.0s(
)6.0s(10
s
15
I
++

++
+
−=

=)t(i
o
()[]
A)t(u)t2.0sin()t2.0cos(e1015
0.6t-
−−



Chapter 16, Solution 15.


First we need to transform the circuit into the s-domain.


2s
5
+
V

o
+


+


5/s
s/4
+ V
x


10




3V
x




2s
5
VV
2s
5
VV,But

2s
s5
V120V)40ss2(0
2s
s5
sVVs2V120V40
0
10
2s
5
V
s/5
0V
4/s
V3V
xoox
xo
2
oo
2
xo
o
oxo
+
+=→
+
−=
+
−−++==
+

−++−
=
+

+

+


We can now solve for V
x
.

)40s5.0s)(2s(
)20s(
5V
2s
)20s(
10V)40s5.0s(2
0
2s
s5
V120
2s
5
V)40ss2(
2
2
x
2

x
2
xx
2
−++
+
−=
+
+
−=−+
=
+
−−






+
+++



Chapter 16, Solution 16.


We first need to find the initial conditions. For
0t <
, the circuit is shown in Fig. (a).

To dc, the capacitor acts like an open circuit and the inductor acts like a short circuit.
1

+

V
o
1 F
V
o
/2
+

1 H
i
o
+

2


3 V
(a)


Hence,
A1-
3
3-
i)0(i

oL
=== , V1-v
o
=

V5.2
2
1-
)1-)(2(-)0(v
c
=






−=


We now incorporate the initial conditions for
as shown in Fig. (b).
0t >
I
2
I
1

+


s
2.5/s
+

1
+

V
o
1/s
V
o
/2
+

I
o

+
2
-1 V
5/(s + 2)
(b)
For mesh 1,
0
2
V
s
5.2
I

s
1
I
s
1
2
2s
5-
o
21
=++−






++
+


But,

2oo
IIV ==

s
5.2
2s
5

I
s
1
2
1
I
s
1
2
21

+
=






−+






+
(1)

For mesh 2,

0
s
5.2
2
V
1I
s
1
I
s
1
s1
o
12
=−−+−






++

1
s
5.2
I
s
1
s

2
1
I
s
1
-
21
−=






+++ (2)




Put (1) and (2) in matrix form.















+
=




















++
−+
1
s

5.2
s
5.2
2s
5
I
I
s
1
s
2
1
s
1-
s
1
2
1
s
1
2
2
1


s
3
2s2 ++=∆ ,
)2s(s
5

s
4
2-
2
+
++=∆

3s2s2
CBs
2s
A
)3s2s2)(2s(
132s-
II
22
2
2
2o
++
+
+
+
=
+++
+
=


==


)2s(C)s2s(B)3s2s2(A132s-
222
++++++=+

Equating coefficients :
2
s: B A22- +=
1
s
:
CB2A20 ++=
0
s:
C2A313 +=

Solving these equations leads to
7143.0A =
, ,
-3.429B = 429.5C =


5.1ss
714.2s7145.1
2s
7143.0
3s2s2
429.5s429.3
2s
7143.0
I

22
o
++


+
=
++


+
=
25.1)5.0s(
)25.1)(194.3(
25.1)5.0s(
)5.0s(7145.1
2s
7143.0
I
22
o
++
+
++
+

+
=

=)t(i

o
[ ]
A)t(u)t25.1sin(e194.3)t25.1cos(e7145.1e7143.0
-0.5t-0.5t-2t
+−



Chapter 16, Solution 17.


We apply mesh analysis to the s-domain form of the circuit as shown below.
2/(s+1)
I
3
+ −
1/s
I
2
I
1
4
s
1
1
For mesh 3,
0IsI
s
1
I

s
1
s
1s
2
213
=−−






++
+
(1)

For the supermesh,
0Is
s
1
I)s1(I
s
1
1
321
=







+−++






+ (2)

But
(3)
4II
21
−=

Substituting (3) into (1) and (2) leads to






+=







+−






++
s
1
14I
s
1
sI
s
1
s2
32
(4)

1s
2
s
4-
I
s
1
sI

s
1
s-
32
+
−=






++






+ (5)

Adding (4) and (5) gives
1s
2
4I2
2
+
−=



1s
1
2I
2
+
−=

==
)t(i)t(i
2o
A)t(u)e2(
-t



Chapter 16, Solution 18.


v
s
(t) = 3u(t) – 3u(t–1) or V
s
=
)e1(
s
3
s
e
s
3

s
s


−=−



1 Ω

+
V
o



+

1/s



V
s

2 Ω





V)]1t(u)e22()t(u)e22[()t(v
)e1(
5.1s
2
s
2
)e1(
)5.1s(s
3
V
VV)5.1s(0
2
V
sV
1
VV
)1t(5.1t5.1
o
ss
o
so
o
o
so
−−−−=








+
−=−
+
=
=→=++

−−−
−−

+



Chapter 16, Solution 19.


We incorporate the initial conditions in the s-domain circuit as shown below.

I
1/s

+
2 I
V
1
V
o
1/s

s
+

2






2
4/(s + 2)





At the supernode,
o
11
sV
s
1
s
V
2
2
V)2s(4
++=+
−+



o1
Vs
s
1
V
s
1
2
1
2
2s
2
++






+=+
+
(1)

But
and
I2VV
1o
+=

s
1V
I
1
+
=


2s
2Vs
s)2s(
s2V
V
s
)1V(2
VV
oo
1
1
1o
+

=
+

=→
+
+=
(2)


Substituting (2) into (1)
oo
Vs
2s
2
V
2s
s
s
1s2
s
1
2
2s
2
+






+








+






+
=−+
+


o
Vs
2s
1s2
)2s(s
)1s2(2
s
1
2
2s
2






+







+
+
=
+
+
+−+
+


o
22
V
2s
1s4s
2s
9s2
)2s(s
s9s2
+
++
=
+
+
=

+
+


732.3s
B
2679.0s
A
1s4s
9s2
V
2
o
+
+
+
=
++
+
=


443.2A =
,
4434.0-B =

732.3s
4434.0
2679.0s
443.2

V
o
+

+
=


Therefore,
=
)t(v
o
V)t(u)e4434.0e443.2(
-3.732t-0.2679t



Chapter 16, Solution 20.

We incorporate the initial conditions and transform the current source to a voltage source
as shown.
1 s
+ −
1/s
2/s
V
o
+

1

1/(s + 1) 1/s

At the main non-reference node, KCL gives
s
1
s
V
1
V
s11
Vs2)1s(1
ooo
++=
+
−−+


s
1s
V)s1s)(1s(Vs2
1s
s
oo
+
+++=−−
+


o
V)s12s2(2

s
1s
1s
s
++=−
+

+


)1s2s2)(1s(
1s4s2-
V
2
2
o
+++
−−
=


5.0ss
CBs
1s
A
)5.0ss)(1s(
5.0s2s-
V
22
o

++
+
+
+
=
+++
−−
=


1V)1s(A
1-so
=+=
=

)1s(C)ss(B)5.0ss(A5.0s2s-
222
++++++=−−

Equating coefficients :
2
s:
-2BBA1- =→+=
1
s:
-1CCBA2- =→++=
0
s:
-0.515.0CA5.00.5- =−=+=



222
o
)5.0()5.0s(
)5.0s(2
1s
1
5.0ss
1s2
1s
1
V
++
+

+
=
++
+

+
=

=)t(v
o
[]
V)t(u)2tcos(e2e
2-t-t



Chapter 16, Solution 21.


The s-domain version of the circuit is shown below.

1 s
V
1
V
o



+ 2/s 2 1/s




-

At node 1,
10/s
oo
o
V
s
VsV
s
s
VV

V
s
)1
2
()1(10
21
10
2
1
1
1
−++=→+

=

(1)

At node 2,
)1
2
(
2
2
1
1
++=→+=

s
s
VVsV

V
s
VV
oo
oo
(2)

Substituting (2) into (1) gives
ooo
VsssV
s
Vsss
)5.12()1
2
()12/)(1(10
2
2
2
++=−++++=


5.12)5.12(
10
22
++
+
+=
++
=
ss

CBs
s
A
sss
V
o


CsBsssA ++++=
22
)5.12(10
BAs +=0:
2

CAs += 20:

-40/3C -20/3,B ,3/205.110:constant ===→= AA








++

++
+
−=







++
+
−=
22222
7071.0)1(
7071.0
414.1
7071.0)1(
11
3
20
5.12
21
3
20
ss
s
s
ss
s
s
V
o



Taking the inverse Laplace tranform finally yields

[]
V)t(ut7071.0sine414.1t7071.0cose1
3
20
)t(v
tt
o
−−
−−=

Chapter 16, Solution 22.


The s-domain version of the circuit is shown below.
4s
V
1
V
2





1s +
12



1 2 3/s



At node 1,
s4
V
s4
1
1V
1s
12
s4
VV
1
V
1s
12
2
1
211







+=

+
→

+=
+
(1)

At node 2,






++=→+=

1s2s
3
4
VVV
3
s
2
V
s4
VV
2
212
221
(2)


Substituting (2) into (1),

2
22
2
V
2
3
s
3
7
s
3
4
s4
1
s4
1
11s2s
3
4
V
1s
12







++=













+






++=
+


)
8
9
s

4
7
s(
CBs
)1s(
A
)
8
9
s
4
7
s)(1s(
9
V
22
2
++
+
+
+
=
+++
=

)1s(C)ss(B)
8
9
s
4

7
s(A9
22
++++++=


Equating coefficients:

BA0:s
2
+=

A
4
3
CCA
4
3
CBA
4
7
0:s −=→+=++=

-18C -24,B ,24AA
8
3
CA
8
9
9:constant ===→=+=


64
23
)
8
7
s(
3
64
23
)
8
7
s(
)8/7s(24
)1s(
24
)
8
9
s
4
7
s(
18s24
)1s(
24
V
222
2

++
+
++
+

+
=
++
+

+
=


Taking the inverse of this produces:
[ ]
)t(u)t5995.0sin(e004.5)t5995.0cos(e24e24)t(v
t875.0t875.0t
2
−−−
+−=

Similarly,

)
8
9
s
4
7

s(
FEs
)1s(
D
)
8
9
s
4
7
s)(1s(
1s2s
3
4
9
V
22
2
1
++
+
+
+
=
+++







++
=


)1s(F)ss(E)
8
9
s
4
7
s(D1s2s
3
4
9
222
++++++=






++

Equating coefficients:
ED12:s
2
+=


D
4
3
6FFD
4
3
6or FED
4
7
18:s −=→+=++=

0F 4,E ,8DD
8
3
3or FD
8
9
9:constant ===→=+=


64
23
)
8
7
s(
2/7
64
23
)

8
7
s(
)8/7s(4
)1s(
8
)
8
9
s
4
7
s(
s4
)1s(
8
V
222
1
++

++
+
+
+
=
++
+
+
=


Thus,
[ ]
)t(u)t5995.0sin(e838.5)t5995.0cos(e4e8)t(v
t875.0t875.0t
1
−−−
−+=


Chapter 16, Solution 23.


The s-domain form of the circuit with the initial conditions is shown below.

V

I
1/sC
sL
R
-2/s


4/s 5C




At the non-reference node,


sCV
sL
V
R
V
C5
s
2
s
4
++=++







++=
+
LC
1
RC
s
s
s
CV
s
sC56

2


LC1RCss
C6s5
V
2
++
+
=

But
8
8010
1
RC
1
== , 20
804
1
LC
1
==

22222
2)4s(
)2)(230(
2)4s(
)4s(5
20s8s

480s5
V
++
+
++
+
=
++
+
=

=)t(v
V)t2sin(e230)t2cos(e5
-4t-4t
+

)20s8s(s4
480s5
sL
V
I
2
++
+
==

20s8s
CBs
s
A

)20s8s(s
120s25.1
I
22
++
+
+=
++
+
=

6A =
,
-6B =
,
-46.75C =


22222
2)4s(
)2)(375.11(
2)4s(
)4s(6
s
6
20s8s
75.46s6
s
6
I

++

++
+
−=
++
+
−=

=)t(i
0t),t2sin(e375.11)t2cos(e6)t(u6
-4t-4t
>−−



Chapter 16, Solution 24.


At t = 0
-
, the circuit is equivalent to that shown below.

+


9A 4

5


v
o


-



20)9(
54
4
x5)0(v
o
=
+
=


For t > 0, we have the Laplace transform of the circuit as shown below after
transforming the current source to a voltage source.

4

16


V
o



+

36V 10A 2/s 5



-



Applying KCL gives

8.12B,2.7A,
5.0s
B
s
A
)5.0s(s
s206.3
V
5
V
2
sV
10
20
V36
o
ooo
−==

+
+=
+
+
=→+=+


Thus,
[ ]
)t(ue8.122.7)t(v
t5.0
o

−=



Chapter 16, Solution 25.


For , the circuit in the s-domain is shown below.
0t >
s
6
I
Applying KVL,
+


V




+

(2s)/(s
2
+ 16)
+

9/s
2/s

0
s
2
I
s
9
s6
16s
s2
2
=+







+++
+



)16s)(9s6s(
32s4
I
22
2
+++
+
=


)16s()3s(s
288s36
s
2
s
2
I
s
9
V
22
2
++
+
+=+=




16s
EDs
)3s(
C
3s
B
s
A
s
2
22
+
+
+
+
+
+
++=


)s48s16s3s(B)144s96s25s6s(A288s36
2342342
++++++++=+

)s9s6s(E)s9s6s(D)s16s(C
232343
++++++++


Equating coefficients :
0
s
:
A144288 =
(1)
1
s:
E9C16B48A960 +++=
(2)
2
s:
E6D9B16A2536 +++=
(3)
3
s
:
ED6CB3A60 ++++=
(4)
4
s: (5)
DBA0 ++=

Solving equations (1), (2), (3), (4) and (5) gives
2A =
,
B
,
C7984.1-= 16.8-=

,
D 2016.0-=
,
765.2E =


×