Tải bản đầy đủ (.pdf) (175 trang)

Nghiên cứu cơ chế phản ứng giữa một số kháng sinh β lactam và enzym PBP2a bằng các phương pháp hóa tin

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (2.82 MB, 175 trang )

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
-----------------------------

NGUYỄN HỌA MI

NGHIÊN C U CƠ CHẾ PHẢN NG GIỮA MỘT SỐ
KHÁNG SINH β-LACTAM VÀ ENZYM PBP2a BẰNG
CÁC PHƯƠNG PHÁP HÓA TIN

U N ÁN TIẾN S HÓA HỌC

Hà Nội – 2012

1


ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN
-----------------------------

NGUYỄN HỌA MI

NGHIÊN C U CƠ CHẾ PHẢN NG GIỮA MỘT SỐ
KHÁNG SINH β-LACTAM VÀ PBP2a BẰNG CÁC
PHƯƠNG PHÁP HĨA TIN
Chun ngành: Hóa lí thuyết và Hóa lí
Mã số: 62 44 31 01

U N ÁN TIẾN S HÓA HỌC


NGƯỜI HƯỚNG DẪN KHOA HỌC
1. GS.TSKH. ĐẶNG ỨNG VẬN
2. GS.TS. TRƯƠNG NGUYỆN THÀNH

Hà Nội – 2012

2


MỤC LỤC

STT

NỘI DUNG

TRANG

DANH MỤC CÁC BẢNG

05

DANH MỤC CÁC HÌNH

06

CÁC KÝ HIỆU VIẾT TẮT TRONG LUẬN VĂN

09

MỞ ĐẨU


11

CHƢƠNG 1: TỔNG QUAN

14

CHƢƠNG 2: CƠ SỞ LÝ THUYẾT VÀ PHƢƠNG

25

PHÁP TÍNH
2.1

MƠ PHỎNG ĐỘNG LỰC CƠ HỌC PHÂN TỬ (MM/MD) 25

2.1.1 Mẫu cơ học phân tử (M/M)

26

2.1.2 Phƣơng pháp động lực phân tử MD

38

2.2.2 Cơ cở của phƣơng pháp tính gần đúng lƣợng tử

52

2.3


PHƢƠNG PHÁP QM/MM (HYBRID QUANTUM

65

MECHANICS/MOLECULAR MECHANICS)
2.3.1 Phƣơng pháp lai hóa QM/MM trong ONIOM
CHƢƠNG 3: CHUẨN BỊ INPUT VÀ CÁC ĐIỀU KIỆN

79
89

NGHIÊN CỨU CHO HỆ CỤ THỂ
3.1

ĐIỀU KIỆN TÍNH VỚI PHƢƠNG PHÁP MM/MD

89

3.1.1 Nghiên cứu đặc điểm của tâm hoạt động và khe hẹp 89
gần tâm
3.1.2 Nghiên cứu tính hoạt động của protein và phối tử

94

3.1.3 Tính năng lƣợng tự do gắn kết của methicillin và

96

nitrocefin lên các cấu trúc khác nhau của protein
PBP2a

3.2

ĐIỀU KIỆN TÍNH VỚI PHƢƠNG PHÁP QM/MM

98


(ONIOM)
3.2.1 Các mơ hình tâm hoạt hóa

98

3.2.2 Các mơ hình enzym

99

4.1

CHƢƠNG 4: KẾT QUẢ VÀ THẢO LUẬN

103

KẾT QUẢ TÍNH MM/ND

103

4.1.1 Về sự tồn tại của khe hẹp gần tâm hoạt động

103


SER403 của PBP2a
4.1.2 Về tính linh động của phối tử và các axit amin vùng

108

tâm hoạt động trong các phức axyl và phức
michaelis của methicillin(MC1) và nitrocefin (NC1)
với PBP2a
4.1.3 Năng lƣợng tự do gắn kết nitrocefin và methicillin

114

lên các cấu trúc khác nhau của PBP2a
4.2

KẾT QUẢ TÍNH QM/MM

119

4.2.1 Đƣờng năng lƣợng phản ứng của các mơ hình tâm
hoạt hóa
4.2.2 Đƣờng năng lƣợng phản ứng của các mơ hình

126

protein
4.2.3 Lý do cho sự khác biệt trong hoạt tính giữa MC1 và

130


NC1
4.2.4 Thảo luận

134

KẾT LUẬN

136

TÀI LIÊU THAM KHẢO

140

PHỤ LỤC

154


DANH MỤC CÁC BẢNG
TÊN BẢNG

STT
1

Bảng 4.1

Các dữ liệu của phức michaelis tính tốn trên

Trang
94


phần mềm AutoDock và GROMACS
2

Bảng 4.2

RMSF (nm) và véctơ riêng (nm2) của phối tử và Ser403 103
trong các phức michaelis khe β3Z mở của PBP2a* với
meticillin và nitrocefin

3

Bảng 4.3

So sánh các thành phần của năng lượng tự do gắn kết * 104
(kJ.mol-1)

4

Bảng 4.4

Năng lượng tương đối (kcal/mol) của các phức phản ứng, các 111
trạng thái chuyển tiếp, các trạng thái trung gian, các sản phẩm
trong phản ứng của MC1 và NC1

5

Bảng 4.5

Năng lượng tương tác tĩnh điện và tương tác vdW


118

giữa các nguyên tử QM và môi trường Protein (kcal/mol)

6

Bảng 4.6

Góc căng của các phối tử (theo độ), như được

121

xác định trong hình 4.10

7

Bảng4.7

Điện tích ngun tử Mulliken của meticillin

122

8

Bảng 4.8

Điện tích nguyên tử Mulliken của nitrocefin

122


9

Bảng 4.9

Điện tích ngun tử Mulliken của mơ hình SER403

123

5


DANH MỤC CÁC HÌNH
STT

TÊN HÌNH

Trang

1

Hình 1.1

Ảnh SEM hiển vi của meticillin- kháng Staphylococcus aureus 5

2

Hình 1.2

Cấu trúc phức axyl hóa của 1MWU từ ngân hàng dữ liệu 6

protein data bank

3

Hình 1.3

Sản sinh ra men β-lactamase có khả năng xúc tác thủy phân β- 7
lactam

4

Hình 1.4

Cơ chế axyl hóa trong đó nhóm cacbonyl của β-lactam bị tấn 11
cơng bởi SER403 của tâm hoạt hóa

5

Hình 1.5

Các cơ chất MC1 và NC1

12

6

Hình 2.1

Các loại năng lượng trong mẫu MM:


16

a: kéo căng, b: góc liên kết, c: góc nhị diện, d: Coulomb.

7

Hình 2.2

Sự khác biệt giữa thế Morse (đường nét liền) và thế điều hồ 17
(đường nét rời)

8

Hình 2.3

Biến thiên năng lượng góc nhị diện khi có 1, 2 và 3 hàng rào 18
thế năng.

9

Hình 2.4

Mẫu thế tương tác site-site giữa hai phân tử lưỡng nguyên R: 20
khoảng cách tâm khối; r1A2B và r2A1B : khoảng cách giữa các
site không ở trong cùng một phân tử

10

Hình 2.5


11

Hình 2.6

Minh hoạ hai phương trình Newton

28

Thuật tốn bước nhảy ếch để tính tích phân các phương trình 32
Newton (trục t xác định các giá trị hằng số khi tính tích phân)

6


12

Hình 2.7

Các dạng lai hóa tự nhiên: Rồng từ thời Lý, chạm 55
khắc Nghê trên nóc mái đình

13

Hình 2.8

Minh họa các phân lớp trong tính tốn ONIOM

14

Hình 3.1


Cơ chế axyl hóa trong đó nhóm (OH) của SER403 trong 79

73

PBP2a tấn cơng nhóm (CO) cacbonyl của -lactam
15

Hình 3.2

Nếp gấp β3 (gồm các axit amin 594-603); cuộn Z (bao gồm 81
các axit amin 436 đến 448)

16

Hình 3.3

Cấu hình của PBP2a (vùng mầu đậm và nhạt), PBP2a* (mầu 82
đậm) và Ser 403 (các quả cầu)

17

Hình 3.4

RMSD của meticillin trong phức axyl với PBP2a nhận được 83
khi khớp bình phương tối thiểu MC1 với cấu hình ban đầu của
PBP2a đầy đủ (mầu nhạt) và với chỉ riêng phân mảnh PBP2a*
(mầu đậm)

18


Hình 3.5

Mơ hình các phối tử trong các tính tốn QM

19

Hình 3.6

Cấu trúc X-ray của PBP2a trong phức với MC1 (mã trong 90

89

PDB là 1MWU)

20

Hình 4.1

Minh họa về các trạng thái của khe hoạt động. Trạng thái mở 93
(mầu sẫm) trong cấu trúc phức acyl của metixilin và trạng thái
đóng (mầu nhạt) trong cấu trúc apo protein. Các axit amin
Glu447 và Thr444 thuộc về cuộn Z và các axit min Lys597 và
Ala601

21

Hình 4.2

RMSD của khung protein (trên) và phối tử (dưới) nhận được 98

bằng cách khớp bình phương tối thiểu với khung protein ban
đầu trong phức acyl, phức Michaelis khe β3Z mở và cấu trúc
apo

22

Hình 4.3

Sự sai lệch của khoảng cách Cα trung bình (nm) của các axit 100

7


amin trong xoắn α2 đầu N (3 nhóm đồ thị đầu tiên bên trái
hình trên) và nếp gấp β3 (6 nhóm đồ thị kế tiếp tính từ trái qua
của hình trên) và giữa xoắn α2 đầu N và nếp gấp β3
23

Hình 4.4

Phân tích RMSF. RMSF trung bình/axit amin trong cấu trúc 101
apo (đường liền), trong phức acyl của PBP2a* với MC1 (hình
trịn) và NC1 (hình vng) và trong phức Michaelis khe β3Z
mở của PBP2a* với MC1 (hình tam giác) và NC1 (hình thoi).
Hình trên cùng: nếp gấp β3 và cuộn Y; hình giữa: cuộn Z; hình
dưới cùng: xoắn α2 đầu N

24

Hình 4.5


Đường năng lượng phản ứng (kcal/mol) của các mơ hình QM 111
tâm hoạt hóa

25

Hình 4.6

Các cấu hình tối ưu (khoảng cách liên kết, đơn vị là Å) trong 113
phản ứng của MC1 trong mơ hình enzym ONIOM(DFT:MM)
và mơ hình QM tâm hoạt hóa (trong ngoặc đơn)

26

Hình 4.7

Các cấu hình tối ưu (các khoảng cách liên kết, đơn vị là Å) 114
trong

phản

ứng

của

NC1

với




hình

enzym

ONIOM(DFT:MM) và mơ hình QM tâm hoạt hóa (trong ngoặc
đơn)
27

Hình 4.8

Chồng chập vị trí cấu trúc X-ray (mã 1MWU theo PDB) và 116
cấu trúc sản phẩm tối ưu (P) bằng ONIOM (màu đỏ của các
nguyên tử Cacbon, quả cầu màu trắng là cấu trúc X-ray, và
dạng que là cấu trúc ONIOM)

28

Hình 4.9

Các axit amin chìa khóa xung quanh các phối tử ở TS1

29

Hình 4.10

Xác định về góc căng của phối tử MC1 và NC1 và các mơ 120

119


hình đơn giản hóa.

30

Hình 4.11

Bền hóa cộng hưởng trong Int’ của NC1

8

121


CÁC KÝ HIỆU VIẾT TẮT TRONG U N ÁN
KÝ HIỆU

DIỄN GIẢI

SA

Chủng vi khuẩn tụ cầu vàng Staphylococcus aureus

QM/MM

Lai hóa cơ học phân tử kết hợp với cơ học lượng tử

MM/MD

Động lực học cơ học phân tử


ONIOM

Our own N-layered Integrated molecular Orbital molecular
Mechanics

MM
PBP2a

Cơ học phân tử molecular mechanics
Protein Binding penicillin 2a (protein liên kết với penicillin
2a kháng thuốc)

MRSA

Chủng vi khuẩn tụ cầu vàng kháng methicillin

PBP

Protein liên kết với penicillin

DFT

Lý thuyết phiếm hàm mật độ Density Functional Theory

NR
Phức michaelis
Phức axyl
cấu trúc apo
1MWU


Phương pháp Newton-Raphson
Phức khơng cộng hóa trị
Phức cộng hóa trị
Cấu trúc của enzym PBP2a khi chưa phản ứng với cấu tử
Phức đã axyl hóa của methicillin với protein binding
penicillin

1MWS

Phức đã axyl hóa của nitrocefin với protein binding
penicillin

PBP2a*

Phần protein PBP2a bao gồm axit amin 310 đến 668 đã
được cắt 300 axit amin từ 27 đến 300

SER403

Axit amin SERINE ở vị trí thứ 403 trong chuỗi protein
PBP2a

MC1

Methicillin

NC1

Nitrocefin


9


MM-PBSA

Molecular Mechanics- Poisson Bolzmann Surface Area

MD

Molecular Dynamics – Động lực cơ học phân tử

QM

Quantum mechanics – Cơ học lượng tử

MM+, AMBER, BIO+

Tên riêng các trường lực

(CHARMM), OPLS
MM+
AMBER
BIO+ (CHARMM)

Merck Molecular
Assisted Model Building and Energy Refinement
Chemistry at HARvard Molecular Mechanics

OPLS


Optimized Potential for Liquid Simulations

UHF

Unrestricted Hartree-Fock - Phương trình Hartree-Fock cho
cấu hình khơng hạn chế

RHF

Restricted Hartree-Fock - Phương trình Hartree-Fock cho
cấu hình hạn chế

RMSD

Độ sai lệch bình phương trung bình (root mean square
deviation)

RMSF

Độ sai lệch của độ lệch bình phương trung bình (the root
mean square fluctuation)

MO-LCAO

Obitan phân tử dưới dạng tổ hợp tuyến tính các obitan
nguyên tử

SCF

Phương pháp trường tự hợp


LA

Nguyên tử kết nối

LAC

Nguyên tử được liên kết với nguyên tử kết nối the link atom
connection

LAH

Nguyên tử được thay thế the link atom host

10


MỞ ĐẦU
Kháng sinh β-lactam lúc đầu gồm penicillin được Fleming phát hiện vào
năm 1929 và đến năm 1955, cephalosporin được phát hiện lần đầu. Từ đó, các
kháng sinh β-lactam được sử dụng rộng rãi với những lượng lớn và liên tục
được phát triển, nhằm tìm ra những hợp chất mới có hiệu quả cao hơn để đối
phó với tác dụng của vi khuẩn làm vơ hiệu hố các kháng sinh đã có trước,
hay cịn gọi là hiện tượng kháng các kháng sinh, cũng được gọi là “nhờn
thuốc”. Đây là một vấn đề có tầm quan trọng hàng đầu, thu hút sự quan tâm
lớn của các nhà khoa học trong các lĩnh vực hoá dược, hoá sinh, sinh lý, vi
trùng học và y học. Chủ đề của đề tài là “Nghiên cứu cơ chế phản ứng giữa
một số kháng sinh β-lactam và enzym PBP2a bằng các phương pháp Hóa
tin” nhằm đi đến có đóng góp vào việc giải quyết vấn đề nan giải nói trên, tức
là nghiên cứu lý giải cơ chế kháng sinh β-lactam liên tục bị các vi khuẩn làm

mất hiệu quả. Nghiên cứu của chúng tôi tập trung về mặt bản chất hóa học, cơ
chế hóa học để tìm ra phương pháp nghiên cứu, cơ chế tác dụng của các thuốc
β-lactam đối với vi khuẩn gây bệnh. Thông qua việc tính tốn các tính chất
hóa lý, hàng rào thế năng, năng lượng tương tác giữa thuốc kháng sinh với
enzym của vi khuẩn gây bệnh bằng các phương pháp tính lý thuyết, chúng tơi
đã thu được các kết quả khả quan trong việc đánh giá khả năng ức chế của
thuốc và giải thích được phần nào nguyên nhân kháng thuốc β-lactam của vi
khuẩn tụ cầu vàng.
Với sự phát triển mạnh mẽ của tốc độ các hệ thống máy tính hiệu năng
cao, cộng với việc ra đời của các phương pháp tính mới như các phương pháp
lai hóa giữa cơ học phân tử kết hợp với cơ học lượng tử QM/MM, hay giữa
phương pháp động lực phân tử kết hợp với cơ học phân tử MM/MD đã trở
thành công cụ hỗ trợ đắc lực giúp giảm thời gian tính và đem lại rất nhiều kết
quả như mong muốn, góp phần giúp con người khám phá, giải quyết được

11


nhiều bài tốn hóc búa phức tạp. Có thể kể ra đây một vài nghiên cứu hiện
nay trên thế giới như: Sử dụng phương pháp QM/MM, MM/MD trong nghiên
cứu chất ức chế proteaza-HIV và malate Dehydrogenaza. Ứng dụng QM/MM
trong nghiên cứu phức các kim loại chuyển tiếp . Ứng dụng phương pháp
QM/MM trong tính tốn các phản ứng hữu cơ quang hóa…cùng vơ số các
ứng dụng và thành tựu nổi bật khác nữa89,99,100,102. Chính vì tính hấp dẫn của
phương pháp cũng như các kết quả thu được rất đáng khích lệ đó, việc tiếp tục
nghiên cứu, ứng dụng các thành tựu đã có của phương pháp lai hóa QM/MM,
MM/MD đã trở thành một hướng đi mới của lĩnh vực hóa học tính tốn cực
kỳ thu hút, nhiều hứa hẹn và đã đóng góp khơng ít các kết quả khoa học hữu
ích cho thực tiễn.
Song song với việc phát triển của phần cứng máy tính, việc phát triển

các phần mềm hỗ trợ việc tính tốn cũng khơng ngừng cải tiến. Trong luận án
chúng tôi sử dụng cả các phần mềm thương mại (mã nguồn đóng) và các phần
mềm miễn phí (mã nguồn mở). Phần mềm GAUSSIAN09 là phần mềm đóng
gói, được Giáo sư Keiji Morokuma tại Đại học Kyoto tạo điều kiện cho tác
giả luận án cộng tác nghiên cứu và sử dụng. Phần mềm GROMACS4.06 là
phần mềm mã nguồn mở miễn phí với tiêu chí nhanh hơn, mềm dẻo hơn, đã
được cộng đồng các nhà khoa học công nhận sử dụng và cơng bố các cơng
trình trên các tạp chí uy tín. Với hai phần mềm này có thể sử dụng phương
pháp lai hóa QM/MM và MM/MD giúp cho việc nghiên cứu các hệ hóa sinh
với số lượng rất lớn các nguyên tử một cách hữu hiệu và có những bước đột
phá mới.
Đây là luận án tiến sỹ đầu tiên ở Việt Nam nghiên cứu theo hướng lý
thuyết sử dụng các phương pháp lai hóa QM/MM và MM/MD để nghiên cứu
cơ chế phản ứng của một số β-lactam với enzym PBP2a. Luận án đã thu được

12


một số kết quả mới nhiều triển vọng, mở ra một hướng nghiên cứu hiệu quả,
có thể triển khai và đóng góp cho nghiên cứu cơ bản của Việt Nam.

13


CHƯƠNG 1: TỔNG QUAN
Staphylococcus aureus (SA) hay còn gọi là vi khuẩn tụ cầu vàng một loại
vi khuẩn gây bệnh và là nguyên nhân phổ biến của bệnh nhiễm trùng tụ cầu
khuẩn. Nghiên cứu của các tạp chí chuyên ngành cho thấy rằng khoảng 50%
lồi người có mang SA trên cơ thể, và việc cơ thể có mang SA có liên quan
với việc tăng nguy cơ nhiễm tụ cầu khuẩn.35,107 Các triệu chứng của nhiễm

trùng SA bao gồm lở loét, mụn mủ, nhọt, viêm phổi, và nhiễm trùng sau phẫu
thuật là một vấn đề nghiêm trọng tại các bệnh viện. Alexander Fleming
(1881 – 1955) là một bác sĩ, nhà sinh học và đồng thời là một nhà dược lý học
người Scotland. Ông được coi là người mở ra kỉ nguyên sử dụng kháng sinh
trong y học. Ông đã được trao giải thưởng Nobel về y học năm 1945 cùng với
Ernst Boris Chain và Howard Walter Florey về việc tìm ra và phân tách được
penicilin – được coi là loại kháng sinh đầu tiên trong việc điều trị những bệnh
nhiễm trùng. Từ năm 1942 bệnh nhiễm trùng tụ cầu khuẩn có thể được chữa
khỏi bằng thuốc kháng sinh penicillin, tuy nhiên, vào đầu những năm 1960,
sự xuất hiện của một chủng SA mới kháng β-lactam được gọi là
Staphylococcus aureus kháng methicillin (MRSA) (Hình 1.1), đã được cơng
bố35 . MRSA gây ra một trong những bệnh nhiễm trùng nguy hiểm và thường
gặp nhất ngày nay, việc kháng thuốc gây ra một trở ngại lớn trong điều trị dứt
điểm bệnh, nhu cầu có những thuốc kháng sinh mới để điều trị loại bệnh này
là rất cần thiết và quan trọng.

14


Hình 1.1. Ảnh SEM hiển vi của methicillin-kháng Staphylococcus aureus (hình
tham khảo từ internet)
Chủng mới này có mang một gen đặc biệt gọi là gen MecA, khơng có nguồn gốc
từ SA, từ một nguồn khơng xác định bên ngồi nào đó. Các kháng sinh β-lactam như

penicillin và methicillin khi thâm nhập vào tế bào của vi khuẩn SA liên kết
với enzym penicillin binding protein (PBP) cản trở PBP xúc tác cho sự hình
thành liên kết giữa các peptit của các chuỗi peptidoglycan của thành tế bào.
Sự ức chế cộng hóa trị của β-lactam với PBP dẫn tới thành tế bào suy yếu và
cuối cùng gây chết các tế bào. Tập quán của gen MecA giữ lại trong mã hóa của
57,34,45,108,72,20,79,52,39,38,70


(PBP2a) MRSA,

. Gen MecA được bảo toàn rất cao

giữa các MRSA cô lập được (hơn 90% chuỗi PBP2a là đồng nhất giữa các
dịng), PBP2a mới phát hiện khơng giống bất kì PBP thơng thường được tạo
ra bởi SA (chỉ có dưới 20% chuỗi là đồng nhất) và các PBP2a này không
nhạy với β-lactam. PBP2a gây ra sự kháng thuốc phổ rộng với methicillin và
các kháng sinh β-lactam. PBP2a thể hiện ái lực thấp với β-lactam một cách
bất thường ở chỗ nó vẫn giữ được khả năng làm trung gian xây dựng thành tế bào và
giữ nguyên hoạt tính cho phép sự tổng hợp thành tế bào ngay cả ở nồng độ
gây chết người của β-lactam. Cơ chế và cấu trúc tinh thể của PBP2a được
trình bày ở đây làm sáng tỏ những đặc trưng cấu trúc lí giải cho sự kháng βlactam của chúng và đưa ra những hiểu biết quan trọng cho việc thiết kế
những kháng sinh tiềm năng chống lại MRSA.

15


Hình 1.2. Cấu trúc phức axyl hóa của 1MWU từ ngân hàng dữ liệu protein data
bank

Sự ức chế hoạt động PBP2a bởi một phân tử nhỏ, dự kiến sẽ dẫn đến ly
giải tế bào của vi khuẩn, do đó nên nó được coi là cách tiếp cận trực tiếp nhất
để điều trị các bệnh nhiễm trùng MRSA. Thông thường các β-lactam như
methicillin, làm ức chế hoạt động của PBP2a trong việc làm trung gian xây
dựng thành tế bào, các hợp chất thay thế methicillin cần được thiết kế một
cách nào đó cho phép nó liên kết mạnh mẽ hơn với tâm hoạt động của enzym
PBP2a. Để làm điều này một cách hợp lý, chi tiết cơ chế phân tử của β-lactam
liên kết với PBP2a nên được hiểu rõ. Như đã biết, q trình này có tính ràng

buộc liên quan đến q trình tạo phức khơng cộng hóa trị michaelis giữa betalactam và PBP2a sau đó là đến q trình axyl hóa, kết quả là hình thành liên
kết cộng hóa trị với Ser403 nằm ở vị trí tâm hoạt động (Hình 1.2, hình
1.4).43,112 Trong q trình axyl hóa, nhóm hydroxyl của Ser403 tấn cơng
cacbon trong nhóm cacbonyl của phối tử. Kết quả là, liên kết C-N của phối tử
β-lactam được phân tách, trong khi nhóm cacboxyl hình thành mối liên kết
cộng hóa trị với nhóm hydroxyl của SER403. Việc kháng phổ rộng của
MRSA với kháng sinh nên được liên kết với việc giảm tỷ lệ phản ứng axyl
hóa PBP2a. Điều này có nghĩa là việc thiết kế các thuốc kháng sinh mới sẽ

16


yêu cầu kiểm soát cẩn thận các hàng rào năng lượng cần thiết trong bước axyl
hóa cũng như bước tạo thành phức khơng cộng hóa trị trước đó.
Đã có các cơng trình tổng quan về cơ chế kháng β-lactam.34,108,52,70 Có rất
nhiều giả thuyết về cơ chế kháng β-lactam của MRSA nhưng nổi bật nên là 3
giả thiết kháng β-lactam của MRSA như sau: Cơ chế thứ nhất34,108 là việc
sản sinh ra các enzym β-lactamase có khả năng thủy phân β-lactam. Theo cơ
chế này đề xuất phổ biến nhất của việc kháng kháng sinh β-lactam có liên
quan đến việc sản sinh ra một loại enzym thích hợp, ví dụ, β-lactamase có thể
làm suy thối, sửa đổi và thậm chí phá hủy các kháng sinh trước khi chúng có
thể tiếp cận các tâm hoạt động trên MRSA. Các kháng sinh β-lactam có một
yếu tố chung trong cấu trúc phân tử của chúng: đó là một vịng bốn ngun tử
được gọi là vịng lactam. Các lactamase phá vỡ β-lactam bằng cách mở vòng
lactam và từ đó khử hoạt tính kháng khuẩn của phân tử. Những enzym này
đặc biệt quan trọng trong vi khuẩn Gram âm khi chúng tạo thành các cơ chế
bảo vệ chính đối với thuốc trên cơ sở β-lactam.
1

2

R1

O

Beta-- lactam

S

HN

Beta - lactam.AmpC
HO

N

R2

AmC -OH
O
H2O

R1

S

O

-

O


N

-

O
O - AmC

S
O

N
HO

O

R2

R2

O
HN

O

R1

HN
AmpC


3

OH2

-

AmC.product

AmC

O

O - AmC

product

5

4

Hình 1.3. Sản sinh ra men β-lactamase có khả năng xúc tác thủy phân β-lactam

Việc phân loại phân tử của β-lactamase được dựa trên các nucleotit và
trình tự axit amin trong các enzym này. Cho đến nay có bốn lớp (class) phân

17


loại theo chức năng được công nhận (A-D). Các lớp A, C, và D tác động theo
cơ chế dựa trên serine, trong khi đó lớp B hoặc Metallo-β-lactamase cần kẽm

cho tác dụng của chúng.34 Ví dụ, β-lactamase kiểu AmpC là loại β-lactamase
lớp C, thường được phân lập từ vi khuẩn Gram âm kháng cephalosporin phổ
rộng. AmpC được mã hóa đặc trưng trên nhiễm sắc thể của nhiều loại vi
khuẩn gram âm bao gồm Citrobacter, Serratia và Enterobacter. Hình 1.3 minh
họa việc sản sinh ra enzym β-lactamase có khả năng xúc tác thủy phân βlactam cũng như là cơ chế kháng β-lactam.
Cơ chế thứ hai34,108 là sử dụng các men protein transpeptidases (được
biết như là các penicillin-binding protein (PBP) cần cho việc nối các mạch
peptidoglycan để tạo màng tế bào cứng tham gia gây vơ hiệu hóa kháng sinh.
Cơ chế này dựa trên giả thiết cho rằng q trình axyl hóa protein bởi các
kháng sinh có 3 giai đoạn:
Giai đoạn 1. PBP2a tương tác với β-lactam với hằng số Kd tạo ra phức
khơng cộng hóa trị (PBP2a - β-lactam).
Giai đoạn 2. Phức khơng cộng hóa trị (PBP2a- β-lactam) sẽ chuyển
thành phức cộng hóa trị axyl β-lactam -PBP2a với hằng số chuyển hóa K2.
Giai đoạn 3. Với một hằng số K3 vơ cùng nhỏ phức cộng hóa trị axyl βlactam -PBP2a phân ly tạo ra PBP2a và β-lactamoate.
Trong đó: Hằng số phân ly của phức khơng cộng hóa trị Kd, Hằng số tốc độ
bậc 1 K2, Hằng số tốc độ của quá trình phân hủy phức axyl K3.
So sánh các thơng số động học của PBP2a với các PBP nhạy cảm với βlactam thấy việc kháng β-lactam của PBP2a chủ yếu là do việc tạo phức axyl
β-lactam - PBP trung gian là không hiệu quả mà không phải là do sự không
khớp của phân tử β-lactam với tâm hoạt động (Kd) cũng không phải do sự
phân huỷ nhanh hơn của phức trung gian axyl-PBP (K3)72,70,36,73.

18


Bởi vì các giá trị Kd đặc trưng cho PBP là tương đối cao (cỡ millimol),
tính hiệu quả của các chất ức chế β-lactam là do khả năng của chúng tạo thành
phức cộng hoá trị bền với các protein đối của chúng. Do đó, giảm tốc độ tạo
phức trung gian Kd và q trình tạo phức axyl hóa (K2) là một chiến lược hiệu
quả để đạt tới tính kháng thuốc phổ rộng.70,112,41 Các PBP kháng như vậy

không nhất thiết cản trở sự tăng trưởng tế bào hoặc khả năng tồn tại của nó
nếu các yếu tố khác có thể bù đắp cho việc giảm tính hiệu quả của các enzym.
24,62

Cơ chế này hiện đang là nguyên nhân chính gây ra sự kháng thuốc trong
một số tác nhân gây bệnh bao gồm các vi khuẩn Gram dương loài
Staphylococcal và Streptococcal. 108
Cơ chế thứ ba là sự thải loại các phân tử β-lactam khỏi các tế bào
Gram-âm bằng cách bơm thoát.108
Theo cơ chế này thì sự ngăn cản kháng sinh tiếp cận protein đối tác
(target protein) bằng cách thẩm thấu ngược (altered permeability) hoặc
thốt cưỡng bức (forced efflux) – cịn gọi là thốt hoạt động (active eflux).
Ví dụ, điều này có thể được thực hiện bởi các bơm kháng sinh thoát cưỡng
bức (forced efflux pump) MexA, B-OprM vốn là một nguyên nhân chính gây
kháng ở Pseudomonas và trong các lồi gây bệnh Gram âm khác.
Thoát hoạt động là một cơ chế đáp ứng việc thải loại các chất độc hại
và kháng sinh ra khỏi tế bào. Nó được xem là phần khơng thể thiếu của sự
trao đổi dị chất (xenobiotic metabolism). Cơ chế này là quan trọng trong dược
học bởi vì nó tham gia vào việc kháng các kháng sinh.
Các hệ thoát (efflux) hoạt động thông qua một cơ chế phụ thuộc năng
lượng (Active transport) để bơm đẩy những chất độc không mong muốn qua
một cái bơm thoát đặc biệt. Một số hệ thoát đặc hiệu cho từng loại thuốc, một

19


số khác lại có tác dụng kháng đa thuốc phổ rộng (multidrug resistance MDR).
Các chất vận chuyển thoát khuẩn (bacterial efflux transporters) được
phân thành 5 họ chủ yếu dựa trên trật tự axit amin và nguồn năng lượng được
dùng để thải cơ chất. Một trong những chất đặc trưng tốt nhất cho chúng là hệ

thoát thuốc (drug efflux system) MexAB–OprM của thể sinh bệnh cơ hội
(opportunistic pathogen) Pseudomonas aeruginosa. Cái bơm tay ba này
(tripartite pump - gồm có “bơm” MexB vận chuyển RND màng trong, lớp xốp
OprM màng ngoài, và chất bao MexA tan được) tác động trên một phổ rộng
các chất kháng sinh bao gồm tetracycline, chloramphenicol... cũng như các lactam và các chất thụ động -lactamase như là axit clavulanic108.
Tuy nhiên tất cả đều dưới dạng giả thuyết. Một trong những kết quả đáng
lưu tâm nhất là của Lim và Strynadka70. Đề xuất của Lim và Strynadka theo
cơ chế thứ hai tức là việc kháng -lactam liên quan đến liên kết với các
enzym protein transpeptidases (được biết như là các penicillin-binding protein
(PBP) cần cho việc nối các mạch peptidoglycan để tạo màng tế bào cứng, sự
kháng của các “siêu bọ” này đối với các kháng sinh dòng -lactam rất quan
trọng trong điều trị được thực hiện gián tiếp thông qua enzym protein binding
penicilin 2a (penicillin-binding protein 2a (PBP2a)). Lim và Strynadka đã dẫn
chứng ra được rằng, cấu trúc tâm hoạt động của PBP2a thay đổi và sự chuyển
dạng của phối tử cũng như hốc phản ứng tại tâm hoạt động từ cấu trúc apo
ban đầu so với cấu trúc đã axyl hóa thơng qua các cấu trúc Xray chụp được.
Căn cứ trên các cấu trúc tinh thể của ngân hàng dữ liệu protein (protein data
bank) về các cấu trúc trước và sau phản ứng là 1VQQ ( protein chưa có phối
tử) và 1MWU (protein đã bị axyl hóa bởi methicillin), 1MWS (protein đã
axyl hóa bởi nitrocefin). Hai dẫn chứng trên dẫn chúng tôi đến việc tập trung

20


nghiên cứu 2 cơ chất methicillin và nitrocefin của nhóm kháng sinh β-lactam
này theo cơ chế thứ hai.

R NH

H

R NH
N

H

...
O

O

HN
O

OH

CH2

CH2

Ser

Ser

Hình 1.4. Cơ chế axyl hóa trong đó nhóm cacbonyl của β-lactam bị tấn cơng bởi
SER403 của tâm hoạt hóa

Phản ứng axyl hóa (xem hình 1.4) là chìa khóa để thụ động PBP2a bằng
β-lactam. Tương tác của PBP2a với chất thụ động hay cơ chất β-lactam bắt
đầu bằng việc tạo nhanh phức michaelis khơng có liên kết cộng hóa trị. Kế
tiếp là sự tấn công ái nhân của axit amin SER403 trong tâm hoạt động của

enzym vào vòng β-lactam để cho ra một phức trung gian axyl-PBP2a bền.
Như thế, việc kháng phổ rộng của SA với các thuốc kháng sinh có liên quan
đến sự giảm tốc độ của quá trình axyl hóa - của q trình hình thành các phức
axyl-PBP2a - cũng như độ bền của các phức được tạo thành. 112,41
Cụ thể cơ chế này bao gồm 3 giai đoạn:
Giai đoạn 1: Bước này, giữa β-lactam và enzym PBP2a hình thành
phức khơng cộng hóa trị. Q trình đi vào của β-lactam trong hốc phản
ứng và tạo liên kết không cộng hóa trị với Ser403 cho phức michaelis βlactam-PBP2a .
Sự tương tác của một PBP có trong vi khuẩn kháng thuốc với một chất
ức chế β-lactam đã qua màng tế bào vi khuẩn bắt đầu bằng sự hình thành
nhanh một phức khơng cộng hố trị gọi là phức michaelis (Kd). Hình 1.4

21


minh họa nhóm cacbonyl -lactam bị tấn cơng bởi axit amin Serine 403 ở tâm
hoạt động.
Giai đoạn 2: Việc kháng này có liên kết với q trình axyl hóa. Q
trình axyl hóa là chìa khóa của ức chế PBP2a bằng các β-lactam.
Tiếp theo giai đoạn 1 là việc tấn công ái nhân tâm hoạt động Ser403 của
enzym lên các vòng lactam của β-lactam để tạo phức cộng hóa trị axyl-PBP
tương đối bền (K2).
Rất nhiều các tài liệu được tìm thấy nghiên cứu việc MRSA bị kháng bởi
cả methicillin và nitrocefin34,70,108. Nhưng hầu hết các tài liệu đều chưa trả lời
nguyên nhân kháng vì sao? Bản chất của việc kháng này đến đâu? Cơ chế
kháng cụ thể của quá trình tạo phức cộng hóa trị hay khơng cộng hóa trị như
thế nào? Tại sao sau phản ứng tạo thành phức axyl rất bền mà thuốc vẫn bị
kháng?

O


O

NH

H

O

NH

S

S

H

S

NO2

O
N

N
O

O
–O


O

–O

O

NO2

NC1

MC1

Hình 1.5. Các cơ chất MC1 và NC1

Mặc dù hiểu biết mức độ sơ đẳng hiện nay là đã có cho q trình axyl
hóa các PBP, cơ chế chi tiết của nó, đặc biệt là với PBP2a, vẫn chưa được làm
sáng tỏ. Hướng nghiên cứu lý thuyết về động lực cơ học phân tử (MM/MD)
và lai hóa cơ học lượng tử với cơ học phân tử (QM/MM hay ONIOM) giải
quyết bài toán cơ chế của β-lactam với PBP2a lần đầu được chúng tôi thực
hiện tại Viện nghiên cứu hóa học cơ bản Fukui, Đại học Kyoto và Trung tâm
Ứng dụng Tin học trong Hóa học, Khoa Hóa học, ĐHKH Tự Nhiên, ĐHQG

22


Hà Nội. Trong luận án, chúng tôi nghiên cứu cơ chế phản ứng giữa
methicillin (MC1) và nitrocefin (NC1) (hình 1.5) với PBP2a từ lúc hình thành
phức khơng cộng hóa trị đến khi tạo thành phức cộng hóa trị. Về mặt lý
thuyết, để nghiên cứu mơ phỏng q trình hình thành gắn kết thông thường
của các phối tử lên tâm hoạt hóa bằng phần mềm Autodock. Q trình tạo

phức khơng cộng hóa trị giữa β-lactam và enzym được nghiên cứu bằng
phương pháp MM/MD dùng phần mềm Gromacs. Quá trình hình thành và
phá vỡ liên kết trong vòng lactam của phản ứng axyl hóa được nghiên cứu
bằng cách sử dụng phần mềm Gaussian09 qua phương pháp lý thuyết phiếm
hàm mật độ (DFT) và phương pháp lai hóa QM/MM, ONIOM (DFT: MM).
Trong phối tử MC1 và NC1, phần β-lactam là hợp nhất thiazolidine và
dihydrothiazine, tương ứng.
Mục tiêu của Đề tài
Mục tiêu chính của đề tài này là chi tiết hóa được cơ chế kháng thuốc
của MRSA dựa trên một nghiên cứu tương đối đầy đủ về hệ phức phối tử –
PBP2a từ việc sử dụng trường lực cơ học phân tử (MM) đến cơ học lượng tử
(QM) và trường lực lai tạp QM/MM, từ việc tính tốn bề mặt thế năng tĩnh
của phối tử (và các axit amin có liên quan) trong mơi trường protein tĩnh đến
việc tính tốn động lực cơ học phân tử MM/MD của protein, phối tử và của
tâm hoạt động. Nghiên cứu cơ chế này để giải đáp nghịch lý là vì sao phức
axyl β-lactam-PBP2a rất bền nhưng thuốc kháng sinh vẫn bị kháng, cơ chế
cũng sẽ làm sáng tỏ vai trị của tương tác khơng cộng hố trị giữa phối tử và
PBP2a từ đó là vai trị của cấu trúc phân tử phối tử đến chiến lược kháng
thuốc của MRSA. Đề tài này nhằm đi đến đóng góp vào việc giải quyết vấn
đề nan giải nói trên, tức là nghiên cứu lý giải cơ chế kháng sinh β-lactam liên
tục bị các vi khuẩn làm mất hiệu quả, đóng góp cho việc thiết kế các loại

23


thuốc mới thụ động SA hiệu quả hơn. Nhiều kỹ thuật mơ phỏng và tính tốn
sẽ được áp dụng để thực hiện những yêu cầu do đề tài đặt ra.
Mục tiêu xa hơn của đề tài là việc thiết kế những dược phẩm chống
kháng thuốc có hiệu lực trên nhiều loại bệnh khác nhau.
Tính mới của luận án

Nghiên cứu chi tiết các bước của quá trình phản ứng giữa MC1 và NC1
với PBP2a bằng các phương pháp hóa tin là một vấn đề mới. Bước thứ nhất là
nghiên cứu các tương tác yếu của quá trình β-lactam tiến vào vùng phản ứng
bằng phương pháp MM/MD, bước thứ hai là nghiên cứu quá trình tạo thành
liên kết giữa β-lactam và PBP2a. Cơ chế của q trình này được chúng tơi
tính ở cả trường hợp mơ hình hóa vùng tham gia phản ứng cũng như toàn bộ
hệ với giả thiết cơ chế theo tiến trình từng bước một được nghiên cứu bằng
phương pháp QM và QM/MM. Các kết quả nghiên cứu mới được đăng trên
Journal of Chemical Information and Modeling của Mỹ - một tạp chí có uy tín
trên thế giới.

24


CHƯƠNG 2: CƠ SỞ Ý THUYẾT VÀ PHƯƠNG PHÁP TÍNH
Luận án sử dụng các phương pháp nghiên cứu hoá tin hiện đại và hiệu
quả bao gồm phương pháp động lực cơ học phân tử MM/MD, phương pháp
gắn kết docking, phương pháp MM-PBSA, phương pháp lai hóa cơ học phân
tử kết hợp cơ học lượng tử QM/MM.
2.1. MÔ PHỎNG ĐỘNG ỰC CƠ HỌC PHÂN TỬ (MM/MD)5-9
MM/MD là viết tắt của Molecular Mechanis Molecular Dynamic (Động
lực phân tử cơ học phân tử) mà bản chất là dùng các định luật Newton để mô
tả tương tác giữa các phân tử, dùng mẫu cơ học cổ điển để mô tả tương tác nội
phân tử cũng như tìm năng lượng của hệ.
Là một cách tiếp cận có hiệu quả tới các dung dịch sinh học từ quan
điểm của tương tác nguyên tử, tọa độ nguyên tử, động lực enzym và tâm hoạt
động và minh chứng mối quan hệ giữa cấu trúc phân tử, chuyển động ngun
tử và các tính chất hóa lý. Mơ phỏng MD cũng cung cấp các bức tranh chụp
nhanh (snapshot) của tọa độ tức thời các nguyên tử dùng cho việc tính toán
năng lượng tự do gắn kết (binding free energy) – một đại lượng nhiệt động

học quan trọng trong thiết kế thuốc (drug-design). So sánh những kết quả tính
tốn MD và năng lượng tự do gắn kết của các phức enzym PBP2a với βlactam vòng 4 cạnh nằm kề vòng 5 cạnh trong MC1, vòng 4 cạnh nằm kề
vòng 6 cạnh trong NC1 cho sự hiểu biết đầy đủ hơn về vai trị của tương tác
khơng cộng hóa trị.

25


×