Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.45 MB, 11 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
V N U J o u rn a l o f S cien ce, N a tu r a l S cic n c c s a n d T ech n o lo g y 25 (2009) 112-122
Received 07 December 2007
A bstract. A series o f ground La(Co,Cu)03 perovskite-type mixed oxides prepared by reactive
grinding has been characterized by X-Ray diffraction (XRD), BET, H2-TPR, O2-TPD, and CO
disproportionation. All ground sanples show a rather high specific surface area and nanomeữic
particles. The solids were prefreated under H2 aừnosphere to provide a finely dispersed Co-Cu
phase which is active for the hydrogenation of CO. The reduced perovskite precursors produced a
mixtiưe o f higher alcohols and hydrocarbons from syngas following an ASF distribution.
<i>Keywords: perovskite; Co-Cu metals; syngas; alcohol synthesis.</i>
<b>1. Introduction</b>
Perovskites are m ixed oxides w ith the
general form ula AtíUs- In theoiy, the ideal
perovskite structure is cubic w ith the space-
group Pm 3m -O h [1]. T he structure can be
therefore 6-fold coordinated and the A -cation is
12-fold coordinated w ith the oxygen ions.
M oreover, each o f the A and B positions could
be partially replaced by an o th er elem ent to
prepare a variety o f derivatives [1,2]. For
exam ple, a partial substitution o f La in
<b>’ Corresponding author. Tel.; 84-4-39331605. </b>
<b>E-mail: </b>
lanthanum -cobaltate by either Sr or Th has
rem arkably affected the rate o f carbon dioxide
hydrogenation [3] and m ethane oxidation [4].
The substitution o f the cation at A-position,
how ever, is m uch less atừactive than that at B-
site due to the usual lack o f activity o f the A
cation. M eanw hile, the introduction o f another
transition m etal into perovskite lattice could
therefore produce several supported bimetallic
catalysts upon controlled reductions [5-8].
Bedel et al. [5], for instance, obtained a Fe-Co
alloy after reduction o f LaFeo 75C00.25O3
orthorhom bic perovskite at
<b>A ssaf [8] found that the partial substitution o f </b>
Ni by Fe in the perovskite lattice leads to a
decreased reduction tem perature o f ions
<i>N .T . T h a o et al. / V N U j o u r n a l o f Scien c e, N a tu r a l S c ie n c e s a n d T e c h n o lo g y 2 5 ( 2 0 0 9 ) 1 1 2 -1 2 2</i> <b>113</b>
<i>2.1. M aterials</i>
and cobalt o x id e s (9 9 % , A ld r ic h ) w e re m ixed
( Sb e t)
T em p e ra tu re p ro g ra m m e d ch aracterizatio n
P rio r to e a c h test a n a ly s is , a 5 0 m g sam p le w a s
sam p le w a s then c o o le d d o w n to room
tem perature u n d er flo w in g p u re H e (2 0
m L/m in ). T P R o f the c a ta ly s t w a s then carried
out b y ra m p in g u n d er 4 .6 5 v o l% o f H2/ A J (2 0
m l/m in)
O2-T P D c o n d itio n s w e re 2 0 m l/m in H e,
m/z s ig n a ls o f 1 8 , 2 8 , 3 2 , 4 4 w e re c o lle c te d
114 <i>N.T. Thao et al. / V N U journal o f Science, Natural Sciences and Technology 25 (2009) ĨÌ2 -Ĩ2 2</i>
capillary colum n (W cot fused silica, 60m X
0.53mm, C oating Cp-Sil 5CB, DF = 5.00 ^m )
connected to a FED (V arian CP - 3800) and
mass spectrom eter (V arian Saturn 2200
G C/M S/M S). The selectivity to a given product
is defined as its w eight percent w ith respect to
all products excluding C O2 and water.
Productivity is defined here as a weight (mg)
product per gram o f catalyst p er hour.
100). The m/z signals o f 18, 28, 32, and 44
were collected.
<i>2.3. Catalytic perform ance</i>
The catalytic tests were carried out in a
stainless-steel continuous flow fixed-bed micro-
reactor (BTRS - J r PC, A utoclave Engineers).
<i>Catalysts were preữeated in situ under flowing</i>
5 vol% o f H j/A r (20 m l/m in) at
500”C (3h) with a ram p o f 2°c/m in. Then, the
reactor was cooled dow n to the reaction
temperature while pressure was increased to
products were analyzed using a gas
chromatograph equipped w ith two capillary
columns and an autom ated online gas sam pling
valve maintained at
separated using a capillary colum n (Carboxen™
1006 PLOT, 30m X 0.53m m ) connected to the
TCD. Quantitative analysis o f all organic
products was carried out using the second
<b>Table 1. Physical properties o f ground La(Cu,Cu)Oj perovskites</b>
<b>3. Results and discussion</b>
<i>3.1. Physico-chem ical properties</i>
Table 1 collects the chem ical composition
and some physical properties o f all the ground
perovskites. The specific surface area is rather
higher (16-60m^/g) because o f the low synthesis
temperature (~ 40°C), w hich allow s to avoid the
agglomeration o f perovskite particles [7.11],
<b>Samples</b> <b><sub>S</sub>bet</b>
<b>(la ’/g)</b>
<b>Crystal</b>
<b>(iua)’</b>
<b>domain </b> <b>Com position (wt.% )</b>
<b>Na"</b> <b>Co</b> <b>Cu</b> <b>rc^</b>
<b>LaCoOa</b>
LaCoo.9Cuo.1O3
<b>59.6</b> <b>9.8</b> <b>0.53</b> <b>21.15</b> <b>-</b> <b>4.69</b>
<b>19.5</b> <b>9,7</b> <b>0.31</b> <b>19.31</b> <b>1.89</b> 1 . 1 2
<b>LaCoo </b>7<b>CU</b>03<b>O</b>3 <b>22.3</b> <b>9.9</b> <b>0.17</b> <b>16.77</b> <b>5.79</b> 1 . 2 1
<b>LaCoo </b>5C110 5O3 10 .6 <b>9.2</b> <b>0.44</b> <b>10.60</b> <b>9.96</b> <b>0.6 4</b>
<b>CujO/LaCoOj </b> <b>16.8 </b> <b>10.9 </b> <b>0.39</b>
<b>___ _______________ V. _ _ </b> <b>, L </b> <b>_ f., _</b> <b>20.04</b> <b>3.28</b> <b>4.78</b>
As mentioned in experim ental Section, the
addition o f a grinding additive (NaCl) during
the last milling step leads to the partial
separation o f the crystal dom ains, m aking a
significant change in surface-to-volum e ratio
and in the internal porosity o f elem entary
decreased surface area o f LaCo0 3. Indeed, the
surface area ( Sbet) o f all C u-based perovskites
(x < 0.3) and the m ixed oxides (C u2 0/LaCoƠ3)
is much low er than that o f the copper-free
sample (LaC oO j) [6,7,11,12], The X-ray
diffraction patterns are sfiown in Fig. 1. Their
diffractogram s indicate that all La-Co-Cu
<i>N .T . T hao e t al. / V N U jo u r n a l o f S cien c e, N a tu r a l S c ie n c e s a n d T e c h n o lo g y 2 5 (2 0 0 9 ) Ĩ 1 2 - 1 2 2</i> <b>115</b>
<b>= </b>2000
<b>3 --- Laco0.7cu0.303</b>
<b>2 --- Laco0.9cu0.103</b>
hig. 1. X K U patterns (i^erovskite: x;
<i>3.2. </i> <i>T em p erature-program m ed reduction o f </i>
<i>hydrogen (H :-TPR)</i>
<b>116</b> <i>N T . Viao et al. i V N U journal of Science, Natural Sciences and Technoỉo<iỊy 25 (20()9) Í 12-222</i>
XRD spectra o f the reduced Co-Cu based
perovskites (not shown here) show the
appearance o f signals o f Cu and Co m etals after
reduction at 375 and
profile m H i-TPR betw een sam ple
LaCoosCuosOa and C u2 0/L aC o03 is observed,
indicating that at a higher copper content (x =
0.5), a rem arkable am ount o f copper oxides
exists out o f the perovskite lattice. Their oxides
are so highly dispersed in the grinding
L a(C o,C u)0 3 that they could not detected by
X R D techniques.
<b>24</b>
ro18
J2
cc
<b>C u 20/L aC o03</b>
<b>L</b>3<b>C</b>00<b>.50u0.503</b>
<b>Laco0.7cu0.30a.</b>
<b>Laco0.9cu0.103</b>
<b>LaCo03</b>
<b>200</b>
<b>Fig. 2. H</b>2<b>-TPR profiles o f the ground perovskites.</b>
<i>3.3. Tem perature-programmed desorption o f </i>
<i><b>(O</b>2<b> T P D )</b></i>
TPD o f O2 over all samples w as
investigated in order to shed light on the
reduction-oxidation properties o f Co-Cu based
samples. O2-TPD spectra show two typical
peaks with a strong shoulder at a high
<b>sh ifts to a lo w e r tem perature and b ecom es </b>
sharper w ith increasing copper content. The
oxygen desorption signal (p-oxygen) appeared
at a higher tem perature (650-820°C) is ascribed
to the liberation o f oxygen in the lattice. It is
noted that this peak o f the non-substituted
L aC oO j has the m axim um at 78 5 °c while that
o f the C o-C u based perovskites shows the
m axim um at a low er tem perature with a
shoulder approxim ately at 670-680°C (Fig. 3).
The shoulder o f the second peak is believed to
the reduction o f to Cu^ in harm ony with
increasing its intensities with the am ount o f the
<b>pea k IS firm ly d esig n a ted as to the difficult </b>
reduction o f to in lattice. An
increased am ount o f a-oxygen desorbing from
LaCoi_^CUx0 3 suggests that Cu substitution
<i>N .T . T ĩm o e t al. / V N U J o u r n a l o f S c ie n c e , N a tu r a l S c ie n c e s a n d T e c h n o lo g y 2 5 (2 0 0 9 ) 1 1 2 -1 2 2</i> <b>117</b>
<b>Laco0.5cu0.503</b>
<b>Laco0.7cu0.303</b>
<b>Laco0.9cu0.103</b>
Fig. 3. O2-T PD profiles o f the ground perovskites.
<i>3.4. CO D isprop ortionatio n</i>
<b>d is s o c ia tio n </b>
2
<b>118</b> <i>N.T. Thao et aỉ. / V N U Journal o f Science, Natural Sciences and Technology 25 (2009) 112-122</i>
80
5« 70 ^
c 60 Ị
.2
<b>0)</b>
> 40 !
K
0
u 30 '
LaCo03
♦ <i>m m</i>
<i>I</i> — t - - r » ệ ế É . . Cu20/LaCo03
Nurrbef of pulses
4 8
-SCuO.Ỉ
12 16
Fig. 4. CO disproportionation on the reduced La(Co,Cu)03 samples at 275®c.
<i>3.5. Synthesis o f higher alcohols fr o m syngas</i>
Synthesis o f higher alcohols from syngas
has been perform ed at 250-375°C under 1000
psi and velocity = 5000 h ' (H j/C O /H e = 8/4/3)
over the reduced La(Co,Cu)03 perovskites. A
mixture o f products is com posed o f linear
primary m onoalcohols (C |O H -C 7O H ) and
paraffins (C i-C ii). The activity is defined as a
micromole o f CO per gram o f catalyst per hour
is presented in Figure 5. From this Figure, it is
observed that the activity in CO hydrogenation
increases <b>w ith increasing co p p er content to X =</b>
0.3. The conversion on sample LaCoosCuo sOs
<b>IS very c lo se to that on the blend o f CU</b>2<b>O and </b>
LaCoOs, indicating a sim ilar catalytic behavior
o f the two samples. Therefore, both the
selectivity and productivity o f alcohols over
sample LaCoosCuosOj are m uch lower than
those o f the LaCoo 7C1103O3 perovskite alửiough
copper content o f the former is much higher
(Table 1 and Figs 6-7). The general consensus
in literature is that a mixed Co-Cu based
catalyst is active for the synthesis o f higher
alcohols from syngas as a distance o f a metallic
copper atom from a cobalt site is within atomic.
Consequently, the requirem ent for the
perovskite precursor is therefore that
should be in the La(C o,C u)03 fram ew ork and a
hom ogeneous distribution o f the tw o Co-Cu
active sites is reached after pretreatm ent under
hydrogen aừnosphere [11,15]. M etallic cobalt is
widely known as a good Fischer-Tropsch
catalyst because it shows very high activity in
the appropriately dissociative adsorption o f CO
molecules, the propagation o f carbon chain, and
the production o f m ethane when exposed to
synthesis gas [7,15],
<b>x=0 </b> <b>x=0.1 </b> <b>x=0.3 </b> <b>x=0.6u20/LaCo03</b>
<i>N T . T h a o et al, Ị V N U J o u r n a l o f S cien c e, N a tu r a l S c ie n c e s a n d T e c h n o lo g y 2 5 (2 0 0 9 ) 2 1 2 -1 2 2</i> <b>119</b>
50
? 40
20
10
OQ Alcohols
■ C2-hydrocarbons
■ Methane
Fig. 6. The coưelation between copper content (x = 0-0.5) and alcohol selectivity.
69 Alcohols
■ C2-hydrocarbons
80
? 70
3
5» 60
<i>Uề</i>
£ <sub>50</sub>
<i>> 40</i>
<i>ề</i><sub>u</sub>
3 30
TS
w
<i>hm</i>
0. 20 i
0 ^
<b>120</b> <i>N T . Thao et al. f V N U journal o f Science, Natural Sciences and Technology 25 (2009) ĨÌ2-122</i>
This suggestion <b>IS </b> substantiated as we
estimate the distribution o f products. Figure 8
shows A nderson-Chulz-Flory (ASF) carbon
number distributions at
obtained on the representative sample
LaCoovCuojO}. As seen from this Figure, all
products are in good agreem ent w ith an ASF
alpha value o f hydrocarbons, the second carbon
chain growth probability factor (a2 ) o f higher
alcohols was calculated w ithout m ethanol point
because m ethanol is usually overproduced
during the synthesis o f higher alcohols from
syngas [7,15-17]. This may be also associated
with the role o f extra- perovskite lattice copper
w hich can form m ethanol in the absence o f a
neighboring cobalt site [7,17]. As seen from
Fig. 8, when the point o f m ethanol (n = 1) is
excluded in the alcohol m olecular distribution,
a close resem blance betw een the two slopes o f
alcohol and hydrocarbon plots is clearly
observed, indicating that the reaction pathway
likely occurs through sequential addition o f
CHx interm ediate species in to the carbon chain
for the propagation [14].
CartxDn rư n b e r
<b>Fig. </b>8<b>. A SF distribution o f products over sample LaCoo</b>7<b>Cuo </b>3<b>O</b>3
<b>(qi </b>= C1OH-C7OH; 02= C2OH-C7OH; 03 <b>= C|-C|0 hydrocarbons)</b>
4. C onclusion
A set o f nanocrystalline LaCo|.,Cux03
perovskites has been prepared using reactive
grinding method. All sam ples have a rather
high surface area and com prise elem entary
nanoparticles. A t X > 0.3, a blend o f oxides is
<i>N T . Thao et al. f V N U Journal o f Science, Natural Sciences and Technologỵ 25 (2009) II2 -Ĩ2 2</i> <b>121</b>
after reduction o f the Co-Cu based perovskites
under hydrogen atmosphere. The reduced
perovskite precursors are rather active for the
conversion o f syngas to oxygenated products.
The distribution o f both alcohols (CịO H -CvOH)
and hydrocarbons (C l-C IO ) is good consistent
with an ASF distribution with the carbon chain
growth probability factors o f 0.35-0.45. Copper
m the perovskite structure plays an important
role in the synthesis o f higher alcohols. The
inữa-lattice copper is found to prom ote the
formation o f alcohols and to suppress the
production o f methane.
A cknow ledgem ents
The finance o f this w ork was supported by
Nanox Inc. (Quebec, C anada) and the Natural
Sciences and Engineering Research Council o f
Canada. The authors gratefully thank N anox
Inc. (Quebec) for preparing the perovskite
catalysts used in this study.
R eferences
<b>[1] M.A. Pena and J.L.G. Picưo. Chemical structure </b>
<i><b>and performance o f Perovskitc oxides Chem. </b></i>
<i><b>Rev, 101 (2001) 1981-2017.</b></i>
<i><b>[2] L.G. Tejuca, J.L.G. Fierro, Properties and </b></i>
<i><b>applications o f perovskite-type oxides^ MarccI </b></i>
<b>Dckkcr Inc., New York, Basel, Hong kong, 1993</b>
<b>[3] M.A. Ulla, R.A. Migonc, J.o. Pctunchi, and </b>
<b>E.A. Lombardo, Surfacc chemistry and catalytic </b>
<b>activity o f LaiyMxCo</b>03<b> perovskitc (M-Sr or </b>
<i><b>T h \J . C a ta l 105 (1987) 107.</b></i>
<b>[4] S. F'oncc, M.A. Pena, j.L.G. Pieưo, Surface </b>
<b>properties and catalytic perfonnance in methane </b>
<b>combustion </b> <b>o f </b> <b>Sr-substitutcd </b> <b>lanthanum </b>
<i><b>maganitcs, Appỉ. Catal. B 24 (2000) 193.</b></i>
<b>[5] L. </b> <b>Bedel, A .c . </b> <b>Roger, </b> c. <b>Estoumes, A. </b>
<b>Kienncmann, Co® from partial reduction o f </b>
<b>La(Co,Fe</b>)03<b> perovskites for Fischer-Tropsch </b>
<i><b>synthesis, Catai. Today 85 (2003) 207.</b></i>
<b>[</b>6<b>] L. Lisi, G. Bagnasco, p. Ciambelli, s . D. Rossi, </b>
<b>P. Porta, G. Russo, and M. Turco, Perovskite- </b>
<b>type oxides; II. Redox properties o f LaMrii. </b>
<i><b>x C u fii and LaCoj.xCuxOa and methane catalytic </b></i>
<i><b>combustion, J. S olid State Chem. 146 (1999) </b></i>
<b>[7] N. Tien-Thao, M. H. Zahedi-Niaki, H. Alamdari, </b>
<b>S. </b> <b>Kaliaguine, </b> <b>LaCoi.^Cu^Os^ </b> <b>perovskite </b>
<i><b>catalysts for higher alcohol synthesis, A p pl </b></i>
<b>C a/a/.^ 311(2006) 204.</b>
<b>[</b>8<b>] S.M. de Linma and J.M. Assaf, Ni-Fe catalysts </b>
<b>based on </b> <b>perovskite-type </b> <b>oxides </b> <b>for dry </b>
<i><b>reforming o f methane to syngas, Catal. Lett. 108 </b></i>
<b>(2 00 6)6 3.</b>
<b>[9] S. Kaliaguine, A. Van Neste, V. Szabo, J.E. </b>
<b>Gallot, M. Bassir, R. Muzychuk, Perovskite-type </b>
<i><b>oxides synthesized by reactive grinding, Appl. </b></i>
<b>Ca/a/. A 2 0 9 (2 0 0 1 )3 4 5 .</b>
<b>[10] N. Tien-Thao, M. H. Zahedi-Niaki, H. Alamdan, </b>
<b>S. Kaliaguine, Effect o f alkali additives over </b>
<b>nanocrystalline Co-Cu based perovskites as </b>
<i><b>catalysis for higher alcohol synthesis, J. Catal. </b></i>
<b>245 (2007) 348.</b>
<b>[11] N. Tien-Thao, M. H. Zahedi-Niaki, H. Alamdari, </b>
<b>S. Kaliaguine, Conversion o f syngas to higher </b>
<b>alcohols </b> <b>over </b> <b>nanosized </b> <b>LaCoo</b>7<b>Cuo</b>303
<i><b>perovskite precursors, AppL CataL A 326 (2007) </b></i>
<b>Ì52.</b>
<b>[12] R. Zhang, A. Villanueva, H. Alamdari, s. </b>
<b>Kaliaguine, Cu-and Pd- substituted nanoscale </b>
<b>Fe-bascd perovskites for selective catalytic </b>
<i><b>icUuctiun o f NO piopcnc, J. C aial. 237 (2006) </b></i>
<b>368.</b>
<b>[13] N. Ticn-Thao, M. H, Zahedi-Niaki, H. Alamdari, </b>
<b>S. Kaliaguine, Co-Cu metal alloys from LaCO|. </b>
<b>xCUxOs perovskites as catalysts for higher </b>
<i><b>alcohol synthesis from syngas. Int. J. Chem. </b></i>
<i><b>React. Eng, 5 (2007) A82.</b></i>
<b>[14] R. Zhang, A. Villanueva, H. Alamdari and s. </b>
<b>Kaliaguine, Reduction o f NO by CO over </b>
<b>nanoscale </b> <b>LaCoijtCu^Oj and </b> <b>LaMni.xCujOj </b>
<i><b>pcrovskites, J. Mol. CataL A 258 (2006) 22.</b></i>
<b>[15] X. Xiaoding, E.B.M. Doesburg and J.J.F. </b>
<b>Choiten, Synthesis o f higher alcohols from </b>
<b>syngas-Recently patented catalysts and tentative </b>
<i><b>ideas on the mechanism, C a tal Today 2 (1987) </b></i>
<b>125.</b>
<i><b>[16] K .c. Waugh, Methanol synthesis, C a ta l Today </b></i>
<b>1 5 (1 9 9 2 )5 1 .</b>
122 <i>N.T. Thao et al. / V N U Journal o f Science, Natural Sciences and Technology 25 (2009) ĨĨ2 -Ĩ2 2</i>
<i>'Khoa Hóa học, Trường Đại học Khoa học Tự nhiên, ĐHQGHN, 19 Lê Thánh Tông, Hà Nội, Việt Nam </i>
<i>^ Phịng Cơng nghệ Hóa học, Trường Đại học Laval, Quebec, Canada. G IK 7P4</i>
Các đặc trưng của họ xúc tác perovskite La(Co,Cu)Oj được tổng hợp bằng phương pháp nghiền
họat hóa được xác định bàng các phưomg pháp như: X-ray, BET, khử bằng H2 theo chương trình nhiệt
độ (TPR-H2), deoxy bằng chương trình nhiệt độ (TPD-O2), phân bố bất đối xứng
có cấu hình từ các hạt nano và có diện tích bề mặt riêng khá lớn. K hử hóa học bằng hiđro thu được Co,
Cu kim loại phân tán tốt trên chất m ang La203. Pha Co-Cu kim lọai được sử dụng làm xúc tác cho