Tải bản đầy đủ (.pdf) (3 trang)

Influence of soliton interaction on optical communication systems

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (771.66 KB, 3 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

VNU. JOURNAL OF SCIENCE. Mathematics - Physics. T.xx. N„3AP, 2004


<b>INFLUENCE OF SOLITON INTERACTION ON OPTICAL </b>


<b>COMMUNICATION SYSTEMS</b>



<b>H o a n g C hi H ieu , T rinh Đ in h C h ien</b>
<i>D epartm ent o f Physics, College o f Science, V N U</i>


Abstract. In this paper, we used numerical method to investigate the two-soliton
interaction in optical fiber communication systems, in the case of in-phase and
equal amplitude solitons. With some difference initial separation of two-solitons,
separation between neighboring solitons in a digital bit stream, we obtain limit
values of bit rate and maximum transmission distances of soliton communication
system respectively.


<b>1. In tro d u c tio n</b>


<b>The existence of fiber solitons is the result of a balance between group velocity </b>
<b>dispersion (GVD) and self-phase modulation (SPM) ill dispersive nonlinear medium. So </b>
<b>soliton pulses can propagate undistorted over long distance and remain unaffected after </b>
<b>collision with each other. Thus the soliton communication system s have ultra-high bit rate </b>
<b>and extremely long propagate distance. However, soliton light-wave system s were not </b>
<b>commercially available, now. Because, they have some limitations, example: soliton </b>
<b>interaction, soliton collision, pulse chirp... In this paper, we consider the two-soliton </b>
<b>interaction with initial equal-phase and amplitudes. By the Matlap software, we showed </b>
<b>the evolutionary process of two solitons with difference initial pulse separation</b>
<b>2. B a sic p ro p a g a tio n eq u a tio n</b>


<b>The mathematical description of one fiber soliton is solution of the nonlinear </b>
<b>Schrodinger equation (NSE) [1] [2] [3].</b>



<b>j£E + i - £ J i + |u|2u = 0 , </b> <b>with u(0,t) = sech(ĩ). </b> <b>(1)</b>
<i>d ị </i> 2


<b>This equation was solved by inverse scattering method (2] [3]. And with two-soliton. </b>
<b>initial condition is: u(0,x) = s e c h ( t- Yo)+ rsech{r(ĩ + Yo)}exp(j0). So we have two-soliton </b>
<b>solution in fiber with arbitrary initial phase and separation is [4] :</b>


|q |c o s h (a l +

16

^ ' ^ + | a

2

|c o s h (a

2

+ i e

2

)ei+l


a -jC o s h a j c o s h a 2 - a 4[cosh(a1 + a2) - c o s h(<|>2 — <t>X )J


<b>where: <{>1.2 = </b>

<b>Ị'</b>

<b>—</b> <b>- ^1.2j + (*o)i,2 ’ </b> <b>»1.2 = n u ( t + x^i.a)+(ao)l,2.</b>


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<i>Influence of soliton interaction on...</i>

61


<b>fr 1 </b>

<i>2</i>

<i>r\</i> <b><sub>± </sub></b> <b><sub>2A^ </sub></b> <b><sub>1</sub></b>


<b>[[ni.2 </b> <b>AÇ2 + n2 _</b> <b>AÇ2 +r|2 j</b>


AÇ = ỗ 2 n - n i -n a


u(x.t<b>) is the normalized form of two-soliton envelope amplitude</b>


<b>3. T h e tw o -s o lito n in te r a c tio n w ith in itia l eq u a l p h a s e s a n d a m p litu d e</b>
<b>With two-solitons are launched whose amplitudes and phases are equal, we have: 0=0 </b>
<b>and </b>Ẹ,,=4,=0. <b>And then substituting into equation (2), it become:</b>


<b>q{t,x) = Q|rii sechri] (</b>t<b> + Yo)ein' x/2 + n-2 sechr)2( x - y 0)ein-x/2|</b>


<b>_2 </b> <b>2</b>



<b>1 </b> <i><b>r\ </b></i> <b>1 2 “ Hi</b>


<b>where: </b> <b>Q = — ---5--- --- :</b>


<b>rji +Ï12 - r i 1ri2[tanha1 tan h a2 -s e c h a j sech a2 COSVJ/J</b>


<i><b>1 9 </b></i> <b>1 )k </b> <b>_ </b> <b>, </b> <b>2x0 </b> <b>t </b> <i>u x</i>
<b>^</b> <b> n u = l + _ ;Ju o. — sech(x0)</b>


<b>(3)</b>


<i><b>> = 1</b></i> <b>+ _ J ? Ĩ 2 _</b>


<b>sin h 2 t0</b>


<b>Where Yu is Initial separation,T is normalized time, X is normalized propagate </b>
<b>distance. The two-soliton solution Eq. 3 describes the interaction of two solitons with above </b>
<b>initial condition. We investigate the soliton </b>


<b>communication system s with parameters in </b>
<b>Table 1. Because X is normalized with respect </b>


to L|„ so each u n it of X is 50km. We
<b>investigate the two-soliton interaction when </b>
<b>the value of initial separation y0 varies from </b>


<b>1.5 to 6.5. Thus, from Eq.3, we have evolutionary process of two solitons is shown in Fig. 1. </b>
<b>Because bit rate is B=(y0Tn)'1, so B varies from 15,4 Gb/s to 67 Gb/s.</b>



<b>Table 1</b>


<b>Pulse width</b> <b>T„= 5ps</b>


<b>Dispersion parameter</b> <i><b>p : =-0.5 ps:/km</b></i>
<b>Dispersion length</b> <b>L|)= 50 km</b>


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

6 2

<i>Hoang Chi Hieu, Trinh Dinh Chien</i>



<b>F ig .l. Soliton interaction with initial equal amplitude and phase</b>
<b>Fig. 1 displays the evolution pattern showing periodic collapse o f a soliton pair for </b>
<b>various pulse separation. The periodic collapse of neighboring soỉitons is undesirable from </b>


<b>the system standpoint. One </b> <b>T bl 2</b>


<b>way to avoid the interaction </b>
<b>problem is to increase Yu such </b>
<b>that the collapse distance, ZM</b>
<b>is </b> <b>much </b> <b>larger </b> <b>than </b> <b>the </b>


<b>transmission distance Lf. From the results in the Fig 1, we can measure the collapse </b>
<b>distance ZM at each difference pulse separation Yu and thus we have table 2.</b>


<b>I0</b> <b>1,5</b> <b>2,5</b> <b>3,5</b> <b>4,5</b> <b>5,5</b> <b>6,5</b>


<b>B (Gb/s)</b> <b>67</b> <b>40</b> <b>28,6</b> <b>22,2</b> <b>18,2</b> <b>15.4</b>


<b>z „ (km)</b> <b>105</b> <b>460</b> <b>1750</b> <b>3850</b> <b>10500</b> <b>] 7250</b>


<b>4 . C o n clu sio n</b>



<b>The curve shown in Figure 2 is very useful </b>
<b>for us to use as a guideline to choose the optimum </b>
<b>pulse separation given a certain transmission </b>
<b>distance. Pulse separation has to be minimized in </b>
<b>order to achieve high bit rate transmission.</b>


<b>With initial condition are equal phase and </b>
<b>amplitude, the soliton interaction investigated is the </b>
<b>strongest. Actually, we can choose the value of </b>
<b>initial phase and amplitude to decrease "solium </b>
<b>interaction force” to the </b> <b>minimum. We will </b>
<b>investigate this problem in later papers.</b>


<b>Fig.2. ZM as a functio </b>
<b>initial separation.</b>


<b>R efer en ces</b>


<b>1. </b> <i><b>H.C.Hieu. T.D.Chien and Nguyen Manh Hung, Investigatings about the ultra-short pulsef </b></i>
<i><b>in soliton form. 3rd National Optic & Spectroscopy Conference,8. 2002, pp 41-45.</b></i>
<b>2. </b> <i><b>G.P.Agrawa), Fiber-Optic Communication System s, New York: Willey, 1998.</b></i>
<b>3. </b> <i><b>Le Nguyen Binh and al. Optical Fiber Communication Systems, Mocss, 1996</b></i>


</div>

<!--links-->

×