Tải bản đầy đủ (.pdf) (22 trang)

advanced engineering mathematics – mathematics

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (75.98 KB, 22 trang )

<span class='text_page_counter'>(1)</span><div class='page_container' data-page=1>

<b>Introduction to Time Series Analysis. Lecture 19.</b>



1. Review: Spectral density estimation, sample autocovariance.
2. The periodogram and sample autocovariance.


</div>
<span class='text_page_counter'>(2)</span><div class='page_container' data-page=2>

<b>Estimating the Spectrum: Outline</b>



• We have seen that the spectral density gives an alternative view of
stationary time series.


• Given a realization x1, . . . , xn of a time series, how can we estimate


the spectral density?


• One approach: replace γ(<sub>·</sub>) in the definition


f(ν) =




X


h=−∞


γ(h)e−2πiνh,


with the sample autocovariance γˆ(<sub>·</sub>).


</div>
<span class='text_page_counter'>(3)</span><div class='page_container' data-page=3>

<b>Estimating the spectrum: Outline</b>



• <i>These two approaches are identical at the Fourier frequencies</i> ν = k/n.



• The asymptotic expectation of the periodogram I(ν) is f(ν). We can
derive some asymptotic properties, and hence do hypothesis testing.


</div>
<span class='text_page_counter'>(4)</span><div class='page_container' data-page=4>

<b>Review: Spectral density estimation</b>



If a time series {X<sub>t</sub>} has autocovariance γ satisfying


P∞


h=−∞ |γ(h)| < ∞<b>, then we define its spectral density as</b>
f(ν) =




X


h=−∞


γ(h)e−2πiνh


</div>
<span class='text_page_counter'>(5)</span><div class='page_container' data-page=5>

<b>Review: Sample autocovariance</b>



Idea: use the sample autocovariance γˆ(<sub>·</sub>), defined by


ˆ


γ(h) = 1


n



n−|h|


X


t=1


(x<sub>t</sub><sub>+|</sub><sub>h</sub><sub>|</sub> <sub>−</sub> x¯)(x<sub>t</sub> <sub>−</sub> x¯), for <sub>−</sub>n < h < n,
as an estimate of the autocovariance γ(<sub>·</sub>), and then use


ˆ


f(ν) =


n−1


X


h=−n+1


ˆ


γ(h)e−2πiνh


</div>
<span class='text_page_counter'>(6)</span><div class='page_container' data-page=6>

<b>Discrete Fourier transform</b>



For a sequence (x<sub>1</sub>, . . . , x<sub>n</sub>)<i>, define the discrete Fourier transform (DFT) as</i>


(X(ν0), X(ν1), . . . , X(νn−1)), where



X(ν<sub>k</sub>) = <sub>√</sub>1


n


n


X


t=1


x<sub>t</sub>e−2πiνkt,


and ν<sub>k</sub> = k/n (for k = 0,1, . . . , n <sub>−</sub> 1<i>) are called the Fourier frequencies.</i>
(Think of <sub>{</sub>ν<sub>k</sub> : k = 0, . . . , n <sub>−</sub> 1<sub>}</sub> as the discrete version of the frequency
range ν <sub>∈</sub> [0,1].)


</div>
<span class='text_page_counter'>(7)</span><div class='page_container' data-page=7>

<b>Discrete Fourier transform</b>



Consider the space Cn <sub>of vectors of</sub> <sub>n</sub> <sub>complex numbers, with inner product</sub>


ha, b<sub>i</sub> = a∗b, where a∗ is the complex conjugate transpose of the vector


a <sub>∈</sub> Cn<sub>.</sub>


Suppose that a set <sub>{</sub>φj : j = 0,1, . . . , n − 1} of n vectors in Cn are


orthonormal:


hφj, φki =








1 if j = k,


0 otherwise.


Then these <sub>{</sub>φj} span the vector space Cn, and so for any vector x, we can


write x in terms of this new orthonormal basis,


x =


n−1


X


j=0


</div>
<span class='text_page_counter'>(8)</span><div class='page_container' data-page=8>

<b>Discrete Fourier transform</b>



Consider the following set of n vectors in Cn<sub>:</sub>


e<sub>j</sub> = <sub>√</sub>1


n e



2πiνj<sub>, e</sub>2πi2νj<sub>, . . . , e</sub>2πinνj′


: j = 0, . . . , n <sub>−</sub> 1




.


It is easy to check that these vectors are orthonormal:


he<sub>j</sub>, e<sub>k</sub><sub>i</sub> = 1


n


n


X


t=1


e2πit(νk−νj) = 1


n


n


X


t=1





e2πi(k−j)/nt


=







1 if j = k,


1


ne2πi(k−j)/n


1−(e2πi(k−j)/n)n


1−e2πi(k−j)/n otherwise
=







1 if j = k,


</div>
<span class='text_page_counter'>(9)</span><div class='page_container' data-page=9>

<b>Discrete Fourier transform</b>




where we have used the fact that S<sub>n</sub> = Pn


t=1 αt satisfies


αS<sub>n</sub> = S<sub>n</sub> + αn+1 <sub>−</sub> α and so S<sub>n</sub> = α(1 <sub>−</sub> αn)/(1 <sub>−</sub> α) for α <sub>6</sub>= 1.


So we can represent the real vector x = (x<sub>1</sub>, . . . , x<sub>n</sub>)′ <sub>∈</sub> Cn <sub>in terms of this</sub>


orthonormal basis,


x =


n−1


X


j=0


he<sub>j</sub>, x<sub>i</sub>e<sub>j</sub> =


n−1


X


j=0


X(ν<sub>j</sub>)e<sub>j</sub>.


That is, the vector of discrete Fourier transform coefficients



</div>
<span class='text_page_counter'>(10)</span><div class='page_container' data-page=10>

<b>Discrete Fourier transform</b>



An alternative way to represent the DFT is by separately considering the
real and imaginary parts,


X(ν<sub>j</sub>) = <sub>h</sub>e<sub>j</sub>, x<sub>i</sub> = <sub>√</sub>1


n


n


X


t=1


e−2πitνjx<sub>t</sub>


= <sub>√</sub>1


n


n


X


t=1


cos(2πtν<sub>j</sub>)x<sub>t</sub> <sub>−</sub> i<sub>√</sub>1
n



n


X


t=1


sin(2πtν<sub>j</sub>)x<sub>t</sub>


= X<sub>c</sub>(ν<sub>j</sub>) <sub>−</sub> iX<sub>s</sub>(ν<sub>j</sub>),


</div>
<span class='text_page_counter'>(11)</span><div class='page_container' data-page=11>

<b>Periodogram</b>



The periodogram is defined as


I(νj) = |X(νj)|2
= 1
n





n
X
t=1


e−2πitνjx<sub>t</sub>








2


= X<sub>c</sub>2(νj) + X<sub>s</sub>2(νj).


Xc(νj) =
1

n
n
X
t=1


cos(2πtνj)xt,


Xs(νj) =
1

n
n
X
t=1


</div>
<span class='text_page_counter'>(12)</span><div class='page_container' data-page=12>

<b>Periodogram</b>



Since I(ν<sub>j</sub>) = <sub>|</sub>X(ν<sub>j</sub>)<sub>|</sub>2 for one of the Fourier frequencies ν<sub>j</sub> = j/n (for



j = 0,1, . . . , n <sub>−</sub> 1), the orthonormality of the ej implies that we can write


x∗x =






n−1


X


j=0


X(ν<sub>j</sub>)e<sub>j</sub>




∗ 

n−1
X
j=0


X(ν<sub>j</sub>)e<sub>j</sub>




=
n−1


X
j=0


|X(ν<sub>j</sub>)<sub>|</sub>2 =


n−1


X


j=0


I(ν<sub>j</sub>).


For x¯ = 0, we can write this as


ˆ


σ<sub>x</sub>2 = 1


n


n


X


t=1


x2<sub>t</sub> = 1


n



n−1


X


j=0


</div>
<span class='text_page_counter'>(13)</span><div class='page_container' data-page=13>

<b>Periodogram</b>



This is the discrete analog of the identity


σ<sub>x</sub>2 = γ<sub>x</sub>(0) =


Z 1/2


−1/2


f<sub>x</sub>(ν)dν.


(Think of I(ν<sub>j</sub>) as the discrete version of f(ν) at the frequency ν<sub>j</sub> = j/n,
and think of (1/n)P


νj · as the discrete version of


R


</div>
<span class='text_page_counter'>(14)</span><div class='page_container' data-page=14>

<b>Estimating the spectrum: Periodogram</b>



Why is the periodogram at a Fourier frequency (that is, ν = νj) the same as



computing f(ν) from the sample autocovariance?


Almost the same—they are not the same at ν<sub>0</sub> = 0 when x¯ 6= 0.
But if either x¯ = 0, or we consider a Fourier frequency ν<sub>j</sub> with


</div>
<span class='text_page_counter'>(15)</span><div class='page_container' data-page=15>

<b>Estimating the spectrum: Periodogram</b>



I(νj) =
1
n





n
X
t=1


e−2πitνjxt







2
= 1
n






n
X
t=1


e−2πitνj(xt − x¯)







2
= 1
n
n
X
t=1


e−2πitνj(x<sub>t</sub> <sub>−</sub> x¯)


! <sub>n</sub>


X


t=1



e2πitνj(x<sub>t</sub> <sub>−</sub> x¯)


!


= 1


n


X


s,t


e−2πi(s−t)νj(x<sub>s</sub> <sub>−</sub> x¯)(x<sub>t</sub> <sub>−</sub> x¯) =


n−1


X


h=−n+1


ˆ


γ(h)e−2πihνj,


where the fact that νj 6= 0 implies Pn<sub>t</sub><sub>=1</sub> e−2πitνj = 0 (we showed this


</div>
<span class='text_page_counter'>(16)</span><div class='page_container' data-page=16>

<b>Asymptotic properties of the periodogram</b>



We want to understand the asymptotic behavior of the periodogram I(ν) at
a particular frequency ν, as n increases. We’ll see that its expectation



converges to f(ν).


We’ll start with a simple example: Suppose that X<sub>1</sub>, . . . , X<sub>n</sub> are
i.i.d. N(0, σ2) (Gaussian white noise). From the definitions,


Xc(νj) =
1



n


n


X


t=1


cos(2πtνj)xt, Xs(νj) =
1



n


n


X


t=1



sin(2πtνj)xt,


we have that Xc(νj) and Xs(νj) are normal, with


</div>
<span class='text_page_counter'>(17)</span><div class='page_container' data-page=17>

<b>Asymptotic properties of the periodogram</b>



Also,


Var(X<sub>c</sub>(ν<sub>j</sub>)) = σ


2
n


n


X


t=1


cos2(2πtν<sub>j</sub>)


= σ


2


2n


n


X



t=1


(cos(4πtνj) + 1) =


σ2


2 .


</div>
<span class='text_page_counter'>(18)</span><div class='page_container' data-page=18>

<b>Asymptotic properties of the periodogram</b>



Also,


Cov(X<sub>c</sub>(ν<sub>j</sub>), X<sub>s</sub>(ν<sub>j</sub>)) = σ


2
n


n


X


t=1


cos(2πtν<sub>j</sub>) sin(2πtν<sub>j</sub>)


= σ


2



2n


n


X


t=1


sin(4πtν<sub>j</sub>) = 0,


Cov(X<sub>c</sub>(ν<sub>j</sub>), X<sub>c</sub>(ν<sub>k</sub>)) = 0


Cov(X<sub>s</sub>(ν<sub>j</sub>), X<sub>s</sub>(ν<sub>k</sub>)) = 0


Cov(X<sub>c</sub>(ν<sub>j</sub>), X<sub>s</sub>(ν<sub>k</sub>)) = 0.


</div>
<span class='text_page_counter'>(19)</span><div class='page_container' data-page=19>

<b>Asymptotic properties of the periodogram</b>



That is, if X<sub>1</sub>, . . . , X<sub>n</sub> are i.i.d. N(0, σ2)


(Gaussian white noise; f(ν) = σ2), then the X<sub>c</sub>(ν<sub>j</sub>) and X<sub>s</sub>(ν<sub>j</sub>) are all
i.i.d. N(0, σ2/2). Thus,


2


σ2 I(νj) =


2


σ2 X


2


c(νj) + Xs2(νj)




∼ χ2<sub>2</sub>.


So for the case of Gaussian white noise, the periodogram has a chi-squared
distribution that depends on the variance σ2 (which, in this case, is the


</div>
<span class='text_page_counter'>(20)</span><div class='page_container' data-page=20>

<b>Asymptotic properties of the periodogram</b>



Under more general conditions (e.g., normal <sub>{</sub>Xt}, or linear process {Xt}


with rapidly decaying ACF), the Xc(νj), Xs(νj) are all asymptotically


independent and N(0, f(νj)/2).


Consider a frequency ν. For a given value of n, let νˆ(n) be the closest
Fourier frequency (that is, νˆ(n) = j/n for a value of j that minimizes


|ν <sub>−</sub> j/n<sub>|</sub>). As n increases, νˆ(n) <sub>→</sub> ν, and (under the same conditions that
ensure the asymptotic normality and independence of the sine/cosine


transforms), f(ˆν(n)) <sub>→</sub> f(ν). (picture)


In that case, we have


2



f(ν)I(ˆν


(n)<sub>) =</sub> 2
f(ν)




</div>
<span class='text_page_counter'>(21)</span><div class='page_container' data-page=21>

<b>Asymptotic properties of the periodogram</b>



Thus,


EI(ˆν(n)) = f(ν)


2 E




2


f(ν)




X<sub>c</sub>2(ˆν(n)) + X<sub>s</sub>2(ˆν(n))




→ f(<sub>2</sub>ν)E(Z<sub>1</sub>2 + Z<sub>2</sub>2) = f(ν),



</div>
<span class='text_page_counter'>(22)</span><div class='page_container' data-page=22>

<b>Introduction to Time Series Analysis. Lecture 19.</b>



1. Review: Spectral density estimation, sample autocovariance.
2. The periodogram and sample autocovariance.


</div>

<!--links-->

×