Tải bản đầy đủ (.pdf) (35 trang)

advanced engineering mathematics – mathematics

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (87.22 KB, 35 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>Introduction to Time Series Analysis. Lecture 8.</b>



1. Review: Linear prediction, projection in Hilbert space.
2. Forecasting and backcasting.


3. Prediction operator.


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>Linear prediction</b>



Given X<sub>1</sub>, X<sub>2</sub>, . . . , Xn, the best linear predictor


X<sub>n+m</sub>n = α<sub>0</sub> +


n


X


i=1


αiXi


of Xn+m <b>satisfies the prediction equations</b>


E Xn+m − X<sub>n</sub>n<sub>+</sub><sub>m</sub>




= 0


E X<sub>n+m</sub> − X<sub>n+m</sub>n Xi





</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

<b>Projection theorem</b>



If H is a Hilbert space,


M is a closed subspace of H,
and y ∈ H,


then there is a point P y ∈ M


<b>(the projection of</b> y <b>on</b> M)
satisfying


1. kP y − yk ≤ kw − yk


2. hy − P y, wi = 0


for w ∈ M.


<i>y</i>
<i>y−Py</i>


<i>Py</i>


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<b>Projection theorem for linear forecasting</b>



Given 1, X<sub>1</sub>, X<sub>2</sub>, . . . , Xn ∈





r.v.s X : EX2 < ∞ ,
choose α<sub>0</sub>, α<sub>1</sub>, . . . , αn ∈ R


so that Z = α<sub>0</sub> + Pn<sub>i</sub><sub>=1</sub> αiXi minimizes E(Xn+m − Z)2.


Here, hX, Y i = E(XY ),


M = {Z = α<sub>0</sub> + Pn<sub>i</sub><sub>=1</sub> αiXi : αi ∈ R} = ¯sp{1, X1, . . . , Xn}, and


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>Projection theorem: Linear prediction</b>



Let X<sub>n</sub>n<sub>+</sub><sub>m</sub> denote the best linear predictor:


kX<sub>n+m</sub>n − Xn+mk2 ≤ kZ − Xn+mk2 for all Z ∈ M.


The projection theorem implies the orthogonality


hX<sub>n</sub>n<sub>+</sub><sub>m</sub> − Xn+m, Zi = 0 for all Z ∈ M


⇔ hX<sub>n</sub>n<sub>+</sub><sub>m</sub> − Xn+m, Zi = 0 for all Z ∈ {1, X1, . . . , Xn}


⇔ E X


n


n+m − Xn+m





= 0


E X<sub>n</sub>n<sub>+</sub><sub>m</sub> − Xn+m



Xi




</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

<b>Linear prediction</b>



<i>That is, the prediction errors (</i>X<sub>n</sub>n<sub>+</sub><sub>m</sub> − Xn+m<i>) are orthogonal to the</i>
<i>prediction variables (</i>1, X<sub>1</sub>, . . . , Xn<i>).</i>


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

<b>One-step-ahead linear prediction</b>



Write X<sub>n</sub>n<sub>+1</sub> = φn1Xn + φn2Xn−1+ · · · + φnnX1


Prediction equations: E (X<sub>n+1</sub>n − X<sub>n+1</sub>)Xi




= 0, for i = 1, . . . , n


n


X


j=1



φnjE (Xn+1−jXi) = E(Xn+1Xi)




n


X


j=1


φnjγ(i − j) = γ(i)


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<b>One-step-ahead linear prediction</b>



Prediction equations: Γnφn = γn.


Γn =











γ(0) γ(1) · · · γ(n − 1)



γ(1) γ(0) γ(n − 2)


..


. . .. ...


γ(n − 1) γ(n − 2) · · · γ(0)










,


φn = (φn1, φn2, . . . , φnn)


, γn = (γ(1), γ(2), . . . , γ(n))


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

<b>Mean squared error of one-step-ahead linear prediction</b>



P<sub>n</sub>n<sub>+1</sub> = E Xn+1 − Xnn+1


2



= E X<sub>n+1</sub> − X<sub>n+1</sub>n X<sub>n+1</sub> − X<sub>n+1</sub>n


= E Xn+1 Xn+1 − Xnn+1




= γ(0) − E(φ′<sub>n</sub>XXn+1)


= γ(0) − γ<sub>n</sub>′ Γ−1
n γn,


where X = (Xn, Xn−1, . . . , X1)


</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

<b>Mean squared error of one-step-ahead linear prediction</b>



Variance is reduced:


P<sub>n</sub>n<sub>+1</sub> = E Xn+1 − Xnn+1


2


= γ(0) − γ<sub>n</sub>′ Γ−1
n γn


= Var(Xn+1) − Cov(Xn+1, X)Cov(X, X)


−1


Cov(X, Xn+1)



= E (Xn+1 − 0)2 − Cov(Xn+1, X)Cov(X, X)


−1


Cov(X, Xn+1),


where X = (Xn, Xn−1, . . . , X1)


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<b>Introduction to Time Series Analysis. Lecture 8.</b>



1. Review: Linear prediction, projection in Hilbert space.
2. Forecasting and backcasting.


3. Prediction operator.


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

<b>Backcasting: Predicting</b>

m

<b>steps in the past</b>



Given X<sub>1</sub>, . . . , Xn, we wish to predict X1−m for m > 0.


That is, we choose Z ∈ M = ¯sp{X<sub>1</sub>, . . . , Xn} to minimize kZ −X1−mk2.


The prediction equations are


hX<sub>1</sub>n−m − X1−m, Zi = 0 for all Z ∈ M


⇔ E X<sub>1</sub>n−m − X1−m




Xi




</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

<b>One-step backcasting</b>



Write the least squares prediction of X<sub>0</sub> given X<sub>1</sub>, . . . , Xn as


X<sub>0</sub>n = φn1X1 + φn2X2 + · · · + φnnXn = φ

nX,


where the predictor vector is reversed: now X = (X<sub>1</sub>, . . . , Xn)


.
The prediction equations are


E((X<sub>0</sub>n − X<sub>0</sub>) Xi) = 0 for i = 1, . . . , n


⇔ E




n
X
j=1


φnjXj − X0




 X<sub>i</sub>




 = 0




n


X


j=1


φnjγ(j − i) = γ(i)


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<b>One-step backcasting</b>



The prediction equations are


Γnφn = γn,


which is exactly the same as for forecasting, but with the indices of the
predictor vector reversed: X = (X<sub>1</sub>, . . . , Xn)




</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

<b>Example: Forecasting AR(1)</b>




AR(1) model: Xt = φ1Xt−1 + Wt


linear prediction of X<sub>2</sub>: X<sub>2</sub>1 = φ<sub>11</sub>X<sub>1</sub>


Prediction equation: γ(0)φ<sub>11</sub> = γ(1)


= Cov(X<sub>0</sub>, X<sub>1</sub>)


= φ<sub>1</sub>γ(0)


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<b>Example: Backcasting AR(1)</b>



AR(1) model: Xt = φ1Xt−1 + Wt


linear prediction of X<sub>0</sub>: X<sub>0</sub>1 = φ<sub>11</sub>X<sub>1</sub>


Prediction equation: γ(0)φ<sub>11</sub> = γ(1)


= Cov(X<sub>0</sub>, X<sub>1</sub>)


= φ<sub>1</sub>γ(0)


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

<b>Introduction to Time Series Analysis. Lecture 8.</b>



1. Review: Linear prediction, projection in Hilbert space.
2. Forecasting and backcasting.


3. Prediction operator.



</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

<b>The prediction operator</b>



For random variables Y, Z<sub>1</sub>, . . . , Zn, define the


<b>best linear prediction of</b> Y <b>given</b> Z = (Z<sub>1</sub>, . . . , Zn)


as the operator P(·|Z) applied to Y :


P(Y |Z) = µY + φ


(Z − µZ)


with Γφ = γ,


where γ = Cov(Y, Z)


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

<b>Properties of the prediction operator</b>



<b>1. E</b>(Y − P(Y |Z)) = 0, E((Y − P(Y |Z))Z) = 0.


<b>2. E</b>((Y − P(Y |Z))2) = Var(Y ) − φ′


γ.


<b>3.</b> P(α<sub>1</sub>Y<sub>1</sub> + α<sub>2</sub>Y<sub>2</sub> + α<sub>0</sub>|Z) = α<sub>0</sub> + α<sub>1</sub>P(Y<sub>1</sub>|Z) + α<sub>2</sub>P(Y<sub>2</sub>|Z).


<b>4.</b> P(Zi|Z) = Zi.



</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

<b>Example: predicting</b>

m

<b>steps ahead</b>



Write X<sub>n+m</sub>n = φ(<sub>n</sub>m<sub>1</sub>)Xn + φ(
m)


n2 Xn−1 + · · · + φ(
m)
nn X1


Γnφ(<sub>n</sub>m) = γ<sub>n</sub>(m),


with Γn = Cov(X, X),


γ<sub>n</sub>(m) = Cov(Xn+m, X)


= (γ(m), γ(m + 1), . . . , γ(m + n − 1))′


.


Also, E((Xn+m − X<sub>n</sub>n<sub>+</sub><sub>m</sub>)2) = γ(0) − φ(m)


</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

<b>Introduction to Time Series Analysis. Lecture 8.</b>



1. Review: Linear prediction, projection in Hilbert space.
2. Forecasting and backcasting.


3. Prediction operator.


</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

<b>Partial autocovariance function</b>




AR(1) model: Xt = φ1Xt−1 + Wt


γ(1) = Cov(X<sub>0</sub>, X<sub>1</sub>) = φ<sub>1</sub>γ(0)


γ(2) = Cov(X<sub>0</sub>, X<sub>2</sub>)


= Cov(X<sub>0</sub>, φ<sub>1</sub>X<sub>1</sub> + W<sub>2</sub>)


= Cov(X<sub>0</sub>, φ2<sub>1</sub>X<sub>0</sub> + φ<sub>1</sub>W<sub>1</sub> + W<sub>2</sub>)


= φ2<sub>1</sub>γ(0).


</div>
<span class='text_page_counter'>(23)</span><div class='page_container' data-page=23>

<b>Partial autocovariance function</b>



For AR(1) model: X<sub>2</sub>1 = φ<sub>1</sub>X<sub>1</sub>,
X<sub>0</sub>1 = φ<sub>1</sub>X<sub>1</sub>,


so Cov(X<sub>2</sub>1 − X<sub>2</sub>, X<sub>0</sub>1 − X<sub>0</sub>) = Cov(φ<sub>1</sub>X<sub>1</sub> − X<sub>2</sub>, φ<sub>1</sub>X<sub>1</sub> − X<sub>0</sub>)


= Cov(W<sub>2</sub>, φ<sub>1</sub>X<sub>1</sub> − X<sub>0</sub>)


</div>
<span class='text_page_counter'>(24)</span><div class='page_container' data-page=24>

<b>Partial autocorrelation function</b>



The Partial AutoCorrelation Function (PACF) of a stationary
time series {Xt} is


φ<sub>11</sub> = Corr(X<sub>1</sub>, X<sub>0</sub>) = ρ(1)


φhh = Corr(Xh − Xh


−1


h , X0 − X
h−1


0 ) for h = 2,3, . . .


This removes the linear effects of X<sub>1</sub>, . . . , Xh−1:


. . . , X−1, X0, X1, X2, . . . , Xh−1


| {z }


</div>
<span class='text_page_counter'>(25)</span><div class='page_container' data-page=25>

<b>Partial autocorrelation function</b>



The PACF φhh is also the last coefficient in the best linear prediction of


Xh+1 given X1, . . . , Xh:


Γhφh = γh X<sub>h</sub>h<sub>+1</sub> = φ



hX


</div>
<span class='text_page_counter'>(26)</span><div class='page_container' data-page=26>

<b>Example: Forecasting an AR(p)</b>



For Xt =
p


X



i=1


φiXt−i + Wt,


X<sub>n</sub>n<sub>+1</sub> = P(Xn+1|X1, . . . , Xn)


= P


p


X


i=1


φiXn+1−i + Wn+1|X1, . . . , Xn


!


=


p


X


i=1


φiP (Xn+1−i|X1, . . . , Xn)
p



</div>
<span class='text_page_counter'>(27)</span><div class='page_container' data-page=27>

<b>Example: PACF of an AR(p)</b>



For Xt =
p


X


i=1


φiXt−i + Wt,


X<sub>n+1</sub>n =


p


X


i=1


φiXn+1−i.


Thus, φhh =






φh if 1 ≤ h ≤ p


</div>
<span class='text_page_counter'>(28)</span><div class='page_container' data-page=28>

<b>Example: PACF of an invertible MA(q)</b>




For Xt =
q


X


i=1


θiWt−i + Wt, Xt = −


X


i=1


πiXt−i + Wt,


X<sub>n+1</sub>n = P(X<sub>n+1</sub>|X1, . . . , Xn)


= P −




X


i=1


πiXn+1−i + Wn+1|X1, . . . , Xn


!



= −




X


i=1


πiP (Xn+1−<sub>i</sub>|X1, . . . , X<sub>n</sub>)


= −


n


X


πiXn+1−i −




X


</div>
<span class='text_page_counter'>(29)</span><div class='page_container' data-page=29>

<b>ACF of the MA(1) process</b>



−100 −8 −6 −4 −2 0 2 4 6 8 10
0.2


0.4
0.6


0.8
1


θ/(1+θ2)
MA(1): X


</div>
<span class='text_page_counter'>(30)</span><div class='page_container' data-page=30>

<b>ACF of the AR(1) process</b>



0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1


φ|h|
AR(1): X


</div>
<span class='text_page_counter'>(31)</span><div class='page_container' data-page=31>

<b>PACF of the MA(1) process</b>



0 1 2 3 4 5 6 7 8 9 10
−0.2


0
0.2
0.4
0.6


0.8
1


MA(1): X


</div>
<span class='text_page_counter'>(32)</span><div class='page_container' data-page=32>

<b>PACF of the AR(1) process</b>



0.2
0.4
0.6
0.8
1


AR(1): X


</div>
<span class='text_page_counter'>(33)</span><div class='page_container' data-page=33>

<b>PACF and ACF</b>



<b>Model:</b> <b>ACF:</b> <b>PACF:</b>


AR(p) decays zero for h > p


MA(q) zero for h > q decays


</div>
<span class='text_page_counter'>(34)</span><div class='page_container' data-page=34>

<b>Sample PACF</b>



For a realization x<sub>1</sub>, . . . , xn of a time series,


<b>the sample PACF is defined by</b>


ˆ



φ<sub>00</sub> = 1
ˆ


φhh = last component of φˆh,


</div>
<span class='text_page_counter'>(35)</span><div class='page_container' data-page=35>

<b>Introduction to Time Series Analysis. Lecture 8.</b>



1. Review: Linear prediction, projection in Hilbert space.
2. Forecasting and backcasting.


3. Prediction operator.


</div>

<!--links-->

×