Tải bản đầy đủ (.pdf) (68 trang)

Giải gần đúng hệ phương trình tích phân kì dị của một hệ phương trình cặp tích phân fourier

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (660.79 KB, 68 trang )

..

✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼
✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖

◆●➷ ❚❍➚ ❚❍❆◆❍

●■❷■ ●❺◆ ✣Ĩ◆●
❍➏ P❍×❒◆● ❚❘➐◆❍ ❚➑❈❍ P❍❹◆ ❑➐ ❉➚
❈Õ❆ ▼❐❚ ❍➏ P❍×❒◆● ❚❘➐◆❍ ❈➄P
❚➑❈❍ P❍❹◆ ❋❖❯❘■❊❘
▲❯❾◆ ❱❿◆ ❚❍❸❈ ❙➒ ❚❖⑩◆ ❍➴❈

❚❤→✐ ◆❣✉②➯♥ ✲ ◆➠♠ ✷✵✶✺


✣❸■ ❍➴❈ ❚❍⑩■ ◆●❯❨➊◆
❚❘×❮◆● ✣❸■ ❍➴❈ ❙× P❍❸▼
✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖✖

◆●➷ ❚❍➚ ❚❍❆◆❍

●■❷■ ●❺◆ ✣Ĩ◆●
❍➏ P❍×❒◆● ❚❘➐◆❍ ❚➑❈❍ P❍❹◆ ❑➐ ❉➚
❈Õ❆ ▼❐❚ ❍➏ P❍×❒◆● ❚❘➐◆❍ ❈➄P
❚➑❈❍ P❍❹◆ ❋❖❯❘■❊❘
❈❤✉②➯♥ ♥❣➔♥❤✿ ❚❖⑩◆ ●■❷■ ❚➑❈❍
▼➣ sè✿

ữợ ồ


❚❍➚ ◆●❹◆

❚❤→✐ ◆❣✉②➯♥ ✲ ◆➠♠ ✷✵✶✺




▲í✐ ❝❛♠ ✤♦❛♥
❚ỉ✐ ①✐♥ ❝❛♠ ✤♦❛♥ r➡♥❣ ♥ë✐ ❞✉♥❣ tr➻♥❤ ❜➔② tr♦♥❣ ❧✉➟♥ ✈➠♥ ♥➔② ❧➔ tr✉♥❣
t❤ü❝ ✈➔ ❦❤ỉ♥❣ trị♥❣ ❧➦♣ ✈ỵ✐ ❝→❝ ✤➲ t➔✐ ❦❤→❝✳ ❚ỉ✐ ❝ơ♥❣ ①✐♥ ❝❛♠ ✤♦❛♥ r➡♥❣
♠å✐ sü ❣✐ó♣ ✤ï ❝❤♦ ✈✐➺❝ t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥ ♥➔② ✤➣ ✤÷đ❝ ❝↔♠ ì♥ ✈➔ ❝→❝
t❤ỉ♥❣ t✐♥ tr➼❝❤ tr ữủ ró ỗ ố
◆❣✉②➯♥✱ t❤→♥❣ ✹ ♥➠♠ ✷✵✶✺
◆❣÷í✐ ✈✐➳t ❧✉➟♥ ✈➠♥

◆❣ỉ ❚❤à ❚❤❛♥❤


✐✐

▲í✐ ❝↔♠ ì♥
✣➸ ❤♦➔♥ t❤➔♥❤ ✤÷đ❝ ❧✉➟♥ ✈➠♥ ♠ët ❝→❝❤ tổ ổ ữủ
sỹ ữợ ú ✤ï ♥❤✐➺t t➻♥❤ ❝õ❛ ❚❙✳ ◆❣✉②➵♥ ❚❤à ◆❣➙♥✳ ❚æ✐ ①✐♥
❝❤➙♥ t❤➔♥❤ ❜➔② tä ❧á♥❣ ❜✐➳t ì♥ s➙✉ s➢❝ ✤➳♥ ❝ỉ ❣✐→♦ ✈➔ ①✐♥ ❣û✐ ❧í✐ tr✐ ➙♥
♥❤➜t ❝õ❛ tỉ✐ ✤è✐ ✈ỵ✐ ♥❤ú♥❣ ✤✐➲✉ ❝ỉ ❣✐→♦ ✤➣ ❞➔♥❤ ❝❤♦ tỉ✐✳
❚ỉ✐ ①✐♥ ❝❤➙♥ t❤➔♥❤ ❝↔♠ ì♥ ❇❛♥ ●✐→♠ ❤✐➺✉ tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠ ✲
✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ❝ị♥❣ ❝→❝ P❤á♥❣✲ ❇❛♥ ❝❤ù❝ ♥➠♥❣ ❝õ❛ tr÷í♥❣ ✣↕✐ ❤å❝
❙÷ ♣❤↕♠ ✲ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥✱ ❦❤♦❛ ❚♦→♥ ✲ tr÷í♥❣ ✣↕✐ ❤å❝ ❙÷ ♣❤↕♠✱
❝→❝ ỵ ổ ợ ồ ✷✵✶✺✮ tr÷í♥❣ ✣↕✐
❤å❝ ❙÷ ♣❤↕♠ ✲ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ t t tr t ỳ

tự qỵ ụ ♥❤÷ t↕♦ ✤✐➲✉ ❦✐➺♥ ❝❤♦ tỉ✐ ❤♦➔♥ t❤➔♥❤ ❦❤â❛ ❤å❝✳
❚ỉ✐ ỷ ớ ỡ tợ trữớ r ồ ờ t❤ỉ♥❣ P→❝ ❑❤✉ỉ♥❣
t➾♥❤ ▲↕♥❣ ❙ì♥✱ ♥ì✐ tỉ✐ ❝ỉ♥❣ t→❝ ✤➣ t↕♦ ✤✐➲✉ ❦✐➺♥ ❝❤♦ tæ✐ ❤♦➔♥ t❤➔♥❤ ❦❤â❛
❤å❝✳ ❚æ✐ ①✐♥ ❝↔♠ ì♥ ❣✐❛ ✤➻♥❤✱ ❜↕♥ ❜➧✱ ♥❤ú♥❣ ♥❣÷í✐ t❤➙♥ ✤➣ ❧✉ỉ♥ ✤ë♥❣
✈✐➯♥✱ ❤é trđ ✈➔ t↕♦ ♠å✐ ✤✐➲✉ ❦✐➺♥ ❝❤♦ tæ✐ tr♦♥❣ s✉èt q✉→ tr➻♥❤ ❤å❝ t➟♣ ✈➔
t❤ü❝ ❤✐➺♥ ❧✉➟♥ ✈➠♥✳ ❳✐♥ tr➙♥ trå♥❣ ❝↔♠ ì♥✦
❚❤→✐ ◆❣✉②➯♥✱ t❤→♥❣ ✹ ♥➠♠ ✷✵✶✺
◆❣÷í✐ ✈✐➳t ❧✉➟♥ ✈➠♥

◆❣ỉ ❚❤à ❚❤❛♥❤


✐✐✐

▼ư❝ ❧ư❝
▲í✐ ❝❛♠ ✤♦❛♥



▲í✐ ❝↔♠ ì♥

✐✐

▼ư❝ ❧ư❝

✐✐✐

▼ð ✤➛✉




✶ ❑✐➳♥ t❤ù❝ ❝❤✉➞♥ ❜à



✶✳✶ ▲ỵ♣ ❤➔♠ ❍♦❧❞❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✷ ●✐→ trà ❝❤➼♥❤ ❝õ❛ t➼❝❤ ♣❤➙♥ ❦ý ❞à ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✷✳✶ ●✐→ trà ❝❤➼♥❤ ❈❛✉❝❤② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✷✳✷ ●✐→ trà ❝❤➼♥❤ ❝õ❛ t➼❝❤ ♣❤➙♥ ❦ý ❞à ✳ ✳ ✳
✶✳✸ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ❦ý ❞à tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ L2ρ
✶✳✸✳✶ ❑❤æ♥❣ ❣✐❛♥ L2ρ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✸✳✷ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ❦ý ❞à ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✹ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦ý ❞à ❧♦↕✐ ♠ët ✳ ✳ ✳ ✳
✶✳✺ ❈→❝ ✤❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✺✳✶ ✣❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ❧♦↕✐ ♠ët ✳ ✳ ✳ ✳ ✳
✶✳✺✳✷ ✣❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ❧♦↕✐ ❤❛✐ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✻ ❍➺ ✈ỉ ❤↕♥ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè t✉②➳♥ t➼♥❤


















































































✳ ✸
✳ ✺
✳ ✺
✳ ✺
✳ ✻
✳ ✻
✳ ✼
✳ ✼
✳ ✽
✳ ✽
✳ ✶✵
✳ ✶✷


✐✈

✶✳✼ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❤➔♠ ❝ì ❜↔♥ ❣✐↔♠ ♥❤❛♥❤ ✳ ✳ ✳ ✳ ✳
✶✳✼✳✶ ❑❤æ♥❣ ❣✐❛♥ S ❝õ❛ ❝→❝ ❤➔♠ ❝ì ❜↔♥ ❣✐↔♠ ♥❤❛♥❤ ✳
✶✳✼✳✷ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❝→❝ ❤➔♠ ❝ì ❜↔♥ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✽ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠ ✳ ✳ ✳ ✳ ✳
✶✳✽✳✶ ❑❤æ♥❣ ❣✐❛♥ S ❝õ❛ ❝→❝ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠
✶✳✽✳✷ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠ ✳
✶✳✽✳✸ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ t➼❝❤ ❝❤➟♣ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✾ ❈→❝ ❦❤æ♥❣ ❣✐❛♥ ❙♦❜♦❧❡✈ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳

✶✳✾✳✶ ❑❤æ♥❣ ❣✐❛♥ H s(R) ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✾✳✷ ❈→❝ ❦❤æ♥❣ ❣✐❛♥ Hos(Ω), Ho,os (Ω), H s(Ω) ✳
ỵ ú ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✶✵ ❈→❝ ❦❤ỉ♥❣ ❣✐❛♥ ❙♦❜♦❧❡✈ ✈❡❝tì ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✶✵✳✶ ❑❤→✐ ♥✐➺♠ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✶✶ P❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ ❧✐➯♥ tö❝ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✶✳✶✷ ❚♦→♥ tû ❣✐↔ ✈✐ ♣❤➙♥ ✈❡❝tì ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳


































✶✹
✶✹
✶✹
✶✺
✶✺
✶✻
✶✼
✶✼
✶✼
✶✽
✶✾
✶✾
✶✾
✷✶
✷✷

✷ ●✐↔✐ ❣➛♥ ✤ó♥❣ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à ❝õ❛ ♠ët ❤➺
♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r
✷✹
✷✳✶ ❚➼♥❤ ❣✐↔✐ ✤÷đ❝ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r

✷✳✶✳✶ P❤→t ❜✐➸✉ ❜➔✐ t♦→♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✶✳✷ ✣÷❛ ✈➲ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r ✳ ✳ ✳
✷✳✶✳✸ ❚➼♥❤ ❣✐↔✐ ✤÷đ❝ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥
✭✷✳✶✵✮ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✶✳✹ ✣÷❛ ♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r ❤➺ ♣❤÷ì♥❣
tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦ý ❞à ♥❤➙♥ ❈❛✉❝❤② ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳
✷✳✶✳✺ ✣÷❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à ♥❤➙♥ ❈❛✉❝❤②
✈➲ ❤➺ ✈ỉ ❤↕♥ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè t✉②➳♥ t➼♥❤ ✳ ✳

✷✹
✷✹
✷✺
✷✻
✷✾
✸✸




✷✳✷ ●✐↔✐ ❣➛♥ ✤ó♥❣ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à ❝õ❛ ♠ët ❤➺
♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✽
✷✳✷✳✶ ✣÷❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦ý ❞à ✈➲ ❞↕♥❣ ❦❤æ♥❣
t❤ù ♥❣✉②➯♥ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✸✽
✷✳✷✳✷ ❚➼♥❤ ❣➛♥ ✤ó♥❣ ♥❣❤✐➺♠ ❝õ❛ ♠ët ❤➺ ♣❤÷ì♥❣ tr➻♥❤
t➼❝❤ ♣❤➙♥ ❦ý ❞à ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✳ ✹✵

❚➔✐ ❧✐➺✉ t❤❛♠ ❦❤↔♦

✻✵






ỵ tt ữỡ tr t ♥❤➙♥ ❈❛✉❝❤② ✤➣ ✤÷đ❝ ❤♦➔♥
t❤✐➺♥ ð ♥û❛ ✤➛✉ t❤➳ ❦➾ ✷✵✳ ❚r♦♥❣ ❜❛ t❤➟♣ ♥✐➯♥ ❣➛♥ ✤➙②✱ ♥❤✐➲✉ ♥❤➔ t♦→♥
❤å❝ q✉❛♥ t➙♠ ✤➳♥ ✈➜♥ ✤➲ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❞↕♥❣
b
a

ϕ(t)
dt +
x−t

b

ϕ(t)K(x, t)dt = f (x),
a

✭✶✮

tr♦♥❣ ✤â f (x) ✈➔ K(x, t) ❧➔ ♥❤ú♥❣ ❤➔♠ ✤➣ ❜✐➳t✱ ϕ(t) ❧➔ ❤➔♠ ❝➛♥ t➻♠✳ ❍➔♠
✭♥❤➙♥ ❤❛② ❤↕❝❤✮ K(x, t) t❤÷í♥❣ ❧➔ ❤➔♠ ❧✐➯♥ tư❝ tr➯♥ ❤➻♥❤ ❝❤ú ♥❤➟t
S = {(x, t) : (x, t) ∈ [a, b] × [a, b]}.

P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❞↕♥❣ ✭✶✮ ❣➦♣ ❤➛✉ ❤➳t tr♦♥❣ ❝→❝ ❜➔✐ t♦→♥ ❜✐➯♥ ❤é♥
❤ñ♣ ❝õ❛ ❱➟t ❧➼ t♦→♥ ✤è✐ ợ ổ trỡ ữ t ❤ð✱
✈➳t ♥ùt✱ ✈➳t r↕♥✱ ❝→❝ ❜➔✐ t♦→♥ ✈➲ t✐➳♣ ①ó❝ ừ tt ỗ
ữỡ ú ữỡ tr t
ỗ ữỡ ❝➛✉ ♣❤÷ì♥❣ trü❝ t✐➳♣✱ ♣❤÷ì♥❣ ♣❤→♣ ♥ë✐ s✉② ❜➡♥❣

♣❤÷ì♥❣ ♣❤→♣ ▲❛❣r❛♥❣❡✱ ♣❤÷ì♥❣ ♣❤→♣ s➢♣ ①➳♣ t❤ù tü✱ ♣❤÷ì♥❣ ♣❤→♣ ✤❛
t❤ù❝ trü❝ ❣✐❛♦✳ ❱✐➺❝ ❣✐↔✐ ♠ët sè ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à ✤÷đ❝
t❤ü❝ ❤✐➺♥ t÷ì♥❣ tü ❣✐↔✐ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à✱ ❤➺ ♣❤÷ì♥❣ tr➻♥❤
t➼❝❤ ♣❤➙♥ ❦➻ ❞à ✤÷đ❝ ❜✐➳♥ ✤ê✐ tø ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥✳ ●➛♥ ✤➙②✱
◆❣✉②➵♥ ❱➠♥ ◆❣å❝ ✈➔ ◆❣✉②➵♥ ❚❤à ◆❣➙♥ ✤➣ q✉❛♥ t➙♠ ♥❣❤✐➯♥ ❝ù✉ ✈➲ t➼♥❤
❣✐↔✐ ✤÷đ❝ ❝õ❛ ♠ët sè ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r ①✉➜t ❤✐➺♥ ❦❤✐
❣✐↔✐ ❜➔✐ t♦→♥ ❜✐➯♥ ❤é♥ ❤đ♣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✤✐➲✉ ❤á❛ ✈➔ ữỡ tr
s ỏ ợ ố ữủ t ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥
❦➻ ❞à ✈➔ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à✱ ❝❤ó♥❣ tỉ✐ ❝❤å♥ ✤➲
t➔✐ ✧●✐↔✐ ❣➛♥ ✤ó♥❣ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à ❝õ❛ ♠ët ❤➺ ♣❤÷ì♥❣
tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r✧✳ ▲✉➟♥ ✈➠♥ ♥❣♦➔✐ ♣❤➛♥ ▼ð ✤➛✉✱ ❑➳t




t ỗ ữỡ ở
ữỡ ♠ët tr➻♥❤ ❜➔② tê♥❣ q✉❛♥ ♠ët sè ❦✐➳♥ t❤ù❝ ❝ì ❜↔♥ ✈➲ ❧ỵ♣ ❤➔♠
❍♦❧❞❡r✱ t➼❝❤ ♣❤➙♥ ❦➻ ❞à✱ ❣✐→ trà ❝❤➼♥❤ ❝õ❛ t➼❝❤ ♣❤➙♥ ❦➻ ❞à✱ t♦→♥ tû t➼❝❤ ♣❤➙♥
❦➻ ❞à tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ L2ρ✱ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à✱ ❤➺ ✈ỉ ❤↕♥ ❝→❝
♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè t✉②➳♥ t➼♥❤✱ ❝→❝ ✤❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈✱ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r
❝õ❛ ❝→❝ ❤➔♠ ❝ì ❜↔♥ ❣✐↔♠ ♥❤❛♥❤✱ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❝→❝ ❤➔♠ s✉② rë♥❣
t➠♥❣ ❝❤➟♠✱ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❙♦❜♦❧❡✈✱ ❝→❝ ❦❤æ♥❣ ❣✐❛♥ ❙♦❜♦❧❡✈ ✈❡❝tì✱ ♣❤✐➳♠
❤➔♠ t✉②➳♥ t➼♥❤ ❧✐➯♥ tư❝✱ t♦→♥ tû ❣✐↔ ✈✐ ♣❤➙♥ ✈❡❝tì✳
❈❤÷ì♥❣ ❤❛✐ tr➻♥❤ ❜➔② ❝→❝ ❦➳t q✉↔ ❝❤➼♥❤ ❝õ❛ ❧✉➟♥ ✈➠♥✳ ▼ư❝ ✷✳✶ tr➻♥❤
❜➔② ✈➲ t➼♥❤ ❣✐↔✐ ✤÷đ❝ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ①✉➜t ❤✐➺♥ ❦❤✐
❣✐↔✐ ❜➔✐ t♦→♥ ❜✐➯♥ ❤é♥ ❤đ♣ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ ✤✐➲✉ ❤á❛✱ ❝→❝
tr t tỗ t↕✐ ✈➔ ❞✉② ♥❤➜t ♥❣❤✐➺♠ ❝õ❛ ❤➺ ♣❤÷ì♥❣
tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r✱ ✤÷❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ ❝➦♣ t➼❝❤ ♣❤➙♥ ❋♦✉r✐❡r
✈➲ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à ♥❤➙♥ ❈❛✉❝❤②✱ s❛✉ ✤â ✤÷❛ ❤➺ ♣❤÷ì♥❣
tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à ♥❤➙♥ ❈❛✉❝❤② ✈➲ ❤➺ ✈ỉ ❤↕♥ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè

t✉②➳♥ t➼♥❤✳ ▼ư❝ ✷✳✷ ❝❤ó♥❣ tỉ✐ t❤ü❝ ❤✐➺♥ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ❤➺ ♣❤÷ì♥❣ tr➻♥❤
❝➦♣ t➼❝❤ ♣❤➙♥ ❦➻ ❞à ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t rr ợ
ữợ ữ ữỡ tr t➼❝❤ ♣❤➙♥ ❦➻ ❞à ✈➲ ❞↕♥❣ ❦❤æ♥❣ t❤ù ♥❣✉②➯♥❀
t➼♥❤ ❣➛♥ ✤ó♥❣ ♠❛ tr➟♥ ❤↕❝❤ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦➻ ❞à❀ t❤ü❝
❤✐➺♥ ❣✐↔✐ ❣➛♥ ✤ó♥❣ ❤➺ ✈ỉ ❤↕♥ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè t✉②➳♥ t➼♥❤ ✤➣ ✤÷đ❝
✧❝❤➦t ❝ưt✧ ✤➳♥ ◆❂✻ ✱ s❛✉ ✤â t➻♠ ♥❣❤✐➺♠ ❣➛♥ ✤ó♥❣ ❝õ❛ ❤➺ ♣❤÷ì♥❣ tr➻♥❤
t➼❝❤ ♣❤➙♥ ❦➻ ❞à✳
▲✉➟♥ ✈➠♥ ✤÷đ❝ ❤♦➔♥ t❤➔♥❤ t↕✐ trữớ ồ ữ
ữợ sỹ ữợ ❦❤♦❛ ❤å❝ ❝õ❛ ❚❙✳ ◆❣✉②➵♥ ❚❤à ◆❣➙♥✳ ❚→❝ ❣✐↔ ①✐♥ ✤÷đ❝
❜➔② tä ❧á♥❣ ❜✐➳t ì♥ ❝❤➙♥ t❤➔♥❤ ✈➔ s➙✉ s➢❝ t tợ ổ ữợ
trữớ ồ ữ ✲ ✣↕✐ ❤å❝ ❚❤→✐ ◆❣✉②➯♥ ✤➣ t↕♦ ♠å✐ ✤✐➲✉ ❦✐➺♥
t❤✉➟♥ ❧đ✐ ✤➸ t→❝ ❣✐↔ ❤♦➔♥ t❤➔♥❤ ✤÷đ❝ ❦❤♦→ ❤å❝ ❝õ❛ ♠➻♥❤✳




ữỡ
tự
ợ r
❬✸❪✳ ●✐↔ sû L ❧➔ ✤÷í♥❣ ❝♦♥❣ trì♥ ✈➔ ϕ(ξ) ❧➔ ❤➔♠ ❝→❝

✤✐➸♠ ♣❤ù❝ ξ ∈ L. ◆â✐ r➡♥❣ ❤➔♠ ϕ(ξ) t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r ✭✤✐➲✉
❦✐➺♥ Hλ✮ tr➯♥ ✤÷í♥❣ ❝♦♥❣ L ♥➳✉ ✈ỵ✐ ❤❛✐ ✤✐➸♠ ❜➜t ❦ý ξ1, ξ2 ∈ L t❛ ❝â ❜➜t
✤➥♥❣ t❤ù❝
λ
|ϕ(ξ2 ) − ϕ(ξ1 )| < A |ξ2 − ξ1 | ,
✭✶✳✶✮
tr♦♥❣ ✤â A, λ ❧➔ ❝→❝ ❤➡♥❣ sè ❞÷ì♥❣✳
◆➳✉ λ > 1 t❤➻ tø ✤✐➲✉ ❦✐➺♥ ✭✶✳✶✮ s✉② r❛ ϕ (ξ) ≡ 0 tr➯♥ L ✈➔ ❞♦ ✤â
ϕ(ξ) ≡ const, ξ ∈ L. ❱➻ ✈➟② t❛ ❧✉æ♥ ❧✉æ♥ ❝❤♦ r➡♥❣ 0 < λ ≤ 1. ◆➳✉ λ = 1

t❤➻ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r trð t❤➔♥❤ ✤✐➲✉ ❦✐➺♥ ▲✐♣s❝❤✐t③✳ ❘ã r➡♥❣ λ ❝➔♥❣ ♥❤ä t❤➻
❧ỵ♣ ❤➔♠ Hλ ❝➔♥❣ rë♥❣✳ ▲ỵ♣ ❤➔♠ ❍♦❧❞❡r ❤➭♣ ♥❤➜t ❧➔ ❧ỵ♣ ❤➔♠ ▲✐♣s❝❤✐t③✳
❉➵ t❤➜② r➡♥❣✱ ♥➳✉ ❝→❝ ❤➔♠ ϕ1(ξ), ϕ2(ξ) t❤ä❛ r
tữỡ ự ợ số 1, 2 t tờ t tữỡ ợ
t❤ù❝ ❦❤→❝ ❦❤ỉ♥❣✮ ❝ơ♥❣ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r ✈ỵ✐ ❝❤➾ sè
λ = min(λ1 , λ2 )✳
◆➳✉ ❤➔♠ ϕ(ξ) ❝â ✤↕♦ ❤➔♠ ❤ú✉ ❤↕♥ tr➯♥ L t❤➻ ♥â t❤ä❛ ♠➣♥
st ữủ s r tứ ỵ ✈➲ sè ❣✐❛ ❤ú✉ ❤↕♥✳ ◆❣÷đ❝ ❧↕✐
♥â✐ ❝❤✉♥❣ ❦❤ỉ♥❣ ✤ó♥❣✳ ❚❤➼ ❞ư✱ ❤➔♠
ϕ(ξ) = |ξ|, ξ ∈ R,

t❤✉ë❝ ❧ỵ♣ ❤➔♠ ❍♦❧❞❡r tr➯♥ R✱ ♥❤÷♥❣ ❦❤ỉ♥❣ ❝â ✤↕♦ ❤➔♠ t↕✐ ξ = 0✳




❱➼ ❞ö ✶✳✶✳✷✳ ❍➔♠ sè ϕ(x)



t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r ✈➔ ❝❤➾
sè λ = 1/2 tr➯♥ ♠å✐ ❦❤♦↔♥❣ ❝õ❛ trö❝ t❤ü❝✳ ◆➳✉ ♥❤÷ ❦❤♦↔♥❣ ✤â ❦❤ỉ♥❣
❝❤ù❛ ❣è❝ tå❛ ✤ë t❤➻ ϕ(x) ❝á♥ ❧➔ ❤➔♠ ❣✐↔✐ t➼❝❤✱ ❞♦ ✤â t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥
▲✐♣s❝❤✐t③✳
❱➼ ❞ö ✶✳✶✳✸✳ ❳➨t ❤➔♠ sè
ϕ(x) =

=





x

1
,
lnx

0 < x ≤ 21 ,

ϕ(0) = 0.

❉➵ t❤➜② r➡♥❣ ❤➔♠ sè ϕ(x) ❧➔ ❧✐➯♥ tö❝ tr➯♥ ✤♦↕♥ 0 ≤ x ≤ 12 ✳ ◆❤÷♥❣ ✈➻
limx→0+ xλ lnx = 0, ∀λ > 0,

♥➯♥ ợ ồ A õ t t ữủ trà ❝õ❛ x s❛♦ ❝❤♦
|ϕ(x) − ϕ(0)| =

1
> Axλ .
lnx

◆❤÷ ✈➟②✱ ❤➔♠ ϕ(x) tr➯♥ ✤♦↕♥ ♥â✐ tr➯♥ ❦❤æ♥❣ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r✳
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳✹✳ ❬✸❪✳ ❑➼ ❤✐➺✉ Hα(r), 0 < α ≤ 1, r ≥ 0 ❧➔ ❧ỵ♣ ❤➔♠ ①→❝
✤à♥❤ tr➯♥ ✤♦↕♥ [a, b] ❝â ✤↕♦ ❤➔♠ ❝➜♣ r t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r ✈ỵ✐ sè
♠ơ α✳
❑❤→✐ ♥✐➺♠ ✈➲ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r ❝â t❤➸ ♠ð rë♥❣ ❝❤♦ ❤➔♠ ♥❤✐➲✉ ❜✐➳♥ ✈ỵ✐
sè ❜✐➳♥ ❤ú✉ ❤↕♥ ❜➜t ❦ý✳ ✣➸ ✤ì♥ ❣✐↔♥ t❛ ①➨t tr÷í♥❣ ❤đ♣ ❤➔♠ ❤❛✐ ❜✐➳♥✳
✣à♥❤ ♥❣❤➽❛ ✶✳✶✳✺✳ ❬✸❪✳ ❍➔♠ ❤❛✐ ❜✐➳♥ ϕ(ξ, τ ) tr➯♥ D t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥
❍♦❧❞❡r ♥➳✉ ✈ỵ✐ ♠å✐ ξ1, ξ2, τ1, τ2 ∈ D ❝â ❜➜t ✤➥♥❣ t❤ù❝

|ϕ(ξ2 , τ2 ) − ϕ(ξ1 , τ1 )|

µ

ν

A |ξ2 − ξ1 | + B |τ2 − τ1 | ,

tr♦♥❣ ✤â A, B, µ, ν ❧➔ số ữỡ à,

1

= min(à, ) ✈➔ C = max(A, B)✱ t❤➻
|ϕ(ξ2 , τ2 ) − ϕ(ξ1 , τ1 )|

λ

λ

C[|ξ2 − ξ1 | + |τ2 − τ1 | ].

❘ã r➔♥❣ ❧➔✱ ♥➳✉ ϕ(ξ, τ ) t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r t❤❡♦ ❤é♥ ❤ñ♣ (ξ, τ )
t❤➻ ♥â t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r t❤❡♦ ξ ✤➲✉ t❤❡♦ τ ✈➔ t❤ä❛ ♠➣♥ ✤✐➲✉
❦✐➺♥ ❍♦❧❞❡r t❤❡♦ τ ✤➲✉ t❤❡♦ ξ ✳




✶✳✷ ●✐→ trà ❝❤➼♥❤ ❝õ❛ t➼❝❤ ♣❤➙♥ ❦ý ❞à
✶✳✷✳✶ ●✐→ trà ❝❤➼♥❤ ❈❛✉❝❤②


●✐↔ sû a ✈➔ b ❧➔ ❤❛✐ ✤✐➸♠ ❤ú✉ ❤↕♥✳ ❳➨t t➼❝❤ ♣❤➙♥
b

dx
(a < c < b).
x−c

a

❈❤ó♥❣ t❛ ❤➣② t➼♥❤ t➼❝❤ ♣❤➙♥ tr➯♥ ✤➙② ♥❤÷ ❧➔ t➼♥❤ t➼❝❤ ♣❤➙♥ s✉② rë♥❣✱ t❛
❝â
b

 c−

dx
= lim 1 →0, 2 →0 
x−c

a

1

dx
+
x−c

a


= ln

b

c+

b−c
+ lim 1 →0, 2 →0 ln
c−a

1



dx 
x−c

2

.

2

✭✶✳✷✮

●✐ỵ✐ ❤↕♥ ❝õ❛ ❜✐➸✉ t❤ù❝ ❝✉è✐ ❝ò♥❣ tr♦♥❣ ✭✶✳✷✮ rã r➔♥❣ ❧➔ ♣❤ö t❤✉ë❝ ✈➔♦
❝→❝❤ t✐➳♥ ✤➳♥ ✵ ❝õ❛ 1 ✈➔ 2✳ t ổ tỗ t t
õ ♥❤÷ ♠ët t➼❝❤ ♣❤➙♥ s✉② rë♥❣✳ ❚➼❝❤ ♣❤➙♥ tr➯♥ ✤÷đ❝ ❣å✐ ❧➔ t➼❝❤ ♣❤➙♥ ❦ý
❞à✳ ❚✉② ♥❤✐➯♥✱ ♥➳✉ 1 = 2 t❤➻ tø ✭✶✳✷✮ t❛ ❝â ❦❤→✐ ♥✐➺♠ ✈➲ ❣✐→ trà ❝❤➼♥❤ ❝õ❛
t➼❝❤ ♣❤➙♥ ❦ý ❞à s❛✉✿

✣à♥❤ ♥❣❤➽❛ ✶✳✷✳✶✳ ❬✸❪✳ ●✐→ trà ❝❤➼♥❤ t❤❡♦ ❈❛✉❝❤② ❝õ❛ t➼❝❤ ♣❤➙♥ ❦ý ❞à
b

dx
(a < c < b),
x−c

a

✤÷đ❝ ❤✐➸✉ ❧➔
b

 c−

dx
= lim →0 
x−c

a

b

dx
+
x−c

a

dx 
b−c

= ln
.
x−c
c−a

c+

✶✳✷✳✷ ●✐→ trà ❝❤➼♥❤ ❝õ❛ t➼❝❤ ♣❤➙♥ ❦ý ❞à

❳➨t t➼❝❤ ♣❤➙♥

b

a



ϕ(x)dx
(a < c < b),
x−c




tr♦♥❣ ✤â ϕ(x) t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r tr➯♥ ✤♦↕♥ [a, b]✳ ❈❤ó♥❣ t❛ ❜✐➳♥
✤ê✐ t➼❝❤ ♣❤➙♥ tr➯♥ ✤➙② ♥❤÷ s❛✉
b

b


ϕ(x)dx
=
x−c

a

b

ϕ(x) − ϕ(y)
dx + ϕ(c)
x−c

a

dx
.
x−c

✭✶✳✸✮

a

❱➻ ❤➔♠ ϕ(x) t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ❍♦❧❞❡r✱ ♥➯♥
ϕ(x) − ϕ(c)
A
,
<
1−λ
x−c
|x − c|


❞♦ ✤â t➼❝❤ ♣❤➙♥ tự t tr tỗ t ữ t s rở ỏ
t tự tỗ t t ❈❛✉❝❤②✳ ◆❤÷ ✈➟② t❛ ❝â
b

b

ϕ(x)dx
=
x−c

a

b−c
ϕ(x) − ϕ(y)
dx + ϕ(c) ln
.
x−c
c−a

a

✶✳✸ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ❦ý ❞à tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥ L2ρ
✶✳✸✳✶ ❑❤ỉ♥❣ ❣✐❛♥ L

2
ρ

✣à♥❤ ♥❣❤➽❛ ✶✳✸✳✶✳ ❬✸❪✳ ❱ỵ✐ a < x < b ①➨t ❤➔♠ trå♥❣
ρ(x) = (x − a)α (b x) , , > 1.


ỵ L2(a, b) ❧➔ t➟♣ ❝õ❛ t➜t ❝↔ ❝→❝ ❤➔♠ u(x) ❜➻♥❤ ♣❤÷ì♥❣ ❦❤↔ t➼❝❤ ✈ỵ✐
trå♥❣ ρ✱ ♥❣❤➽❛ ❧➔


 21

b
2

ρ(x) |u(x)| dx < .

u :=



a

ổ ữợ tr L2(a, b) ữủ ✤à♥❤ ❜ð✐ ❝ỉ♥❣ t❤ù❝
b

(u, v)ρ :=

ρ(x)u(x)v(x)dx.

✭✶✳✺✮

a

❘ã r➔♥❣ ✈ỵ✐ ❝❤✉➞♥ ✭✶✳✷✮ t ổ ữợ t L2(a, b) ởt ❦❤æ♥❣

❣✐❛♥ ❍✐❧❜❡rt✳




✶✳✸✳✷ ❚♦→♥ tû t➼❝❤ ♣❤➙♥ ❦ý ❞à

❚r♦♥❣ ❦❤æ♥❣ ❣✐❛♥ L2ρ(a, b)✱ ①➨t t♦→♥ tû
b

1
SJ [u] (x) =


u(y)dy
, x ∈ J := (a, b),
y−x

✭✶✳✻✮

a

tr♦♥❣ ✤â t➼❝❤ ♣❤➙♥ ✤÷đ❝ ❤✐➸✉ t❤❡♦ ❣✐→ trà ❝❤➼♥❤ ❈❛✉❝❤②✳
✣à♥❤ ❧➼ ✶✳✸✳✷✳ ❬✸❪✳ ❱ỵ✐ ρ(x) = (x − a)α(b − x)β , 1 < α, β < 1, −∞ <
a < b < ∞ t❤➻ t♦→♥ tû SJ ❜à ❝❤➦♥✱ ❞♦ ✤â ❧➔ ❧✐➯♥ tö❝ tr♦♥❣ L2ρ (a, b)✳

✶✳✹ P❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦ý ❞à ❧♦↕✐ ♠ët
❳➨t ♣❤÷ì♥❣ tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦ý ❞à s❛✉
1
π


b
a

ϕ(τ )
dτ = f (ξ), a < ξ < b.
τ −ξ

✭✶✳✼✮

P❤÷ì♥❣ tr➻♥❤ ✭✶✳✼✮ ❧➔ ♠ët tr÷í♥❣ ❤đ♣ r✐➯♥❣ q✉❛♥ trå♥❣ ❝õ❛ ❝→❝ ♣❤÷ì♥❣
tr➻♥❤ t➼❝❤ ♣❤➙♥ ❦ý ❞à t❤÷í♥❣ ❣➦♣ tr♦♥❣ ♥❤✐➲✉ ❜➔✐ t♦→♥ ❝ì ồ t ỵ
t r ữỡ tr tr t t❤✐➳t r➡♥❣ ❤➔♠ f (ξ) t❤ä❛ ♠➣♥ ✤✐➲✉
❦✐➺♥ ❍♦❧❞❡r✳ ❚ò② t❤✉ë❝ ✈➔♦ ❞→♥❣ ✤✐➺✉ ❝õ❛ ➞♥ ❤➔♠ ð ❝→❝ ✤➛✉ ♠ót ❝õ❛ ✤♦↕♥
[a, b], t❛ ❝â ❝→❝ ❝ỉ♥❣ t❤ù❝ ♥❣❤✐➺♠ s➙✉ ✤➙② ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤✳
✶✳ ◆❣❤✐➺♠ ❦❤ỉ♥❣ ❜à ❝❤➦♥ ð ❤❛✐ ✤➛✉ ♠ót✿


ϕ(ξ) = −

1
1
(ξ − a)(b − ξ) π



b

(τ − a)(b − τ )f (τ )
dτ + a0  ,

τ −ξ

a

✭✶✳✽✮

a < ξ < b,

tr♦♥❣ ✤â a0 ❧➔ ❤➡♥❣ số tũ ỵ
t út = a ✈➔ ❦❤ỉ♥❣ ❜à ❝❤➦♥ t↕✐ ✤➛✉ ♠ót ξ = b

ϕ(ξ) = −

b

ξ−a1
b−ξπ
a

b − τ f (τ )
dτ.
τ − aτ − ξ

✭✶✳✾✮




✸✳ ◆❣❤✐➺♠ ❦❤æ♥❣ ❜à ❝❤➦♥ t↕✐ t = a ✈➔ ❜à ❝❤➦♥ t↕✐ t = b ✿
ϕ(ξ) = −


b

b−ξ 1
ξ − aπ

τ − a f (τ )
dτ.
b−τ τ −ξ

✭✶✳✶✵✮

a

✹✳ ◆❣❤✐➺♠ ❜à ❝❤➦♥ t↕✐ ❤❛✐ ✤➛✉ ♠ót ✿
b

1
ϕ(ξ) = − (ξ − a)(b − ξ)
π
a

f (τ )

,
(τ − a)(b − τ ) τ − ξ

✭✶✳✶✶✮

✈ỵ✐ ✤✐➲✉ ❦✐➺♥

b

a

f (τ )dτ
= 0.
(τ − a)(b − τ )

✭✶✳✶✷✮

✶✳✺ ❈→❝ ✤❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈
✶✳✺✳✶ ✣❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ❧♦↕✐ ♠ët

✶✳ ✣à♥❤ ♥❣❤➽❛✳❬✶✷❪✳ ✣❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ❜➟❝ n ❧♦↕✐ ♠ët Tn(x) ✤÷đ❝ ①→❝
✤à♥❤ ♥❤÷ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ s❛✐ ♣❤➙♥
Tn+1 (x) − 2xTn (x) + Tn−1 (x) = 0,
T0 (x) = 1,
T1 (x) = x.

◆❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ s❛✐ ♣❤➙♥ tr➯♥ ❧➔
Tn (x) = cos(n arccos x), Tn (cos θ) = cos(nθ), (n = 0, 1, 2, · · · ).

✷✳ ❇✐➸✉ t❤ù❝ ❤✐➸♥
[ n2 ]
n
(−1)m (n − m − 1)!
Tn (x) =
(2x)n−m .
2 m=0
m!(n − 2m)!





✸✳ ❈→❝ ✤❛ t❤ù❝ ❜➟❝ t❤➜♣
T0 (x) = 1,
T1 (x) = x,
T2 (x) = 2x2 − 1,
T3 (x) = 4x3 − 3x,
T4 (x) = 8x4 − 8x2 + 1,
T5 (x) = 16x5 − 20x3 + 5x.

✹✳ ▼ët sè ❤➺ t❤ù❝
Tn (−x) = (−1)n Tn (x), Tn (1) = 1, Tn (−1) = (−1)n ,
Tn+m (x) + Tn−m (x)
,
Tn (x)Tm (x) =
2
Tn (Tm (x)) = Tnm (x).

✺✳ ❚rü❝ ❣✐❛♦
1

−1

✻✳ ❈→❝ ❤➺ t❤ù❝ ♣❤ê
1

−1


1
π




0,



m = n,
Tm (x)Tn (x)

dx = π, m = n = 0,

1 − x2


 π , m = n = 0.
2

Tn (y)dy

= πUn−1 (x),
(y − x) 1 − y 2
1

ln
−1


1 Tn (y)dy

= σn Tk (x),
|x − y| 1 − y 2

(n = 0, 1, 2, ...).

tr♦♥❣ ✤â Un(x) ❧➔ ✤❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ❧♦↕✐ ❤❛✐✱ ❝á♥
σn =


ln 2,

n=0

1,

n = 1, 2, ...

n

✼✳ ◆❣❤✐➺♠ ❝õ❛ Tn(x)


✶✵

❚➜t ❝↔ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ Tn(x) ✤➲✉ t❤✉ë❝ ✤♦↕♥ [−1, 1] ✈➔ ✤÷đ❝ ①→❝ ✤à♥❤
t❤❡♦ ❝ỉ♥❣ t❤ù❝
xk = cos θk = cos


(2k − 1)π
, k = 1, 2, ....
2n

✽✳ P❤÷ì♥❣ tr➻♥❤ ✈✐ ♣❤➙♥
(1 − x)y − xy + n2 y = 0, y = Tn (x).

✶✳✺✳✷ ✣❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ❧♦↕✐ ❤❛✐

✶✳ ✣à♥❤ ♥❣❤➽❛✳❬✶✷❪✳ ✣❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ❜➟❝ n ❧♦↕✐ ❤❛✐ Un(x) ✤÷đ❝ ①→❝
✤à♥❤ ♥❤÷ ♥❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ s❛✐ ♣❤➙♥
Un+1 (x) − 2xUn (x) + Un−1 (x) = 0,
U0 (x) = 1,
U1 (x) = 2x.

◆❣❤✐➺♠ ❝õ❛ ♣❤÷ì♥❣ tr➻♥❤ s❛✐ ♣❤➙♥ tr➯♥ ❧➔
x = cos θ, Un (cos θ) =

sin[(n + 1)θ]
.
sin θ

✷✳ ❇✐➸✉ t❤ù❝ ❤✐➸♥
[ n2 ]

(−1)m (n − m)!
Un (x) =
(2x)n−m , n = 1, 2, ....
m!(n − 2m)!
m=0


✸✳ ❈→❝ ✤❛ t❤ù❝ ❜➟❝ t❤➜♣
U0 (x) = 1,
U1 (x) = 2x,
U2 (x) = 4x2 − 1,
U3 (x) = 8x3 − 4x,
U4 (x) = 16x4 − 12x2 + 1,
U5 (x) = 32x5 − 32x3 + 6x.


✶✶

✹✳ ▼ët sè ❤➺ t❤ù❝ ❣✐ú❛ Tn(x) ✈➔ Un(x)
Un (−x) = (−1)n Un (x),
Un (1) = n + 1, Un (−1) = (−1)n (n + 1),
Tn−m (x) − Tn+m+2 (x)
,
Un (x)Um (x) =
2(1 − x2 )
1
Tm Un (x) = [Un−m (x) + Un+m (x)],
2
d
Tn (x) = nUn−1 (x),
dx
xTn (x) − Tn+1 (x) = (1 − x2 )Un−1 (x),
Tn (x) = Un (x) − xUn−1 (x).

✺✳ ❚rü❝ ❣✐❛♦
1



Um (x)Un (x) 1 − x2 dx =


0,

m = n,

π,

m = n.

2

−1

✻✳ ❈→❝ ❤➺ t❤ù❝ ♣❤ê
1



1 − y 2 Un−1 (y)dy
= −πTn (x), (n = 1, 2, ...)
(y − x)

−1

tr♦♥❣ ✤â Tn(x) ❧➔ ✤❛ t❤ù❝ ❈❤❡❜②✉s❤❡✈ ❧♦↕✐ ♠ët✳
✼✳ ◆❣❤✐➺♠ ❝õ❛ Un(x)

❚➜t ❝↔ ❝→❝ ♥❣❤✐➺♠ ❝õ❛ Un(x) ✤➲✉ t❤✉ë❝ ✤♦↕♥ [−1, 1] ✈➔ ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐
❝ỉ♥❣ t❤ù❝ s❛✉
xk = cos θk = cos

✽✳P❤÷ì♥❣ tr➻♥❤ ✈✐ ♣❤➙♥


,
n+1

k = 1, 2, ..., n.

(1 − x)y − 3xy + n(n + 2)y = 0, y = Un (x).

❚❛ ❝â ♠ët sè ❝æ♥❣ t❤ù❝ s❛✉ ❬✶✷❪✿
Tn (cos θ) = cos(nθ), Un (cos θ) =
b
a

sin(n + 1)θ
,
sin θ

Tk [η(x)] Tj [η(x)]
dx = αk δkj ,
ρ(x)

✭✶✳✶✸✮
✭✶✳✶✹✮



✶✷
b

Uk [η(x)] Uj [η(x)] ρ(x)dx = βδkj ,

✭✶✳✶✺✮

Tk [η(y)] dy
−2π
dx =
Um−1 [η(x)], k = 0, 1, ...,
(x − y)ρ(y)
b−a

✭✶✳✶✻✮

a
b
a
b
a

ρ(y)Uk−1 [η(y)] dy
π(b − a)
=
Tk [η(x)] , k = 1, 2, ...
x−y
2


π

✈ỵ✐ δkj ❧➔ ❦➼ ❤✐➺✉ ❑r♦♥❡❝❦❡r ✈➔ αk =  π
2

✭✶✳✶✼✮

k=0
k = 1, 2, ...

π(b − a)2
2x − (a − b)
β=
, η(x) =
.
8
b−a

✶✳✻ ❍➺ ✈ỉ ❤↕♥ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè t✉②➳♥ t➼♥❤
❳➨t ❤➺ ✈ỉ ❤↕♥ ❝→❝ ♣❤÷ì♥❣ tr➻♥❤ ✤↕✐ sè t✉②➳♥ t➼♥❤ s❛✉


xi =

ci,k xk + bi , (i = 1, 2, ...),

✭✶✳✶✽✮

k=1


tr♦♥❣ ✤â xi ❧➔ ❝→❝ sè ❝➛♥ ①→❝ ✤à♥❤✱ ci,k ✈➔ bi ❧➔ ❝→❝ ❤➺ sè ✤➣ ❜✐➳t✳
✣à♥❤ ♥❣❤➽❛ ✶✳✻✳✶✳ ❬✺❪✳ ❚➟♣ ❤ñ♣ ♥❤ú♥❣ sè x1, x2, ... ✤÷đ❝ ❣å✐ ❧➔ ♥❣❤✐➺♠
❝õ❛ ❤➺ ✭✶✳✶✽✮ ♥➳✉ ❦❤✐ t❤❛② ♥❤ú♥❣ sè ✤â ✈➔♦ ✈➳ ♣❤↔✐ ❝õ❛ ✭✶✳✶✽✮ t❛ ❝â ❝→❝
❝❤✉é✐ ❤ë✐ tư ✈➔ t➜t ❝↔ ♥❤ú♥❣ ✤➥♥❣ t❤ù❝ ✤÷đ❝ t❤ä❛ ♠➣♥✳ ◆❣❤✐➺♠ ✤÷đ❝ ❣å✐
❧➔ ❝❤➼♥❤ ♥➳✉ ♥â t➻♠ ✤÷đ❝ ❜➡♥❣ ữỡ t ợ tr
❜➡♥❣ ❦❤ỉ♥❣✳
✣à♥❤ ♥❣❤➽❛ ✶✳✻✳✷✳ ❬✺❪✳ ❍➺ ✈ỉ ❤↕♥ ✭✶✳✶✽✮ ✤÷đ❝ ❣å✐ ❧➔ ❤➺ ❝❤➼♥❤ q✉② ♥➳✉


|ci,k | < 1, (i = 1, 2, ...).

◆➳✉ ❝â t❤➯♠ ✤✐➲✉ ❦✐➺♥

k=1



|ci,k |
k=1

✭✶✳✶✾✮

1 − θ < 1, 0 < θ < 1, (i = 1, 2, ...),

✭✶✳✷✵✮

t❤➻ ❤➺ ♥➔② ✤÷đ❝ ❣å✐ ❧➔ ❤♦➔♥ t♦➔♥ ❝❤➼♥❤ q✉②✳ ◆➳✉ ❝→❝ ❜➜t ✤➥♥❣ t❤ù❝✭✶✳✶✾✮
✭t÷ì♥❣ ù♥❣ ✱✭✭✶✳✷✵✮✮✮ ✤ó♥❣ ✈ỵ✐ i = N + 1, N + 2, ..., t❤➻ ❤➺ ✭✶✳✶✽✮ ✤÷đ❝ ❣å✐
❧➔ tü❛ ❝❤➼♥❤ q✉② ✭t÷ì♥❣ ù♥❣✱ tü❛ ❤♦➔♥ t♦➔♥ ❝❤➼♥❤ q✉②✮✳









i = 1

|ci,k | , (i = 1, 2, ...).
k=1

❍➺ ❝❤➼♥❤ q✉② ❝❤♦ ρi > 0✱ ❤➺ ❤♦➔♥ t♦➔♥ ❝❤➼♥❤ q✉② ❝❤♦ ρi ≥ θ > 0.
●✐↔ sû ❤➺ ✭✶✳✶✽✮ ❧➔ ❤➺ ❝❤➼♥❤ q✉②✱ ✈➔ ❝→❝ ❤➺ sè tü ❞♦ bi t❤ä❛ ♠➣♥ ✤✐➲✉
❦✐➺♥
|bi | Kρi , (K = const > 0).

ỹ tỗ t↕✐ ❝õ❛ ♥❣❤✐➺♠ ❜à ❝❤➦♥✮✳ ◆➳✉ ❝→❝ ❤➺ sè tü ❞♦
❝õ❛ ❤➺ ✈æ ❤↕♥ ❝❤➼♥❤ q✉② t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ ✭✶✳✷✶✮ t❤➻ ♥â ❝â ♥❣❤✐➺♠ ❜à
❝❤➦♥ |xi| K ✈➔ ♥❣❤✐➺♠ ♥➔② ❝â t❤➸ t➻♠ ✤÷đ❝ ❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ①➜♣ ①➾
❧✐➯♥ t✐➳♣✳
✣à♥❤ ❧➼ ✶✳✻✳✹✳ ❬✺❪✳ ✭❙ü ✧❝❤➦t ❝öt✧✮✳ ◆❣❤✐➺♠ ❝❤➼♥❤ x∗ ❝õ❛ ❤➺ ❝❤➼♥❤ q✉②


xi =

cik xk + bi , (i = 1, 2, 3, ...),
k=1

❝ị♥❣ ✈ỵ✐ ❝→❝ ❤➺ sè tü ❞♦ t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥ |bi| Kρi ❝â t❤➸ t➻♠ ✤÷đ❝

❜➡♥❣ ♣❤÷ì♥❣ ♣❤→♣ ✧❝❤➦t ❝ưt✧✱ ♥❣❤➽❛ ❧➔✱ ♥➳✉ xNi ❧➔ ♥❣❤✐➺♠ ❝õ❛ ❤➺ ❤ú✉ ❤↕♥
N

xi =

cik xk + bi , (i = 1, 2, 3, ..., N ),
k=1

t❤➻
x∗i = limN →∞ xN
i .

✣à♥❤ ❧➼ ✶✳✻✳✺✳ ❬✺❪✳ ✭❇♦♥❞❛r❡♥❦♦ P✳❙✮✳ ❍➺ ❝❤➼♥❤ q✉② ❝â t❤➸ ❝â ❦❤æ♥❣ q✉→
♠ët ♥❣❤✐➺♠ t✐➳♥ ✤➳♥ ❦❤æ♥❣✱ ♥❣❤➽❛ ❧➔

limi→∞ xi = 0.


✶✹

✶✳✼ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❤➔♠ ❝ì ❜↔♥ ❣✐↔♠ ♥❤❛♥❤
✶✳✼✳✶ ❑❤ỉ♥❣ ❣✐❛♥ S ❝õ❛ ❝→❝ ❤➔♠ ❝ì ❜↔♥ ❣✐↔♠ ♥❤❛♥❤

✣à♥❤ ♥❣❤➽❛ ✶✳✼✳✶✳ ❬✹✱ ✶✸✱ ✶✹❪✳ ❑➼ ❤✐➺✉ S = S(R) ❧➔ t➟♣ ❤đ♣ ❝õ❛ ❝→❝
❤➔♠ ❦❤↔ ✈✐ ✈ỉ ❤↕♥ ϕ ∈ C ∞(R), t❤ä❛ ♠➣♥ ✤✐➲✉ ❦✐➺♥
p
p

|Dk ϕ| < ∞, p = 0, 1, 2, ..., m,


|[ϕ]|p = sup(1 + |x|)
x∈R

k=0

tr♦♥❣ ✤â ❦➼ ❤✐➺✉ D = dxd ✳ ❉➣② {|[ϕ]|p}k ❧➔ ♠ët ❤å ❝→❝ ♥û❛ ❝❤✉➞♥✳ ❉➣②
{ϕk } ⊂ S ✤÷đ❝ ❣å✐ ❧➔ ❤ë✐ tư ✤➳♥ ❤➔♠ ϕ ∈ S ✱ ♥➳✉ |[ϕk − ϕ]|p → 0, ❦❤✐
k → ∞; p = 0, 1, 2, ..., m. ❚➟♣ ❤ñ♣ S ợ ở tử tr ữủ ồ ổ
❤➔♠ ❝ì ❜↔♥ ❣✐↔♠ ♥❤❛♥❤✳
❱➼ ❞ư✿ ❤➔♠ ϕ(x) = e−x ∈ C ∞(R) ❧➔ ❤➔♠ ❣✐↔♠ ♥❤❛♥❤✳
✣à♥❤ ❧➼ ✶✳✼✳✷✳ ❬✹✱ ✶✸✱ ✶✹❪✳ ❚➟♣ ❤ñ♣ Co∞(R) ❝õ❛ ❝→❝ ❤➔♠ ❦❤↔ ✈✐ ✈ỉ ❤↕♥ ❝â
❣✐→ ❝♦♠♣❛❝t tr♦♥❣ R ❧➔ trị ♠➟t tr♦♥❣ S t❤❡♦ tæ♣æ ❝õ❛ S ✳
2

✶✳✼✳✷ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❝→❝ ❤➔♠ ❝ì ❜↔♥

❱➻ ❤➔♠ ❝ì ❜↔♥ tr♦♥❣ ❦❤ỉ♥❣ ❣✐❛♥ S ❧➔ ♥❤ú♥❣ ❤➔♠ ❦❤↔ tê♥❣ tr♦♥❣ R ♥➯♥
❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r ✤÷đ❝ ①→❝ ✤à♥❤ t❤❡♦ ❝ỉ♥❣ t❤ù❝
+∞

ϕ(x)eix.ξ dx, ϕ ∈ S.

F [ϕ](ξ) =
−∞

❙❛✉ ✤➙② ❧➔ ❝→❝ t➼♥❤ ❝❤➜t q✉❛♥ trå♥❣ ❝õ❛ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r tr♦♥❣ ❦❤æ♥❣ ❣✐❛♥
S✳
✶✳ ✣↕♦ ❤➔♠ sè tũ ỵ ữợ t rr
D F []() = F [(ix)α ϕ](ξ).


✷✳ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ✤↕♦ ❤➔♠
F [Dα ϕ](ξ) = (−iξ)α F [ϕ](ξ).


✶✺

✸✳ ✣➥♥❣ t❤ù❝ P❛rs❡✈❛❧
●✐↔ sû f ∈ L1(R). ❑❤✐ ✤â t❛ ❝â ✤➥♥❣ t❤ù❝
+∞

+∞

f (x)F [ϕ](x)dx, ϕ ∈ S.

F [f ](ξ)ϕ(ξ)dξ =
−∞

−∞

✭✶✳✷✷✮

✹✳ ❈ỉ♥❣ t❤ù❝ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r ♥❣÷đ❝
ϕ = F −1 [F [ϕ]] = F [F −1 [ϕ]], F −1 [ϕ(ξ)](x) =

1
F [ϕ(−ξ)](x).


✣à♥❤ ❧➼ ✶✳✼✳✸✳ ❬✹✱ ✶✸✱ ✶✹❪✳ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r F tø S ✈➔♦ S ❧➔ →♥❤ ①↕ t÷ì♥❣
ù♥❣ ♠ët ✲ ♠ët ✈➔ ❧✐➯♥ tö❝ ✈➔♦ ❝❤➼♥❤ ♥â✱ ♥❣❤➽❛ ❧➔ ♠ët ✤➥♥❣ ❝➜✉ t✉②➳♥ t➼♥❤✳


✶✳✽ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠
✶✳✽✳✶ ❑❤æ♥❣ ❣✐❛♥ S ❝õ❛ ❝→❝ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠

✣à♥❤ ♥❣❤➽❛ ✶✳✽✳✶✳ ❬✹✱ ✶✸✱ ✶✹❪✳ ▼å✐ ♣❤✐➳♠ ❤➔♠ t✉②➳♥ t➼♥❤ ❧✐➯♥ tư❝ tr➯♥

✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠✳ ❚➟♣ ❤ñ♣ ❝→❝ ❤➔♠ s✉② rở t
ỵ S tr ừ f ∈ S tr➯♥ ♣❤➛♥ tû ϕ ∈ S ✤÷đ❝ ❦➼ ❤✐➺✉
❧➔ < f, ϕ >✱ ❝á♥ tr➯♥ ♣❤➞♥ tû ❧✐➯♥ ❤ñ♣ ♣❤ù❝ ϕ✱ ❦➼ ❤✐➺✉ ❧➔ (f, ϕ)✳ ❉➣②
{fk } ∈ S ❤ë✐ tö ✤➳♥ f ∈ S ✱ ♥➳✉ < fk , ϕ >→< f, ϕ >, ϕ ∈ S ✳
S

●✐↔ sû f ❧➔ ❤➔♠ ❦❤↔ t➼❝❤ ✤à❛ ữỡ r ố ợ N > 0 õ
+

|f (x)|(1 + |x|)−N dx < ∞.
−∞

❑❤✐ ✤â ❤➔♠ f t÷ì♥❣ ù♥❣ ✈ỵ✐ ♠ët ♣❤✐➳♠ ❤➔♠ tr➯♥ S t❤❡♦ ❝ỉ♥❣ t❤ù❝✿
+∞

(f, ϕ) =

f (x)ϕ(x)dx.
−∞

P❤✐➳♠ ❤➔♠ tr➯♥ ✤÷đ❝ ❣å✐ ❧➔ ❤➔♠ s✉② rë♥❣ ❝❤➼♥❤ q✉②✳ ❉➵ t❤➜② r➡♥❣ ♣❤✐➳♠
❤➔♠ tr➯♥ ✤➙② ❧➔ t✉②➳♥ t➼♥❤ ✈➔ ❧✐➯♥ tö❝ tr➯♥ S ✳
✣à♥❤ ❧➼ ✶✳✽✳✷✳ ❬✶✸❪✳ ❑❤æ♥❣ ❣✐❛♥ ❝→❝ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠ S ❧➔ ❦❤æ♥❣
❣✐❛♥ ✤➛② ✤õ✳



✶✻

✶✳✽✳✷ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠

❈æ♥❣ t❤ù❝ ✭✶✳✷✷✮ ❝â t❤➸ ✈✐➳t ❧↕✐ ð ❞↕♥❣
F [f ], ϕ >=< f, F [ϕ] , ϕ ∈ S.

❈æ♥❣ t❤ù❝ ♥➔② ❧➔ ❝ì sð ❝õ❛ ✤à♥❤ ♥❣❤➽❛ s❛✉ ✤➙②✳
✣à♥❤ ♥❣❤➽❛ ✶✳✽✳✸✳ ❬✶✸✱ ✶✹❪✳ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❤➔♠ s✉② rë♥❣ t➠♥❣
❝❤➟♠ f ❧➔ ❤➔♠ s✉② rë♥❣ t➠♥❣ ❝❤➟♠ F [f ] ✤÷đ❝ ①→❝ ✤à♥❤ t❤❡♦ ❝ỉ♥❣ t❤ù❝
< F [f ], ϕ >=< f, F [f ] >, f ∈ S , ϕ ∈ S.
✭✶✳✷✸✮
❱➻ ♣❤➨♣ t♦→♥ ϕ → F [ϕ] ❧➔ ✤➥♥❣ ❝➜✉ ✈➔ ❧✐➯♥ tö❝ tø S ✈➔ S ✱ ♥➯♥ ♣❤✐➳♠ ❤➔♠
F [f ] ①→❝ ✤à♥❤ t❤❡♦ ❝æ♥❣ t❤ù❝ ✭✶✳✷✸✮ ✤÷đ❝ ❤✐➸✉ t❤❡♦ ♥❣❤➽❛ S ✱ ❤ì♥ ♥ú❛✱
♣❤➨♣ t♦→♥ f → F [f ] ❧➔ t✉②➳♥ t➼♥❤ ✈➔ ❧✐➯♥ tö❝ tø S ✈➔♦ S ✳
✣à♥❤ ♥❣❤➽❛ ✶✳✽✳✹✳ ❬✶✸✱ ✶✹❪✳ P❤➨♣ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r F −1 ✤÷đ❝ ①→❝ ✤à♥❤
tr♦♥❣ S t❤❡♦ ❝æ♥❣ t❤ù❝
1
F −1 [f ] =
F [f (−x)], f ∈ S .
✭✶✳✷✹✮

tr♦♥❣ ✤â f (−x) ❧➔ ❤➔♠ s✉② rë♥❣ ♣❤↔♥ ①↕ ❝õ❛ ❤➔♠ s✉② rë♥❣ f (x) :
< f (−x), ϕ(x) >=< f, ϕ(−x) >, ϕ ∈ S.

❘ã r➔♥❣ ❧➔ F −1 ❧➔ t♦→♥ tû t✉②➳♥ t➼♥❤ ❧✐➯♥ tö❝ tø S ✈➔♦ S ✳ ❚❛ s➩ ❝❤ù♥❣ tä
r➡♥❣✱ t♦→♥ tû F −1 ❧➔ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r ♥❣÷đ❝ ❝õ❛ F ✱ ♥❣❤➽❛ ❧➔
F −1 [F [f ]] = f, F [F −1 [f ]] = f, f ∈ S .

✭✶✳✷✺✮
❚❤➟t ✈➟②✱ t❤❡♦ t➼♥❤ ❝❤➜t ❝õ❛ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r tr♦♥❣ S ✱ t❤➻ ❝→❝ ❝ỉ♥❣ t❤ù❝
tr♦♥❣ ✭✶✳✷✺✮ ✤ó♥❣ tr♦♥❣ S trị ♠➟t tr♦♥❣ S ✱ ❞♦ ✤â ✭✶✳✷✺✮ ❝ơ♥❣ ✤ó♥❣ tr♦♥❣
S✳

❈→❝ t➼♥❤ ❝❤➜t ❝ì ❜↔♥ ❝õ❛ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r
✶✳ ✣↕♦ ❤➔♠ ❝õ❛ ❝→❝ ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r
Dα F [f ] = F [(ix)α f ], f ∈ S .

✭✶✳✷✻✮

✷✳ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ✤↕♦ ❤➔♠
Dα F [f ] = (−iξ)α F [f ], f ∈ S .

✭✶✳✷✼✮


✶✼

✸✳ ✣➥♥❣ t❤ù❝ P❛rs❡✈❛❧
< F [f ], F [ϕ] >= 2π < f (−x), ϕ(x) >,

f ∈ S , ϕ ∈ S.

✭✶✳✷✽✮

✹✳ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❞à❝❤ ❝❤✉②➸♥

✭✶✳✷✾✮
✺✳ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ ❤➔♠ s✉② rë♥❣ ❝â ❣✐→ ❝♦♠♣❛❝t✳ ◆➳✉ f ∈ S ✈➔ ❝â

❣✐→ ❝♦♠♣❛❝t✱ t❤➻ F [f ] ∈ C ∞ ✈➔ t➠♥❣ ❝❤➟♠ ð ✈ỉ ❝ị♥❣✱ ♥❣❤➽❛ ❧➔
F [f (x − x0 )] = eiξx0 F [f ], f ∈ S .

|Dα F [f ](ξ)| ≤ Cmα (1 + |ξ|2 )mα /2 .

✶✳✽✳✸ ❇✐➳♥ ✤ê✐ ❋♦✉r✐❡r ❝õ❛ t➼❝❤ ❝❤➟♣

✣à♥❤ ♥❣❤➽❛ ✶✳✽✳✺✳ ❬✹✱ ✶✸✱ ✶✹❪✳ ✐✮ ◆➳✉ f ∈ S , η ∈ S ✱ t❤➻ f ∗ η ✤÷đ❝ ①→❝
✤à♥❤ t❤❡♦ ❝ỉ♥❣ t❤ù❝

f ∗ η =< f (y), η(x − y) > .

❑❤✐ ✤â
F [f ∗ η](ξ) = F [f ](ξ)F [η](ξ).

✐✐✮ ◆➳✉ f, g ∈ S ✱ s✉♣♣ g ❧➔ t➟♣ ❝♦♠♣❛❝t t❤➻ f ∗ g ∈ S ✈➔ ✤÷đ❝ ①→❝ ✤à♥❤
t❤❡♦ ❝ỉ♥❣ t❤ù❝
< f ∗ g, ϕ >=< f (y), < g(x), ϕ(x + y) >> .

❑❤✐ ✤â
F [f ∗ g] = F [f ].F [g].

✶✳✾ ❈→❝ ❦❤æ♥❣ ❣✐❛♥ ❙♦❜♦❧❡✈
✶✳✾✳✶ ❑❤æ♥❣ ❣✐❛♥ H (R)
s

✣à♥❤ ♥❣❤➽❛ ✶✳✾✳✶✳ ❬✹✱ ✶✸✱ ✶✹❪✳ ●✐↔ sû s ∈ R✳ ❑➼ ❤✐➺✉ H (R) ❧➔ ❦❤æ♥❣
s

❣✐❛♥ ❝õ❛ ❝→❝ ❤➔♠ s✉② rë♥❣ u ∈ S ✱ ❝â ❜✐➳♥ ✤ê✐ ❋♦✉r✐❡r u(ξ) t❤ä❛ ♠➣♥ ✤✐➲✉

❦✐➺♥✿
+∞
2
||u||s =
|u(ξ)|2 (1 + |ξ|2s )dξ < ∞.
✭✶✳✸✵✮
−∞




ỵ H s ổ ừ u = F [u]✱ ✈ỵ✐ u ∈ H s(R). ❈ỉ♥❣
t❤ù❝ ✭✶✳✸✵✮ ①→❝ ✤à♥❤ ❝❤✉➞♥ tr♦♥❣ H s ✈➔ tr♦♥❣ H s✳ ◆❤➟♥ ①➨t r➡♥❣✱ H s ✈➔
H s ❧➔ ❦❤æ♥❣ rt ợ t ổ ữợ
+



(1 + ||)2s u()v()d.

(u, v)s =
−∞

✣à♥❤ ❧➼ ✶✳✾✳✷✳ ❬✹✱ ✶✸✱ ✶✹❪✳ ✣è✐ ♥❣➝✉ ❝õ❛ ❦❤æ♥❣ ❣✐❛♥ H (R) ❧➔ ❦❤æ♥❣
s

❣✐❛♥ H −s(R). ◆❣♦➔✐ r❛✱ t➟♣ ❤đ♣ Co∞(R) ❝õ❛ ❝→❝ ❤➔♠ ❦❤↔ ✈✐ ✈ỉ ❤↕♥ ❝â ❣✐→
❝♦♠♣❛❝t trò ♠➟t tr♦♥❣ H s(R), s ∈ R.

✶✳✾✳✷ ❈→❝ ❦❤æ♥❣ ❣✐❛♥ H (Ω), H

s
o

s
s
o,o (Ω), H (Ω)

✣à♥❤ ♥❣❤➽❛ ✶✳✾✳✸✳ ❬✶✹❪✳ ●✐↔ sû Ω ❧➔ ♠ët ❦❤♦↔♥❣ ❤♦➦❝ ❤➺ ❝→❝ ❦❤♦↔♥❣

❦❤æ♥❣ ❣✐❛♦ ♥❤❛✉ tr♦♥❣ R✳ ❑➼ ❤✐➺✉ Hos(Ω) ❧➔ ❦❤æ♥❣ ❣✐❛♥ ❝♦♥ ❝õ❛ ❦❤ỉ♥❣
❣✐❛♥ H s(R) ✤÷đ❝ ✤à♥❤ ♥❣❤➽❛ ♥❤÷ ❜❛♦ ✤â♥❣ ❝õ❛ Co∞(Ω) t❤❡♦ ❝❤✉➞♥ ❝õ❛
H s (R)✳ ❚➟♣ ❤ñ♣ ❝õ❛ ❝→❝ ❤➔♠ tr♦♥❣ H s (R) ❝â ❣✐→ tr♦♥❣ Ω ✤÷đ❝ ❦➼ ❤✐➺✉ ❧➔
s
(Ω)
Ho,o

❈❤✉➞♥ tr♦♥❣ Hos(Ω) ❝ơ♥❣ ✤÷đ❝ ①→❝ ✤à♥❤ ❜ð✐ ❝æ♥❣ t❤ù❝ ✭✶✳✸✵✮ ✈➔ ♠å✐
❤➔♠ u ∈ Hos(Ω) ❝â s✉♣♣u ⊂ Ω✳ ❚❤➟t ✈➟②✱ ❣✐↔ sû u Hos(). õ tỗ t
{uk } Co() ❤ë✐ tö ✤➳♥ u t❤❡♦ ❝❤✉➞♥ ❝õ❛ H s(R)✳ ❑➼ ❤✐➺✉ Ω = R/Ω✳
◆❤÷ ✈➟②✱ t❛ ❝â < uk , ϕ >= 0✱ ✈ỵ✐ ♠å✐ ϕ ∈ Co∞(Ω )✳ ❉♦ t➼♥❤ ❧✐➯♥ tư❝ s✉②
r❛ < u, ϕ >= 0✱ ✈ỵ✐ ♠å✐ ϕ ∈ Co∞(Ω )✳ ✣✐➲✉ ✤â ❝❤ù♥❣ tä s✉♣♣u ⊂ Ω✳ ◆❤÷
✈➟②✱ Hos(Ω) ⊂ Ho,os (Ω).
✣à♥❤ ♥❣❤➽❛ ✶✳✾✳✹✳ ❬✹❪✳ ●✐↔ sû f ∈ H s(R)✳ ❑➼ ❤✐➺✉ fΩ ❧➔ ❤↕♥ ❝❤➳ ❝õ❛ f
tr➯♥ Ω✱ ♥❣❤➽❛ ❧➔
< fΩ , ϕ >=< f, ϕ > ✈ỵ✐ ♠å✐ ϕ ∈ Co∞ (Ω).
❑➼ ❤✐➺✉ p, l t÷ì♥❣ ù♥❣ ❧➔ ❝→❝ t♦→♥ tû ❜à ❤↕♥ ❝❤➳ tr➯♥ Ω ✈➔ t♦→♥ tû t❤→❝
tr✐➸♥ r❛ R✳ ❚➟♣ ❤ñ♣ ❝→❝ ❤↕♥ ❝❤➳ ❝õ❛ ❝→❝ ❤➔♠ t❤✉ë❝ H s(R) tr➯♥ Ω ❦➼ ❤✐➺✉
H s (Ω)✳ ❈❤✉➞♥ tr♦♥❣ H s (Ω) ✤÷đ❝ ①→❝ ✤à♥❤ t❤❡♦ ❝ỉ♥❣ t❤ù❝
||f ||H (Ω) = inf ||lf ||s ,
✭✶✳✸✷✮

l
s

tr♦♥❣ ✤â inf ❧➜② t❤❡♦ t➜t ❝↔ ❝→❝ t❤→❝ tr✐➸♥ lf ∈ H s(R) ❝õ❛ f ∈ H s(Ω)✳


×