Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (782.44 KB, 4 trang )
<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>
VNƯ Joumaỉ of Science, Mathematics - Physics 23 (2007) 155-158
<i>D epartm ent o f M athem atics, M echanics, Informatics, C oỉlege o f Science, VNU </i>
<i>334 Nguyen Trai, Hanoi, Vieínam</i>
Received 15 N ovem ber 2006; received in revised fo rm 12 September 2007
A b s t r a c t . In th is paper we w ill construct a parameter-dependent c y c lic in e q u a lity that can
be used to prove a lot o f hard and interesting inequalities.
1. In tro d u c tio n
T he cyclic inequality is a type o f inequality that may be right in ju s t som e particular cases but
not in genenal. In this paper, vve propose one type o f param eter-dependent cyclic inequality from a
special inequality. Thanks to this inequality, we can obtain many inequalities by choosing
2. T h e g en eral case
Denote
L e m m a 1.1.
1<b><</b>
<i>Proof. v /e have</i>
l < i < j < n l < i < j < n
Since 1 + 2 + --- | - ( n - l ) = — hence the num ber o f term s o f <sub>1 </sub><i><sub><i<j<nx ' x j</sub></i>
156 <i>Nguyen Vu Luong / VNU Journal o f Science, Mathematics - Physics 23 (2007) ì 55-158</i>
Adding both sides o f the above inequality by 2
The proof o f Lemma 1.1 is complete.
<i><b>X\ </b></i> <i><b>X2</b></i>
+ --- :— 7--- --- T + --- +
<i>+ . . . + __________ ĩ s . __________ > _ _____ 2n _____</i>
<i>x n</i> + a ( x i H--- 1- <i>CnXk)</i> 2 + <i>a ( n -</i> 1)
<i>Where</i>
~
<i>p —</i> --- ---1- -- 4 -
<i><b>---Xi</b><b> + a ( x 2 H---b CnXk+1 ) </b></i> <i><b>x 2</b><b> + a ( x 3 H---+ c n Xk+2)</b></i>
______________ í______________ I_______________
. . -I---2--- .
Using the fact that
( , , ,
“ í X ,Í=1«»
with ai G i? + (í = Ĩ7n ) , it implies
p > ( E r = i * i) 2
] C i = l <i>Xị + a</i> 5 I l < » < j < n <i>x i x j</i>
Since a ^ 2,it can be rewritten as
( / C r = l <i>x i ) 2</i> + <i>0 ^ 2 l < i< j < n x i x j</i>
Applying Lem m a (1.1) w e obtain
_ 2 n
or
<i>Nguyen Vu Luong / VNU Joum al o f Science, Mathematics - Physics 23 (2007) 155-158</i> 1 57
N exụ for
1 1
„ 2
+ ■■• +
E i- 1
( E " = 1
* i )2 + z <)2 2 + Q<" 1}
Thus Theorem 1.1 is proved.
3. T h e special cases
For n = 3, w e obtain the following inequalities.
E x a m p le 1.1. Let
+ T— --- ỉ--- :--- ^
Take a = 2 we obtain
E x a m p le 1.2. Let a ,
+ r - r + — V ỉ* 1.
aoc 2
E x a m p le 1.3. Let a , 6, c be positive num bers satisíy
E x a m p le 1.4. A ssum e that
a 6
2 a + a (2 ố + c) 25 + a ( 2 c + d) ^ 2c + a ( 2 d + a ) 2d + a ( 2 a + 6) ^ 2 + 3 a
Take a = 2 we obtain
E x am p le 1.5. A ssum e that
158 <i>Nguyen Vu Luong / VNU Journal o f Science, Mathematics - Physics 23 (2007) 155-158</i>
Take o =
E x a m p le 1.5. A ssum e that
[2
E x a m p le 1.7. G ive
_ a + a ( 6 + c) 6 + a ( c + d) c + a ( d + e)
Take c = d = e , t t = 2 w e yieỉd the inequality
E x a m p le 1.8. G iven
For n = 6 w e yield
E x a m p le 1.9. Given <i>ãị e R + </i> <i>( i</i>
a i
Ũ4 ữ5 ị ^ 1 2
0 4 + Q r(ữ 5 + 0 6 + 2 ° ! ^ a 5 ữ ( a 6 + ữ l + 2 ữ 2 ) ữ 6 a ( 0 l + ° 2 + 2 ữ 3 )
Finally, take Qi =
A ck n o w led g em en ts. T his paper is based on the talk given at the C oníerence on M athem atics, Me-
chanics, and Inform atics, Hanoi, 7/10/2006, on the occasion o f 50th A nniversary o f Departm ent o f
M athem atics, M echanics and Inform atics, Vietnam National ư niversity, Hanoi.
R eferen ces