Tải bản đầy đủ (.pdf) (16 trang)

Growth and Characterization of Potassium Cobalt Nickel Sulfate Hexahydrate (KCNSH) Crystals: A New UV Light Filter

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (1.98 MB, 16 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

Growth and Characterization of Potassium Cobalt Nickel Sulfate Hexahydrate
(KCNSH) Crystals: A New UV Light Filter


Tiago S. Pacheco, Santunu Ghosh, Michelle de Oliveira, Ananias A. Barbosa,
Genivaldo J. Perpétuo, Carlos J. Franco


PII: S2468-2179(17)30112-0


DOI: 10.1016/j.jsamd.2017.08.002
Reference: JSAMD 116


To appear in: <i>Journal of Science: Advanced Materials and Devices</i>
Received Date: 29 June 2017


Revised Date: 2 August 2017
Accepted Date: 6 August 2017


Please cite this article as: T.S. Pacheco, S. Ghosh, M. de Oliveira, A.A. Barbosa, G.J. Perpétuo,
C.J. Franco, Growth and Characterization of Potassium Cobalt Nickel Sulfate Hexahydrate (KCNSH)
<i>Crystals: A New UV Light Filter, Journal of Science: Advanced Materials and Devices (2017), doi:</i>
10.1016/j.jsamd.2017.08.002.


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

M

AN



US

CR



IP

T



AC

CE



PT

ED




<b>Growth and Characterization of Potassium Cobalt Nickel Sulfate </b>


<b>Hexahydrate (KCNSH)</b>

<b>Crystals: A New UV Light Filter </b>



Tiago S. Pachecoa,b, Santunu Ghoshb*, Michelle de Oliveiraa, Ananias A. Barbosab,
Genivaldo J. Perpétuoa, Carlos J. Francoa


a


Departamento de física, Universidade Federal de Ouro Preto, Ouro Preto, 35400-000,
Brasil


b


Departamento de física, Universidade Federal de Juiz de fora, Juiz de Fora, 36036-330 ,
Brasil


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

M

AN



US

CR



IP

T



AC

CE



PT

ED



<b>Growth and Characterization of Potassium Cobalt Nickel Sulfate </b>


<b>Hexahydrate (KCNSH)</b>

<b>Crystals: A New UV Light Filter</b>




<b>Abstract: </b>


In our investigation, the samples of the empirical formula <sub></sub><sub></sub><sub></sub>


( ) ().6
are grown with partial occupation of the cations Co and Ni. By using the method based on
the growth of crystals per solution with slow evaporation of the solvent, it was possible to
obtain mixed crystals with good optical quality. In the decomposition process, these
crystals suffer a mass loss of approximately 24%, equivalent to water molecules forming
octahedral coordination ions of Ni and Co. The optical characteristics of the grown crystals
are measured where transmittance reaches more than 80% in the wavelength range of
190-390 nm. By Raman spectroscopy, the vibrational modes of SO4-2, H2O and of the
octahedral Ni(H2O)6 and Co(H2O)6 were identified. Chemical analyses were performed by
ICP-OES technique to measure the proportions of Ni and Co in the samples.


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

M

AN



US

CR



IP

T



AC

CE



PT

ED



<b>1.</b> <b>Introduction: </b>


In recent years the study on the growth and characterization of Tutton salts has drawn
considerable attention due to its application in the area of energy absorber of solar
collectors, chemical energy storage applications, UV light filters and even in missile


approach warning systems. The family of the Tutton’s salts are a group of isomorphic
compounds presented by a formula <sub></sub>(<sub></sub>)<sub></sub>. 6<sub></sub>, where A = K, NH4, Rb, Cs, TI; B =
Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd, V, Cr; X = S or Se. The crystallographic structure of
Tutton’s salt belongs to monolithic space group P21/c (Z=2) [1-2], and this crystal contains
two octahedral hexahydrate complexes [(<sub></sub>)<sub></sub>] in the crystal unit cell, where B is a
bivalent cation and A is a monovalent cation.


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

M

AN



US

CR



IP

T



AC

CE



PT

ED



reduction technique in the static and dynamic range. They have reported the transmittance
of this crystal is reaches up to 80% in the wavelength range of 240-290 nm. Whereas, X.
<i>Zhuang et al. [15] studied the growth and crystal structure by using X-ray diffraction and </i>
optical characteristics of a KCNSH crystal with dimension of 12 × 12 × 40 obtained
from temperature reduction technique, and the transmittance of the crystal in the UV range
<i>was about 40%. Finally, I. I. Polovinco et al. [16] studied the growth of two crystals with </i>
the dimension of 3 × 3 × 4 by using solvent evaporation technique and the
transmittance of their crystal were reported in the UV range about 60%. In our work, we
have obtained a KCNSH crystal by the solution growth method at 35 ° C and were
characterized by the ICP-OES, EDS, UV-vis, TG-DTG, and RAMAN spectroscopy
techniques.


<b>2.</b> <b>Experimental Methods: </b>



</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

M

AN



US

CR



IP

T



AC

CE



PT

ED



Figure 1: Image of the crystals a) Sample C: K<sub></sub>Ni<sub>%.</sub>Co<sub>%. </sub>SO<sub></sub>
<sub></sub>. 6H<sub></sub>O b) Sample H:
KNi%.+Co%.SO
. 6HO


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

M

AN



US

CR



IP

T



AC

CE



PT

ED



<b>3.</b> <b>Experimental Procedure: </b>


<b>2.1 Crystal Growth </b>



K2SO4 + Ni(SO4)·6H2O + Co(SO4)·7H2O ⇄ K2Ni<i>x</i>Co<i>(1-x)</i>(SO4)2·6H2O + H2O


<b>Sample C: KCNSH solution of the sample C was prepared by mixing 5g of K2</b>SO4,
3.7705g of Ni(SO4) ·6H2O and 4.0325g of Co(SO4) ·7H2O.


<b>Sample H: Sample H was prepared by mixing 4.4632g of K</b>2SO4, 0.9192g of
Li2(SO4)·H2O, 3.3661g of Ni(SO4)·6H2O and 3.6008g Co(SO4)·7H2O.


<b>4.</b> <b>Result and Discussion: </b>


The measured proportions of nickel and cobalt in each sample were obtained by means of
<b>the (ICP-OES) technique, shown in table 1 and table 2. The thickness of the samples C and </b>
<b>H is shown in the table 3. Apparently, the ionic radius (0.69Å) the Ni ion is smaller than </b>
<i>the Co (0.75Å) ion, as reported by X. Zhuang et al. [8], this would be a possible reason </i>
why Ni has a greater ease of accommodation in the crystalline structure. We add the fact
that, Nickel has higher electronic affinity than Cobalt, although it can be replaced
sometimes by Co ion to form hydrated complexes [<sub></sub>
<sub></sub>]<sub> (in our case B is Ni or Co) </sub>
alternately in crystalline structure.


<b>Table 1: Proportions of Ni and Co obtained in ICP-OES technique. </b>


<b>Sample </b> <b>Mass (g) </b> <b>Ni (g/g) </b> <b>Co (g/g) </b>


<b>C </b> 0.1484 0.0778 0.0444


<b>H </b> 0.1505 0.0934 0.0292


<b>Detection Limit </b> 10.08µg/g 5.19µ g/g



<b> Table 2: Proportions of Ni and Co in samples of mixed crystals. </b>


<b>Sample </b> <b>Crystal Obtained </b>


<b>C </b> K<sub></sub>Ni<sub>%.</sub>Co<sub>%. </sub>(SO<sub></sub>)<sub></sub>. 6H<sub></sub>O


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

M

AN



US

CR



IP

T



AC

CE



PT

ED



<b>Table 3: Thickness of the samples C and H. </b>


<b>Sample </b> <b>Crystral </b> <b>Thickness (mm) </b>


<b>C </b> <sub></sub><sub>%.</sub><sub>%. </sub>(<sub></sub>)<sub></sub>. 6<sub></sub><i> </i> 1.05


<b>H </b> <sub></sub><sub>%.+</sub><sub>%.</sub>(<sub></sub>)<sub></sub>. 6<sub></sub> 0.95


Next, we have the EDS spectra obtained in the Scanning Electron Microscopy (SEM) as
shown in the figure 2, where the peaks for each of the chemical elements appear and
confirm their presence in the structure of the studied samples. The gold (Au) peaks in the
EDS spectra are due to the fact that all samples had to be metallized with Au to improve the
quality of the measurements.



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0
Ni
Ni


Co
K


S


Al


Ni


Co
o


Energy (keV)



H
C


C



o



u



n



ts




(



a



rb



.



u



n



it



s



)



</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

M

AN



US

CR



IP

T



AC

CE



PT

ED



As reported [19-20], they obtained mixed crystals of K with Zn and Mn and of K with Zn


and V, where the EDS technique served to identify and confirm the presence of these
elements in the structure of the crystal qualitatively. After the decomposition process in
thermogravimetry analysis, the samples were analyzed in the form of powder in order to
identify the elements, present in the samples in samples C and H. It can be seen from figure
2 that, even after burning the material of samples, the elements K, O, S, Ni and Co remain
present in the sample residues. This is an indication that the samples only suffer loss of
water in the decomposition process in the temperature range up to 500 ° C. The presence of
aluminum may be justified by an oxidation reaction of the sample with the alumina crucible
used in the analysis.


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

M

AN



US

CR



IP

T



AC

CE



PT

ED



50 100 150 200 250 300 350 400 450 500


0.0
0.2
0.4
0.6
0.8
1.0

C


H



-d


m


/d


T


Temperature (°C)


DTG



50 100 150 200 250 300 350 400 450 500


70
75
80
85
90
95
100

C


H


W


e


ig


h


t


(%


)


Temperature (°C)


TG



<b>Figure 3: Thermogravimetric analysis (TG-DTG) of the samples C and H </b>



</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

M

AN



US

CR



IP

T



AC

CE



PT

ED



octahedral metal complexes CoO6 and NiO6, due to the electronic transitions involving the
electronic configurations d7 and d8, respectively [21].


200 300 400 500 600 700 800 900 1000 1100


0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
T
ra
n


s
m
it
ta
n
c
e
(
a
rb
.
u
n
it
s
)
Wavelength (nm)
C
H


<b>Figure 4: Optical transmission spectra of the samples C and H </b>


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

M

AN



US

CR



IP

T



AC

CE




PT

ED



200 400 600 800 1000 1200 3000 3500 4000
50
100
150
200
250
300
350
400
450
500
In
te
n
s
it
y
(
a
rb
.
u
n
it
s
)


Wavenumber (cm-1)



C
H


<b>Figure 5: Raman Spectroscopy of the samples C and H in the wavenumber range 100-4000 </b>
cm-1


<b>Figure 6: Raman spectra of the samples highlighting the regions of the normal modes of </b>
vibration of SO<sub></sub> and [B(H<sub></sub>O)<sub></sub>]. B can be Ni or Cobalt.


100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
40
60
80
100
120
140
160
In
te
n
s
it
y
(
a
rb
.
u
n


it
s
)


Wavenumber (cm-1)


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

M

AN



US

CR



IP

T



AC

CE



PT

ED



The normal vibration modes of the SO42- ions are observed around: υ1 near 990 cm-1; υ2
near 448 and 462 cm-1; υ3 near 1080, 1111, 1129 and 1156 cm-1; υ4 near 614 and 632 cm-1
as shown in the figure 6. In relation to the H2O molecules, a broadband is obtained in the
3200-3400 cm-1 region where overlapping of normal modes is observed in the spectra of the
samples C and H, this occurs due to the O-H interactions of the water molecules [22-23].
The complexes [<sub></sub>
<sub></sub>], have the vibrational modes υ1, υ2 and υ5 active in Raman
spectra. These vibrational modes as shown in the figure 6 are located in the region below
420 cm-1, with υ1 between 380-410 cm-1, ν2 between 237-26 7cm-1 and ν5 between 159-203
cm-1. The region between 105-140 cm-1 are attributed to libations of SO42- and H2O
molecules[23-24].


<b>5.</b> <b>Conclusion: </b>



</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

M

AN


US

CR


IP

T


AC

CE


PT

ED


<b>References: </b>


1. T.N.Margulis, D.H.Templeton, Crystal structure and hydrogen bonding of magnesium
ammonium sulfate hexahydrate, Z. Kristallogr. 317 (1962) 344-357.


2. H. Montgomery, E. C. Lingafelter, The crystal structure of Tutton's salts. II. Magnesium
ammonium sulfate hexahydrate and nickel ammonium sulfate hexahydrate, Acta
Crystallographica 17 (1964) 1478-1479.


3. G. Su, X. Zhuang, Y. He, Z. Li, G. Wang, Ammonium nickel sulfate hexahydrate crystal: a
new ultraviolet light filter, J. Phys. D: Appl. Phys. 35 (2002) 2652–2655.


4. X. Wang, X. Zhuang, G. Su, Y. He, A new ultraviolet filter: Rb2Ni (SO4)2 · 6H2O (RNSH)
single crystal, Opt. Mater. 31 (2008) 233–236.


5. V. L. Manomenova, E. B. Rudneva, L. F. Malakhova, N. G. Furmanova, A.E. Voloshin, T.
N. Smirnova, Crystal Growth and Properties of Rb2Ni (SO4)2· 6H2O (RNSH), Crystallogr.
Rep. 52 (2007) 918-922.


6. E. B. Rudneva, V. L. Manomenova, L. F. Malakhova, A. É. Voloshin, T. N. Smirnova,
Cs2Ni(SO4)2· 6H2O (CNSH) crystal: Growth and some properties, Crystallogr. Rep. 51
(2006) 344-347.


7. V. Duraikkan, S. A. Bahadur, S. Athimoolam, Crystal growth and characterization of
potassium manganese nickel sulfate hexahydrate- A new UV filter, J. Miner. Mat. Char.


Eng. 11 (2012) 1121-1125.


8. V. Masilamani, J. Shanthi, and V. Sheelarani, Growth and Analysis of NSH and KMNSH
Crystals by Slow Evaporation Technique, Crystallogr. Rep. 59 (2014) 1114-1117.


9. P. Kathiravan, T. Balakrishnan, C. Srinath, K. Ramamurthi, S. Thamotharan, Growth and
characterization of α-nickel sulphate hexahydrate single crystal, Karbala Intr. Jour. Mod.
Sci. 2 (2016) 226-238.


10. G. Ganesh, A. Ramadoss, P. S. Kannan, A. SubbiahPandi, Crystal growth, structural,
thermal, and dielectric characterization of Tutton salt (NH4)2Fe(SO4)2.6H2O crystals, J.
Therm. Anal. Calor. 112 (2013) 547–554.


11. G. Ramasamy, G.Bhagavannarayana, G.Madhurambal, S. Meenakshisundaram, Crystal
growth, structure, crystalline perfection and characterization of zinc magnesium ammonium
sulfate hexahydrate mixed crystals ZnxMg(1-x)(NH4)2(SO4)2. 6H2O, J. Cryst. Growth, 352
(2012) 137-142.


12. A. A. El-Fadl, A. M. Nashaat, Growth, structural, and spectral characterizations of
potassium


and ammonium zinc sulfate hydrate single crystals, Appl. Phys. A 123 (2017) 339.


13. Y. He, J. Chen, G. Su, X. Zhuang, G. Lee, R. Jiang, Growth of potassium nickel sulfate
hexahydrate (KNSH) crystal and its characterization, J. Cryst. Growth, 233 (201) 809-812.
14. N. B. Singh, W. D. Partlow, Crystals for Ultraviolet Light Filters, US Patent No. 5788765,


1998.


15. X. Zhuang, G. Su, Y. He, G. Zheng, Growth and characterization of potassium cobalt nickel


sulfate hexahydrate for UV light filters, Cryst. Res. Tech. 41 (2006) 1031 – 1035.


16. I. I. Polovinco, S. V. Rykhlyuk, V. B. Koman, I. D. Karbovnyk, Modification of the optical
spectra of mixed K2CoxNi1–x(SO4)2⋅6H2O crystals, J. Appl. Spectr. 76 (2009) 116-120.
17. N. A. Vasilyeva, M. S. Grigoryeva, V. V. Grebenev, A. E. Voloshin, Growth and properties


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

M

AN



US

CR



IP

T



AC

CE



PT

ED



18. A. Kirfel, H. Klapper, W. Schaefer, F. Schwabenlaender, The crystal structure of Tutton's
salt type K2[Co(H2O)6](SO4)2. A combined X-ray and neutron study, Z. Kristallogr. 213
(1998) 456-460.


19. V. J. Manonmoni, G. Bhagavannarayana, G. Ramasamy, S. Meenakshisundaram, M.
Amutha, Growth, structure and spectral studies of a novel mixed crystal potassium zinc
manganese sulphate, Spectrochim Acta A: Mol. Biomol. Spectrosc. 117 (2014) 9-12.
20. V. J. Manonmoni, G. Ramasamy, S. P. Meenakshisundaram, M. Amutha, S. C. Mojumdar,


Growth and characterization of mixed crystal potassium zinc vanadium sulphate, J. Therm.
Anal. Calor. 119 (2015) 969-974.


21. I. Polovynko, S. Rykhlyuk, I. Karbovnyk, V. Koman, M. Piccinini, M. Castella Guidi, A
new method of growing K2CoxNi1–x(SO4)2⋅6H2O (x=0; 0.4; 0.8; 1) mixed crystals and their


spectral investigation, J. Cryst. Growth 311 (2009) 4704-4707.


22. V. Ananthanarayanan, Studies on the Vibrational of the SO4- 2 Ion in Crystalline
M’M’’(SO4)2 ·6H2O (M’=K or NH4 and M’’=Mg, Zn, Ni, or Co): Observations on the
Symmetry of the Sulfate Ion in Crystals, J. Chem. Phys. 48 (1968) 573-581.


23. V. Ananthanarayanan, Low frequency vibrational spectrum of Tutton’s salts, J. Mol.
Spectr. 20 (1966) 88-95.


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

M

AN



US

CR



IP

T



AC

CE



PT

ED



<b>Highlights </b>


• Potassium nickel cobalt sulfate hexahydrate (KCNSH) crystal growth by slow
evaporation of the solvent.


• Inductive coupled plasma (ICP) technique to measure the proportions of Ni and Co
in the crystalline structure.


• Scanning electron microscopy (SEM) for dispersive energy spectroscopy analysis.


• Optical transmission spectra to investigate the UV transmittance of the crystals.



</div>

<!--links-->
Báo cáo khoa học: Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis A key factor participating in natural rubber biosynthesis pdf
  • 10
  • 516
  • 0
  • ×