Tải bản đầy đủ (.ppt) (32 trang)

4- Quảnlý và nâng cao năng suất Bò cái sinh sản? (Tham khảo  tại đây)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (3.06 MB, 32 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>IMPROVING THE REPRODUCTIVE </b>


<b>PERFORMANCE BY OPTIMIZING OF </b>



<b>NUTRITION AND INTRODUCED A </b>


<b>REPRODUCTIVE MANAGEMENT </b>



<b>SYSTEM IN DAIRY HERDS</b>



<b>1</b>

<b>Gábor, G., </b>

<b>2</b>

<b>Koppány G., </b>

<b>1</b>

<b>Tóth, F., </b>

<b>2</b>

<b>Kulik, Z., </b>

<b>2</b>

<b>Szegszárdy I.</b>



1Research Institute for Animal Breeding and Nutrition, H-2053


Herceghalom, Hungary,


2<sub>Vitafort RT, H-2370 Dabas, Hungary </sub>


ÁTK



</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>Why is that actual?</b>



• a continuous elevation of the average milk
production


• herds estrus detection is the main limitation
for the optimal reproductive performance
• Optimizing reproductive performance by


reproductive management is available


• Pharmaceutical regulation of the estrus cycle
let us synchronizing estrus and ovulation,


regulating follicular waves, reducing


undetected heats, improving AI.


<b>• Aims: Decreasing the parturition interval </b>


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

• Milk Producers: 25-26 thousands farmers and farm


• Milk production: ~2 billion kg



• Number of milking cows ~ 210000



• Average milk production per cow/year: 7600 kg


• Calving interval /CI/ (2004) 434 days



• Number of AI per pregnancy/NAIP/: 3.48



<b>• Decrease of the NAIP by 0.1 means about 300.000 € </b>


savings per year .



<b>• Decrease the CI by 1 day means about 600.000 € </b>


savings per year.



</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<b>Biological background – easy procedure?</b>



<b>< 90 %</b>


<b>What’s </b>
<b>the </b>


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>• Causes</b>




<b>– High milk production</b>


<b>– Suboptimal management </b>


<b>systems</b>


<b>– Inadequate nutrient intake</b>


<b>• Consequences</b>



<b>– NEBAL at parturition and </b>


<b>low body condition</b>


<b>– Increase the number of AI's </b>


<b>per pregnancy</b>


<b>– Inactive ovaries </b>


<b>– Increase of calving interval </b>


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

<b>The change of intake and require of ME and </b>


<b>the body weight during lactation </b>

(Roberts, 1982)



570
580
590
600


610
620
630
640
650
660
670


1 2 3 4 5 6 7 8 9 10


Weeks after calving


B


od


y


W


ei


gh


t (


kg


)


0
50
100
150
200
250
300

M


E



(


M


J)


BW


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7></div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<b>Effect of inadequate nutrition on the ovaries</b>



<b>• Deficit of energy intake: </b>



• CL’s with cavities (physiological??)


• Luteal cyst



• Embryonic loss



<b>• Deficit of protein intake:</b>


• Inactive ovaries



• Non cycling cows



<b>• High protein dietary:</b>



• Increase of serum urea concentration


• Decrease of serum progesteron



concentration


• Follicle cyst



</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

<b>The aims of our management system</b>



• Improving reproductive performance by optimizing



nutrition.



– Prevention of the negative effect of the inadequate


nutrition (NEBAL, protein imbalance, vitamin,


micro-elements and mineral insufficiency)



– Improve BCS and decrease negative effects of NEBAL,


in order to allow a normal reaction of cows for the


reproductive treatments.



</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

<b>The main elements of this management </b>


<b>system</b>



• Optimizing nutrition



– Examination of the basic nutrition components (detailed chemical
analysis of the feeds)


– On the basis of analyses the optimized diet is calculated; energy,
protein, mineral and vitamin requirements, protein and energy
balance)


– The diets are calculated by the milk yield.


– The diets are adequate to the different dairy farms.
– Continuous controlling the mixed food


• Optimizing the reproduction



– Early pregnancy check



– Controlling the reproductive cycle


• Synchronization of ovulation and inducing estrus


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<b>Early pregnancy detection</b>



• The most common methods for the pregnancy


detection



– Uterine palpation per rectum (35-60 days post


insemination)



– Ultrasound examination (since 25 days post


insemination)



<b>– Milk or serum progesterone (2-3 times 18-25 days </b>


post insemination)



</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

The use of transrectal ultrasonography


to assess pregnancy status during early


gestation is among the most practical


applications of ultrasound for dairy


cattle reproduction.



</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

<b>Early pregnancy detection by examination of </b>


<b>the Pregnancy-specific protein B (PSPB) </b>



• Pregnancy specific protein B
is measured for detection of


pregnancy in ruminants.
BioPRYNTM, an ELISA test


for PSPB, has been


developed and is distributed
for the detection of PSPB in
the circulation of pregnant
cows 28-30 days after
insemination.


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<b>Examination of the serum or milk </b>


<b>progesterone concentration</b>



Progesterone
ng/ml


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

<b>Ultrasonography of the ovaries</b>



Application of ultrasound for monitoring the estrus cycle


(examination of different ovarian structures; 40 to 60 days post


partum) in order to decide the exact treatment for cows that were



</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<b>Methods for inducing estrus and </b>


<b>synchronizing ovulation</b>



• Methods with heat detection



– Progestin application (MGA, PRID, CIDR)


– Deslorelin implant (GnRH agonist)




<b>– Prostaglandin (single or repeated PGf</b>

2

im treatment)



• Timed insemination



– Heatsynch (GnRH - PGf

2

– ECP)



<b>– Ovsynch (GnRH - PGf</b>

<b><sub>2</sub></b>

<b> – GnRH)</b>



<b>– Provsynch (PGf</b>

<b>2</b>

<b> – PGf</b>

<b>2</b>

<b> – GnRH - PGf</b>

<b>2</b>

<b> – GnRH)</b>



</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17></div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

<b>Table 2: Results of the new management </b>


<b>system in practice </b>

<b>(a HF herd with 300 cows)</b>



<b>2001</b> <b>2002</b> <b>2003</b> <b>2004</b>


Milk production (kg) 7988 8685 9300 9250


Calving interval (days) 439 425 410 405


Number of AI per pregnancy 3.95 3.09 3.01 2.3


Pregnancy rate after the first


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

<b>The optimized nutrition and reproductive </b>


<b>management system in practice</b>



• Optimizing the diet for the given herd.



• Timed AI (Provsynch) of all cows 70-75 days postpartum.



• Early (30-36 days post insemination) pregnancy detection



by BioPryn test.



• Blood sera of the open cows are assayed for serum P4 level


and all cows in cycle are treated immediately by a single


PGF

<sub>2a</sub>

injection.



</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

<b>Table 3: The cost-benefit analysis of improved </b>


<b>fertility results in 2002-2004 </b>

<b>(data originated from Table 2)</b>


<b>**Savings (€) (reduced </b>


<b>cost)</b> <b>***Cost (€)</b>


<b>*<sub>Profit</sub><sub>(€)</sub></b>


<b>2002</b> 13002 1627 11375


<b>2003</b> 25392 2136 23255


<b>2004</b> 31863 2575 29289


<b>Total (€)</b> 70257 6338 63919


<b>*<sub>herd level,** savings by reducing calving interval and AI costs,*** cost of </sub></b>


</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

• On the basis of our experiences and practice, these regimens


would help to reduce anoestrus, parturition interval,


synchronize return services and enhance embryo survival.




• The improvement of the reproductive performance will


result higher profitability, so the complex nutrition and


reproductive management system is a rational method to the


better economic efficiency and competitive superiority.



</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22></div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

<b>Regulation of reproduction</b>



Interactive procedure that coordinates and regulates all
reproductive functions


Main elements of the regulation are:


1. Nervous system



• <sub>Fundamental responsibility is translating or transducing </sub>
external stimuli into neural signals


2. Endocrine system



</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>

<b>Simple neural and neuroendocrine reflex </b>



</div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

<b>Reproductive hormones</b>


<b>• Originate</b>
– Hypothalamus
– Pituitary
– Gonads
– Uterus
– Placenta
<b>• Cause</b>


– Release of other hormones (releasing hormones)
– Stimulate gonads (gonadotropins)


– Sexual promotion (steroids)
– Pregnancy maintenance
– Luteolysis


<b>• Biochemical classification </b>
– Peptides


– Glycoproteins
– Steroids


</div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

<b>The most important hormones </b>


<b>influencing ovarian activity</b>



Hormone Biochemical


classification


Source Action in female Effect on


ovary


<b>GnRH</b> Decapeptide Hypothalamus Release FSH and LH Follicular
develop-ment; ovulation


<b>LH</b> Glycoprotein Pituitary Stimulates ovulation



and P4 secretion Formation of CL


<b>FSH</b> Glycoprotein Pituitary Follicular development,


E2 synthesis Development of follicles


<b>Progesterone</b> Steroid CL, placenta Maintenance of pregnancy <sub>Inhibits GnRH </sub>


release


<b>Estradiol</b> Steroid Follicle, placenta <sub>Sexual behavior</sub> <sub></sub>


<b>-hCG</b> Glycoprotein Chorion ovarian P4 synthesis -


<b>eCG</b> Glycoprotein Chorion Formation of accessory CL’s -


<b>PGF<sub>2</sub></b> Prostaglandin Endometrium Destruction of CL Luteolysis


Inhibin Glycoprotein Granulosal cells <sub>Inhibits FSH secretion</sub> <sub>Inhibits follicle </sub>


</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27></div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28>

PSPB is a novel protein that was first reported by scientists at the
University of Idaho. PSPB is located in the giant binucleate cells of the
trophoblastic ectoderm of the placenta and this indicated that it was
either synthesized or sequestered by those cells.


Cotyledon



</div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29>

<b>Migration of these cells result the </b>


<b>appearance of PSPB in the maternal </b>




<b>circulation.</b>



Bi-Nucleated


Cells Placenta


Uterus


</div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30>

<b>P</b>
<b>S</b>
<b>P</b>
<b>B</b>
<b> n</b>
<b>g/</b>
<b>m</b>
<b>L</b>
<b>Parturition</b>
<b>Parturition</b>


<b>Days post breeding</b>


<b>Days post breeding</b>


</div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31></div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>

<b>Distribution of Optical Density (OD)</b>



0
0.1
0.2
0.3
0.4


0.5
0.6


1 6 <sub>1</sub>1 <sub>1</sub>6 <sub>2</sub>1 <sub>2</sub>6 <sub>3</sub>1 <sub>3</sub>6 <sub>4</sub>1 <sub>4</sub>6 <sub>5</sub>1 <sub>5</sub>6 <sub>6</sub>1 <sub>6</sub>6 <sub>7</sub>1


Series1


<b> O D</b>


</div>

<!--links-->

×